AS/400e ====T=

Data Management

Version 4

RBAL-3000-00

AS/400e ====T=

Data Management

Version 4

RBAL-3000-00

© Copyright International Business Machines Corporation 1997, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About Data Management

Who should read this book .

AS/400 Operations Navigator .
Installing Operations Navigator.

Prerequisite and related information .

How to send your comments

Chapter 1. Introduction
File Types

Chapter 2. File Processing . .
Data Management Operations Overwew .
Security Considerations
Object Authority .
Data Authorities .
Authorities Required for F|Ie Operatlons .
Limiting access to files and data when creating flles .
Sharing Files .
Open Con3|deratlons for Flles Shared ina Job
I/O Considerations for Files Shared in a Job.
Close Considerations for Files Shared in a Job.
Allocating File Resources.
File resource allocation
File resources that must be aIIocated
How the system allocates resources.
Opening Files .
Scoping of opened flles
Opening files using temporary f|Ie descr|pt|ons .
Open Considerations When Using *LIBL with a DDM F|Ie .
Detecting File Description Changes . e
Displaying information about open files.
Open and 1/O Feedback Area .
Error handling .
Messages and Message Momtors
Major and Minor Return Codes
Recovering from errors
Related Information on File Types

Chapter 3. Using Overrides
Overrides .
Benefits of using overndes . .
Summary of the override commands
Effect of overrides on some commands
Applying overrides .
Overriding file attributes
Overriding file names .
Overriding file names and file attrlbutes
Overriding the scope of an open file.
How the system processes overrides
Effect of exits on overrides: scenario
Effect of TFRCTL on overrides-Scenario .
Overrides to the same file at the same call level: scenario 1

Overrides to the same file at the same call level: scenario 2 .

© Copyright IBM Corp. 1997, 1999

33
33
34
34
35
36
37
39
39
40
40
48
49
50
50

iv

CL program overrides .

Securing files against overrides

Using a generic override for printer files
Applying overrides when compiling a program .

Deleting overrides G
Deleting overrides: scenario 1
Deleting overrides: scenario 2 .

Displaying overrides .

Displaying all overrides for a specrﬁc actlvanon group scenario
Displaying merged file overrides for one file: scenario .
Displaying all file overrides for one file: scenario .
Displaying merged file overrides for all files: scenario
Displaying overrides with WRKJOB: scenario
Displaying overrides: comprehensive scenario .
Displaying overrides: tips .

Redirecting files .

Planning for redirecting frles
Redirecting files: tips
Default actions for redirected flles

Chapter 4. Copying files
Copying files
Create the To-File (CRTFILE Parameter)
Specifying CRTFILE(*YES) on either the CPYF or CPYFRMQRYF command
Authorities, user profiles, and file capabilities of the created to-file.
Add, replace, and update records (MBROPT parameter)
Specifying *REPLACE . . .o
Specifying *ADD .
Specifying *UPDADD .
Select members to copy . .
Copying file members: overview . .
Allowed copy operations and parameters .
Copy all members or labels within a file
Copy only certain members or labels within a file . .
Specifying the label identifier or member name for the copy operatron .
Special considerations for the Override Database File (OVRDBF), Override

Diskette File (OVRDKTF), and Override Tape File (OVRTAPF) commands.

How the copy function adds members to the to-file .
Select the records to copy

Select records using a specmed record format name (RCDFMT Parameter) .

Select records by relative record numbers (FROMRCD and TORCD
Parameters).

Select records by record keys (FROMKEY and TOKEY Parameters)

Key string comparisons made by the copy operation. -

Example: build-key function . .

Example: using FROMKEY and TOKEY

Variable-length fields .

Date, time, and timestamp fields .

Null-capable fields

Different CCSIDs.

DBCS-graphic fields

Select a specified number of records (NBRRCDS Parameter)

Select records based on character content INCCHAR Parameter)

Variable-length fields

Null-capable fields

Different CCSIDs.

Data Management V4R4

51
51
52
54
55
56
56
58
58
59
59
59
59
60
64
65
66
66
67

71
71
72
72
73
74
74
74
74
75
75
76
76
76
77

77
78
78
79

79
80
82
82
83
83
83
84
84
85
85
86
86
87
87

DBCS-graphic fields
Select records based on field value (INCREL Parameter)
Variable-length fields .
Date, time, and timestamp fields .
Null-capable fields
Different CCSIDs.
DBCS-graphic fields
Copy deleted records (COMPRESS Parameter)
Print records (PRINT, OUTFMT, and TOFILE(*PRINT) parameters)
Creating an unformatted print listing .
Copying between different database record formats (FMTOPT parameter)
Specifying Data for Different Field Types and Attributes.
Add or change source file sequence number and date fields (SRCOPT and
SRCSEQ Parameters) .
Copying device source files to database source frles
Copying database source files to device source files.
Copying Database Source Files to Database Source Files
Prevent errors when copying files.
Limiting recoverable errors during copy
Preventing date, time, and timestamp errors.
Preventing position errors
Preventing allocation errors .
Preventing copy errors that result from constramt relatlonsh|ps
Copying files not in check-pending status.
Copying files in check pending status .
Preventing copy errors related to your authonty to frles
Improve copy performance .
Avoid keyed sequence access paths
Specify fewer parameters
Year 2000 support: date, time, and tlmestamp consrderatlons Co
Copying FROM logical file ZONED, CHARACTER, or PACKED field (Wlth a
DATFMT) TO a DATE field in a physical to-file .
Copying FROM or TO a ZONED or PACKED field (that has no DATFMT) TO
or FROM a DATE type field . e e e e
Restrictions for Year 2000 support
Copying complex objects . .
Copying files that contain user- def|ned functlons .
Copying files that contain user-defined types
Copying files that contain DataLinks.
Copying files that contain large objects.
Copy between different systems .
Notes on the CPYFRMIMPF command
Restrictions on the CPYFRMIMPF command
(CPYFRMIMPF) Importing data to the AS/400 when the from f|Ie is a
database file or DDM file .
(CPYFRMIMPF) Importing data to AS/4OO When the |mport f|Ie is a stream
file . .
Parallel data Ioader support to use Wlth the CPYFRMIMPF command
Handling data from the import file.
Delimited Import File
Fixed Formatted Import File.
Notes on the CPYTOIMPF command
Notes on the delimited import file (CPYTOIMPF command)
Restrictions for the CPYTOIMPF command . .
Copying data to the import file in a fixed format (CPYTOIMPF command) .

Contents

87
87
88
89
89
90
90
90
91
93
93
96

. 103
. 103
. 104
. 104
. 104
. 105
. 107
. 108
. 108
. 110
. 110
111
111
111
. 112
. 112

. 112

. 113

. 115
. 116
. 117
. 117
. 117
. 117
. 118
. 122
. 122
. 123

. 124

. 125
. 125
. 125
. 126
. 128
. 129
. 129
. 130
. 131

\Y

Chapter 5. Working with spooled files N RC K

OQutput spooling .133
Device Descriptions. . . e 7
Summary of Spooled File Commands R 15)
Locating Your Spooled Files.135
File Redirection .135

Output Queues 136
Summary of Output Queue Commands e R ¥ 4
Default Printer Output Queues.137
Default System Output Queues137
Creating Your Own Output Queues138
Order of Spooled Files on an Output Queue.138
Using Multiple Output Queues139
Output Queue Recovery .139

Spooling Writers . . . 0]
Summary of Spooling Wnter Commands o

Spooled File Security . . . v 4

Controlling the Number of Spooled Frles in Your System e 7

Command Examples for Additional Spooling Support142

Input spooling . . . 7 3¢
Summary of Job Input Commands e ¥
JobQueues .14
Transferring Jobs. .. 147
Using an Inline Data File.149

Spooling Subsystem .150

Spooling Library .15

Appendix A. Feedback Area Layouts153

Open Feedback Area .153
Device Definition List .157
Volume Label Fieds .163

I/O Feedback Area . . . e e e e1e3
Common /O Feedback Area S . e1.3
I/0 Feedback Area for ICF and D|splay Flles e K 61°)
I/O Feedback Area for Printer Files173
I/O Feedback Area for Database Files173
Get Attributes .175

Appendix B. Double-Byte Character Set Support183

Double-Byte Character Set Fundamentals183
DBCS Code Scheme .18
Shift-Control Characters . . . N RV 4
Invalid Double-Byte Code and Undeflned Double Byte Code188
Using Double-Byte Data .188
Double-Byte Character Size.188

Processing Double-Byte Characters.189
Basic Characters. .189
Extended Characters189
What Happens When Extended Characters Are Not Processed.189

Device File Support. .19
What a DBCS File Is . . . e [0
When to Indicate a DBCS F|Ie e R0
How to Indicate a DBCS File19
Improperly Indicated DBCS Files.192

Display Support . . . N e S
Inserting Shift-Control Characters e

Vi Data Management V4R4

Number of Displayed Extended Characters .
Number of Input Fields on a Display.

Effects of Displaying Double- Byte Data at Alphanumerlc Work Statlons .

Copying Files .
Copying Spooled Flles
Copying Nonspooled Files
Application Program Considerations. .
Designing Application Programs That Process DoubIe Byte Data .
Changing AIphanumerlc Appllcatlon Programs to DBCS Appllcatlon
Programs. . .
DBCS Font Tables . .
Commands for DBCS Font Tables
Finding Out if a DBCS Font Table Exists . .
Copying a DBCS Font Table onto Tape or Diskette .
Copying a DBCS Font Table from Tape or Diskette .
Deleting a DBCS Font Table e
Starting the Character Generator Utility
Copying User-Defined Double-Byte Characters.
DBCS Font Files . Ce e e
DBCS Sort Tables .
Commands for DBCS Sort Tables
Using DBCS Sort Tables on the System .
Finding Out if a DBCS Sort Table Exists . .
Saving a DBCS Sort Table onto Tape or Diskette .
Restoring a DBCS Sort Table from Tape or Diskette .
Copying a Japanese DBCS Master Sort Table to a Data File
Copying a Japanese DBCS Master Sort Table from a Data File.
Deleting a DBCS Sort Table.
DBCS Conversion Dictionaries. .
System-Supplied Dictionary (for Japanese Use Only)
User-Created Dictionary . .o .o
Commands for DBCS Conversion chtlonarles
Displaying and Printing the DBCS Conversion Drctronary
Deleting a DBCS Conversion Dictionary .
DBCS Conversion (for Japanese Use Only) .
Where You Can Use DBCS Conversion
How DBCS Conversion Works.
Using DBCS Conversion .
Performing DBCS Conversion .

Bibliography)
Planning, Installation, and Mrgratron.
Application Development .

System Management .
Communications and Connect|V|ty
Program Enablers

System Management .

System Use

Tutorial

Index .

Readers’ Comments — We'd Like to Hear from You

Contents

. 194
. 194
. 194
. 195
. 195
. 195
. 196
. 196

. 197
. 197
. 198
. 198
. 198
. 199
. 200
. 201
. 201
. 201
. 202
. 203
. 203
. 203
. 203
. 204
. 204
. 205
. 206
. 206
. 206
. 207
. 207
. 213
. 213
. 214
. 214
. 215
. 215
. 215

. 223
. 223
. 223
. 223
. 224
. 224
. 224
. 224
. 225

. 227

. 245

Vii

viii Data Management V4R4

About Data Management

This book describes the data management portion of the Operating System/400
licensed program. Data management provides applications with access to input and
output file data that is external to the application. There are several types of these
input and output files, and each file type has its own characteristics. In addition, all
of the file types share a common set of characteristics. This book describes the
characteristics and programming use of database files and spooled files.

Who should read this book

This book is intended primarily for the application programmer. This book should
also be useful for those responsible for tailoring their system to use double-byte
data with the data management file support.

Before using this book, you should be familiar with general programming concepts
and terminology, and have a general understanding of the AS/400 system and
0OS/400 operating system.

AS/400 Operations Navigator

AS/400 Operations Navigator is a powerful graphical interface for Windows clients.
With AS/400 Operations Navigator, you can manage and administer your AS/400
systems from your Windows desktop.

You can use Operations Navigator to manage communications, printing, database,
security, and other system operations. Operations Navigator includes Management
Central for managing multiple AS/400 systems centrally.

m shows an example of the Operations Navigator display:

€ AS/400 Dperations Navigator HEE
Eile Edit “iew Options Help
| e 5 minutes old
["Enwironment: My £5/400 Connections [SosterE
= (@} Management Cential (Systernd) =] [Hame | Desciiption
Task Activity %5 Basic Dperations Manage AS/400 messages. printsr outpu
T& Seheduled Tasks B8 Job Management Manage AS /400 jobs and server jobs.
= [E Definitions B Configuration and Service Display system inventery, work with fixes,
(1@ Command 1 Network Manage A5/400 TCPAP and Internet su|
[Package) 5 ecuiiy Configue and manage A5 /400 secuity.
e coaint s 89 Lsers and Grougs Manage AS /401 users and user groups.
E] 4! A5/400 5:st:r‘|né|;::ms %Dalabase Adrminister DB2/400.
DD Coamotions <2 File Systems otk with 55400 fils spstems
by
e 3 Multimedia Stare and share multimedia data on the &
T e Dperations (28 Backup Scheduls backups of A5./400 data
£8 Job Management @ 4pplication Development Wiork with 55400 application developme
B Configuration and Service
[Network
38, Secuity
WP Users and Groups
B Database
=2 File Systems
& Mulimedia
Backup =
‘:@’f\pph:almn Development =l | ml

’7?1 :1 of 11;|:iect[s] [
Figure 1. AS/400 Operations Navigator Display

This new interface has been designed to make you more productive and is the only
user interface to new, advanced features of OS/400. Therefore, IBM recommends
that you use AS/400 Operations Navigator, which has online help to guide you.
While this interface is being developed, you may still need to use a traditional
emulator such as PC5250 to do some of your tasks.

© Copyright IBM Corp. 1997, 1999 iX

Installing Operations Navigator

To use AS/400 Operations Navigator, you must have Client Access installed on your
Windows PC. For help in connecting your Windows PC to your AS/400 system,
consult Client Access Express for Windows - Setup, SC41-5507-00.

AS/400 Operations Navigator is a separately installable component of Client Access
that contains many subcomponents. If you are installing for the first time and you
use the Typical installation option, the following options are installed by default:

» Operations Navigator base support
» Basic operations (messages, printer output, and printers)

To select the subcomponents that you want to install, select the Custom installation

option. (After Operations Navigator has been installed, you can add subcomponents

by using Client Access Selective Setup.)

1. Display the list of currently installed subcomponents in the Component
Selection window of Custom installation or Selective Setup.

2. Select AS/400 Operations Navigator.

3. Select any additional subcomponents that you want to install and continue with
Custom installation or Selective Setup.

After you install Client Access, double-click the AS400 Operations Navigator icon
on your desktop to access Operations Navigator and create an AS/400 connection.

Prerequisite and related information

Use the AS/400 Information Center as your starting point for looking up AS/400
technical information. You can access the Information Center from the AS/400e
Information Center CD-ROM (English version: SK3T7-2027) or from one of these
Web sites:

http://www.as400.ibm.com/infocenter
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

The AS/400 Information Center contains important topics such as logical
partitioning, clustering, Java, TCP/IP, Web serving, and secured networks. It also
contains Internet links to Web sites such as the AS/400 Online Library and the
AS/400 Technical Studio. Included in the Information Center is a link that describes
at a high level the differences in information between the Information Center and
the Online Library.

For a list of related publications, see the [Bibliography” an page 223

How to send your comments

X

Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other AS/400
documentation, fill out the readers’ comment form at the back of this book.

» If you prefer to send comments by mail, use the readers’ comment form with the
address that is printed on the back. If you are mailing a readers’ comment form
from a country other than the United States, you can give the form to the local
IBM branch office or IBM representative for postage-paid mailing.

» If you prefer to send comments by FAX, use either of the following numbers:

Data Management V4R4

— United States and Canada: 1-800-937-3430
— Other countries: 1-507-253-5192
 If you prefer to send comments electronically, use one of these e-mail addresses:
— Comments on books:
RCHCLERK@us.ibm.com
IBMMAIL, to IBMMAIL(USIB56RZ)
— Comments on the AS/400 Information Center:
RCHINFOC@us.ibm.com

Be sure to include the following:

* The name of the book.

* The publication number of the book.

* The page number or topic to which your comment applies.

About Data Management Xi

Xii Data Management V4R4

Chapter 1. Introduction

Data management is the part of the operating system that controls the storing and
accessing of data by an application program. The data may be on internal storage
(for example, database), on external media (diskette, tape, printer), or on another
system. Data management, then, provides the functions that an application uses in
creating and accessing data on the system and ensures the integrity of the data
according to the definitions of the application.

Data management provides functions that allow you to manage files (create,
change, override, or delete) using CL commands, and create and access data
through a set of operations (for example, read, write, open, or close). Data
management also provides you with the capability to access external devices and
control the use of their attributes for creating and accessing data.

If you want to make more efficient use of printers and diskette devices, data
management provides the capability of spooling data for input or output. For
example, data being written to a printer can be held on an output queue until the
printer is available for printing.

On the IBM AS/400 system, each file (also called a file object) has a description
that describes the file characteristics and how the data associated with the file is
organized into records, and, in many cases, the fields in the records. Whenever a
file is processed, the operating system (the Operating System/400 or OS/400
program) uses this description.

You can create and access data on the system by using these file objects. Data
management defines and controls several different types of files. Each file type has
associated CL commands to create and change the file, and you can also create
and access data through the operations provided by data management.

File Types

© Copyright IBM Corp. 1997, 1999

The data management functions support the following types of files:

» Database files are files (including distributed files) whose associated data is
stored permanently in the system.

» Device files are files that provide access to externally attached devices such as
displays, printers, tapes, diskettes, and other systems that are attached by a
communications line. The device files supported are:

— Display files, which provide access to display devices

— Printer files, which describe the format of printed output

— Tape files, which allow access to data files on tape devices

— Diskette files, which provide access to data files on diskette devices

— Intersystem communications function (OS/400-ICF) files, hereafter referred
to as ICF files, which allow a program on one system to communicate with a
program on the same system or another system

» Save files are files that are used to store saved data on disk (without requiring
diskettes or tapes).

» Distributed data management (DDM) files are files that allow access to data
files stored on remote systems.

Each file type has its own set of unique characteristics that determines how the file
can be used and what capabilities it can provide. The concept of a file, however, is
the same regardless of what type of file it is. When a file is used by a program, it is
referred to by name, which identifies both the file description and, for some file
types, the data itself. This information is designed to help you understand the
common characteristics of all file types so you can use the files to their full
capabilities.

Related tasks:

See the following links for information on the tasks you can perform against files:
« Becure filed

- [Ghare filed

.k - el - afid

2 Data Management V4R4

Chapter 2. File Processing

This chapter discusses basic aspects of processing files. Topics include:

» File operations supported by the system for use in high-level language programs
* File security considerations

» Sharing files in the same job

» Allocating file resources

» Temporarily changing a file when a program uses it

* Feedback areas maintained by the system

» Handling file errors when programs run

Data Management Operations Overview

Data management supports many operations that high-level language programs can
use to process data. These include the following, which are grouped by category:

* File Preparation

OPEN Attaches a file to a program and prepares it for 1/O operations. A file may
be opened for any combination of read, write, update, or delete
operations.

ACQUIRE
Attaches a device or establishes a communications session for an open
file in preparation for I/O operations.

* Input/Output

READ Transfers a record from the file to the program. The data is made
available to the program once the read has been successfully completed.

WRITE
Transfers a record from the program to the file.

WRITE-READ
Combines the WRITE and READ operations as one operation.

UPDATE
Updates a record with changed data. The record must have been
successfully read prior to the update operation.

DELETE
Deletes a record in a file. The record must have been successfully read
prior to the delete operation.

¢ Commitment Control
COMMIT

Guarantees a group of changes are made as a complete transaction
across multiple records or multiple files.

ROLLBACK
Rolls back a group of changes to the point of the last commit operation.
* Completion
FEOD Positions the file at the last volume or at the end of data. For those
programs processing files for output, the last buffer of data is written. For

those programs processing files for input, an end-of-file condition is
forced for the next input operation.

© Copyright IBM Corp. 1997, 1999 3

RELEASE
Detaches a device or a communications session from an open file. I/O
operations can no longer be performed for this device or session.

CLOSE
Detaches a file from a program, ending 1/O operations. Any remaining
data in the output buffer that has not been written will be written prior to
the completion of the close.

The operations listed above have certain restrictions based on file type and
language support. For example, a program may not write to a file that has been
opened for read only. Similarly, a read-by-key may not be issued for an ICF file.
Since file overrides can occur during processing, an operation may not be allowed

for the tﬁe of file that is ultimately being processed. See (Chapter 3_Using

, for additional information.

able 1 on page 4 lists the file types and the main operations that are allowed.
There are additional functions supported for some file types that are accomplished
by additional operations or changes to these operations. For information on these
additional functions and how the operations given here apply to display, tape, and
diskette files, refer to either the Application Display Programming, SC41-5715-00
book or the Tape and Diskette Device Programming, SC41-5716-01 book. For
equivalent information for database, ICF, DDM, printer, and save files, refer to the
5701 book, the 5442 book, the 5307 book, the 5713 book, and the 5304 book,
respectively.

%ﬂ and [[able 3 on page 7 map the OS/400-supported operations
iven in

g to the high-level language operations (BASIC, ILE C, ILE COBOL,
PASCAL, PL/I, and ILE RPG programming languages) supported on the system.
For additional information on each operation and how it correlates to the file
declaration in the program, see the appropriate language information. Note that not
all OS/400 operations are supported in all languages.

Table 1. File Types and Their Main Operations

File Types

Operation Database Diskette Tape Printer Display ICF DDM Save
OPEN

Read X X X - X X X X
Write X X X X X X X X
Update X - - - Xt - X -
Delete X - - - Xt - X -
READ

By relative X - - - x* - X -
record

number

By key X - - - - - X -
Sequential X X X - X X X X
Previous X - X - - - X -
Next X X X - X X X X
Invited

4 Data Management V4R4

Table 1. File Types and Their Main Operations (continued)

Operation

File Types

Database

Diskette

Tape

Printer Display

ICF

DDM

Save

Device

- X

WRITE-
READ

WRITE

By relative
record
number

By key

Sequential

FEOD

UPDATE

By relative
record
number

By key

DELETE

By relative
record
number

By key

ACQUIRE

RELEASE

COMMIT

ROLLBACK

CLOSE

Note:

1

Operation allowed only for subfile record formats

Chapter 2. File Processing

5

Table 2. High-Level Languages and Their OS/400 Operations

High-Level Languages

ILE C/400 Programming

ILE COBOL/400

Operation BASIC Language Programming Language
OPEN
Read OPEN INPUT fopen, _Ropen OPEN INPUT
Write OPEN OUTPUT fopen, _Ropen OPEN OUTPUT, OPEN
EXTEND
Update OPEN OUTIN fopen, _Ropen OPEN I-O
Delete OPEN OUTIN fopen, _Ropen OPEN I-O
READ
By relative record number READ REC _Rreadd READ
By key READ KEY _Rreadk, _Rformat READ KEY
Sequential READ NEXT, GET fread, fgetc, fgets, _Rreadf, |READ
_Rreadl, _Rreadn, _Rreadp,
_Rreads, _Rformat,
_Rpgmdev
Previous READ PRIOR _Rreadp READ
Next READ NXT, GET fread, _Rreadn READ, READ NEXT

Invited Device

_Rreadindv

READ

WRITE-READ _Rwriterd, _Rformat,
_Rpgmdev
WRITE
By relative record number WRITE REC _Rwrited WRITE
By key WRITE _Rwrite, _Rformat
Sequential WRITE fwrite, fputc, fputs, _Rwrite, |WRITE
_Rformat, _Rpgmdev
FEOD _Rfeod
UPDATE
By relative record number REWRITE REC _Rupdate REWRITE
By key REWRITE KEY _Rupdate REWRITE
DELETE
By relative record number DELETE REC _Rdelete DELETE
By key DELETE KEY _Rdelete DELETE
ACQUIRE _Racquire ACQUIRE
RELEASE _Rrelease DROP

6 Data Management V4R4

Table 2. High-Level Languages and Their OS/400 Operations (continued)

High-Level Languages

ILE C/400 Programming

ILE COBOL/400

Operation BASIC Language Programming Language
COMMIT _Rcommit COMMIT

ROLLBACK ROLLBACK

CLOSE CLOSE, END fclose, _Rclose CLOSE, STOP RUN,

CANCEL

Table 3. High-Level Languages and Their OS/400 Operations

High-Level Languages

ILE RPG/400

Operation PASCAL PL/I Programming Language
OPEN
Read RESET, GET, READ, OPEN INPUT OPEN

READLN
Write REWRITE, WRITE, OPEN OUTPUT OPEN

WRITELN
Update UPDATE OPEN UPDATE OPEN
Delete UPDATE OPEN UPDATE OPEN
READ
By relative record number GET, READ READ KEY READ, CHAIN
By key READ KEY READ, READE, CHAIN
Sequential GET, READ, READLN READ NEXT, GET READ
Previous GET, READ, READLN READ PRV READP, READPE
Next GET, READ, READLN READ NXT, GET READ, READE
Invited Device READ
WRITE-READ EXFMT
WRITE
By relative record number PUT, WRITE, WRITELN WRITE, EXCPT primary file |WRITE

By key WRITE KEY WRITE, EXCEPT
Sequential PUT, WRITE, WRITELN WRITE, PUT WRITE, EXCEPT
FEOD FEOD

UPDATE

By relative record number PUT, WRITE, WRITELN REWRITE KEY UPDATE

Chapter 2. File Processing

Table 3. High-Level Languages and Their OS/400 Operations (continued)

High-Level Languages
ILE RPG/400

Operation PASCAL PL/ Programming Language
By key REWRITE KEY UPDATE
DELETE
By relative record number DELETE DELETE
By key DELETE KEY DELETE
ACQUIRE ACQ
RELEASE REL
COMMIT use CL COMMIT PLICOMMIT subroutine COMMIT
ROLLBACK use CL ROLLBACK PLIROLLBACK subroutine | ROLBK
CLOSE CLOSE, END CLOSE, STOP CLOSE, RETURN

Security Considerations

This section describes some of the file security functions. The topics covered
include the authorizations needed to use files and considerations for specifying
these authorities when creating a file. For more information about using the security
function on the system, see the Security - Reference.

Object Authority

The following topics describe the types of authority that can be granted to a user for
a file. Also, you can use the SQL GRANT and REVOKE statements to assign and
remove these AS/400 authorities to SQL tables, including individual columns within
those tables. You can find information about these statements in the

book.

Object Operational Authority

Allows you to look at an object description and use the object as determined by
your data authorities to the object. Object operational authority is required to:

* Open the file for processing. You must also have read authority to the file. For
device files that are not using spooling, you must have object operational and
also all data authorities to the device.

» Compile a program which uses the file description.
» Display the file description.

* Delete the file.

» Transfer ownership of the file.

* Grant and revoke authority.

8 Data Management V4R4

rbafzmst02.htm

Change the file description.
Move or rename the file.

Object Existence Authority

Object existence authority is required to:

Delete the file.
Save, restore, and free the storage of the file.
Transfer ownership of the file.

Object Management Authority

Object management authority is required to:

Grant and revoke authority. You can grant and revoke only the authority that you

already have.

Change the file description.

Move or rename the file.

Refer to a database file from another database file.

Add triggers to and remove triggers from database files.
Add referential and unique constraints to database files.
Remove referential and unique constraints to database files.
Change the attributes of a database file.

Change the attributes of a SQL package.

Object Reference Authority

Allows you to refer to a database file from another database file. The operations
that you can perform on the referred-to database file are determined by the
referring database file.

Object Alter Authority

Allows you to alter the attributes of a database file or SQL package. Object alter
authority is required to:

Data Authorities

Add triggers to and remove triggers from database files.
Add referential and unique constraints to database files.
Remove referential and unique constraints to database files.
Change the attributes of a database file.

Change the attributes of a SQL package.

You can use data authorities to limit user access to the data in files.

You need the following authorities to perform the associated operations:

Execute

Read

Run a program or locate an object in a library.

Open any file for input, compile a program using the file, or display the file
description.

Add Add new records to the file.

Chapter 2. File Processing

Update
Open a database file for update.

Delete Open a database file for delete.

For files other than database and save files, the execute, the add, update, and
delete authorities are ignored.

Authorities Required for File Operations

[rable 4 lists the file object authority required for file functions. frable 3 Jists the data
authority required for file functions. This is the same information that was presented
in the previous two sections, but it is listed by function rather than by authority.

Table 4. Object Authority Required for File Operations

Object Object Object
Function Object Operational Existence Object Management Reference Alter
Open, /O, close X
file*
Compile a program X
using the file
description
Display file X
description
Delete file X X
Savelrestore X
Transfer ownership X X
Grant/revoke X X
authority
Change file X X
description
Move file X X
Rename file X X
Replace file X X X
X X

Refer to another file
2

Add or remove file
constraints 3

X
X

Add or remove X X
triggers 4

Change attributes ° X X

For device files that are not using spooling, you must also have object operational and all data authorities to
the device.

For database files only.

For database files only. Parent files need object management or object reference authority. Dependent files
need object management or object alter authority.

For database files only. Files need object management or object alter authority.

For database files and SQL packages only. Files need object management or object alter authority.

Table 5. Data Authority Required for File Operations

Function Execute Read Add Update Delete
Open, 1/0, close file* X G X3 X3

10 Data Management V4R4

Table 5. Data Authority Required for File Operations (continued)

Function Execute Read Add Update
Compile a program using X
the file description
Run a program or locate X
an object in a library
Display file description X
Replace file X
Add or remove triggers * X X® X®

1

the device.

Open for output for database and save files.

Open for update or delete for database files.

For database files only.

Add authority required in addition to Read authority for inserting triggers.
Update authority required in addition to Read authority for updating triggers.

Delete authority required in addition to Read authority for deleting triggers.

Delete

X7

For device files that are not using spooling, you must also have object operational and all data authorities to

Limiting access to files and data when creating files
Specifying authorities allows you to control access to a file.

Specifying authorities when creating files:

To specify public authority when you create a file, use the AUT parameter on the

create command.

What public authority is:

Public authority is authority that is available to any user who does not have specific
authority to the file or who is not a member of a group that has specific authority to
the file. That is, if the user has specific authority to a file or the user is a member of
a group with specific authority, then the public authority is not checked when a user
performs an operation to the file. Public authority can be specified as:

* *LIBCRTAUT. All users that do not have specific user or group authority to the file
have authority determined by the library in which the file is being created. The
library value is specified by the *CRTAUT command to establish a public
authority for this library.

* *CHANGE. All users that do not have specific user or group authority to the file
have authority to use the file. The *CHANGE value is the default public authority.
*CHANGE grants any user object operational and all data authorities.

» *USE. All users that do not have specific user or group authority to the file have
authority to use the file. *USE grants any user object operational, execute, and
read data authority.

» *EXCLUDE. Only the owner, security officer, users with specific authority, or
users who are members of a group with specific authority can change or use the
file.

« *ALL. All users that do not have specific user or group authority to the file have
all data authorities and all object authorities.

Chapter 2. File Processing 11

» Authorization list name. An authorization list is a list of users and their authorities.
The list allows users and their different authorities to be grouped together.

Specifying or changing authorities on existing files:

To specify or change public authority on an existing file, use the Edit Object
Authority (EDTOBJAUT), Grant Object Authority (GRTOBJAUT), or Revoke Object
Authority (RVKOBJAUT) commands to grant or revoke the public authority of a file.

For more information about using the security function on the system, see the
Security - Reference.

Sharing Files

AS/400 data management provides several levels of support for shared files. The
system automatically provides the first level of support. By default, the system lets
many users and more than one job use one file at the same time. The system
allocates the file and its associated resources for each use of the file in such a way
that it can prevent conflicting uses. Within the same job, programs can share files if
one program opens the same file more than once or if different programs open the
same file. Even though the same file is being used, each open operation creates a
new path from the program to the data or device, so that each open represents an
independent use of the file.

Open data path

A closer level of sharing within a job allows more than one program to share the
same path to the data or device. This path, called an open data path , is the path
through which all of the read and write operations for the file are performed. You
can use this level of sharing by specifying the SHARE parameter on the create file,
change file, and override file commands. The SHARE parameter allows more than
one program to share the file status, positions, and storage area. It can improve
performance by reducing the amount of main storage the job needs and by
reducing the time it takes to open and close the file. AS/400 bases this level of
sharing on two models:

The original program model s the set of functions for compiling source code
and creating high-level language programs on the AS/400 system before the
Integrated Language Environment (ILE) model was introduced.

* The ILE model is the set of constructs and interfaces that provide a common
run-time environment and run-time bindable application program interfaces (APIs)
for all ILE-conforming high-level languages.

Shared files in the original program model

In the original program model, the SHARE(*YES) parameter lets two or more
programs that run in the same job share an open data path (ODP). It connects the
program to a file. If not specified otherwise, every time a file is opened a new open
data path is built. You can specify that if a file is opened more than once and an
open data path is still active for it in the same job, the active ODP for the file can
be used with the current open of the file; a new open data path does not have to be
created. This reduces the amount of time that is required to open the file after the
first opened to open the file after the first open, and the amount of main storage
that is required by the job. You must specify SHARE(*YES) for the first open and
other opens of the same file to share the open data path. A well-designed (for

12 Data Management V4R4

performance) application will normally do a shared open on database files that
multiple programs will open in the same job. Specifying SHARE(*YES) for other
files depends on the application.

Shared files in the ILE model

In the ILE model, shared files are scoped either to the job level or to the activation
group level. An activation group is a substructure of a run-time job. It consists of
system resources (storage for program or procedure variables, commitment
definitions, and open files) that are allocated to one or more programs. An activation
group is like a miniature job within a job.

Any programs that run in any activation group can share shared files that are
scoped to the job level. Only programs that run in the same activation group can
share shared files that are scoped to the activation group level.

Sharing files: considerations

Sharing files allows you to have programs within a job interact in ways that would
otherwise not be possible. However, you should read the following topics to learn
more about the effects of opening, performing read and write operations, and
closing shared files:

You should also see the appropriate documentation for all of the file types to
understand how this support works, and the rules your programs must follow to use
it correctly.

Note: Most high-level language programs process an open or a close operation
independent of whether or not the file is being shared. You do not specify
that the file is being shared in the high-level language program. You indicate
that the file is being shared in the same job through the SHARE parameter.
You specify the SHARE parameter only on the create, change, and override
file commands. Refer to your appropriate language information for more
information.

Open Considerations for Files Shared in a Job

Consider the following points when you open a shared file in the same job by

specifying SHARE(*YES).

* You must make sure that when the shared file is opened for the first time in a
job, all the open options that are needed for subsequent opens of the file are
specified. If the open options specified for subsequent opens of a shared file do
not match those specified for the first open of a shared file, an error message is
sent to the program. (You can correct this by making changes to your program to
remove any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job and PGMA only
needs to read the file. However, PGMA calls PGMB which will delete records
from the same shared file. Because PGMB will delete records from the shared
file, PGMA will have to open the file as if it, PGMA, is also going to delete
records. You can accomplish this by using the correct specifications in the

Chapter 2. File Processing 13

high-level language. (In order to accomplish this in some high-level languages,
you may have to use file operation statements that are never run. See your
appropriate language information for more details.)

* Sometimes sharing a file within a job is not possible. For example, one program
may need records from a file in arrival sequence, and another program may need
the records in keyed sequence. Or, you may use the same file for printing output,
but want to produce the output from each program separately. In these situations,
you should not share the open data path. You would specify SHARE(*NO) on the
override command to ensure that programs do not share the file within the job.

» If debug mode is entered with UPDPROD(*NO) after the first open of a shared
file in a production library, subsequent shared opens of the file share the original
open data path and allow the file to be changed. To prevent this, specify
SHARE(*NO) on the override command before opening files while debugging
your program.

* The use of commitment control for the first open of a shared file, requires that all
subsequent shared opens also use commitment control.

* If you did not specify a library name in the program or the override command
(*LIBL is used), the system assumes that the library list has not changed since
the last open of the same shared file with *LIBL specified. If the library list has
changed, you should specify the library name on the override command to
ensure that you opened the correct file.

* The system processes overrides and program specifications that are specified on
the first open of the shared file. Overrides and program specifications specified
on subsequent opens, other than those that change the file name or the value
specified on the SHARE or LVLCHK parameters on the override command, are
ignored.

I/O Considerations for Files Shared in a Job

The system uses the same input/output area for all programs sharing the file, so the
order of the operations is sequential regardless of which program does the
operation. For example, if Program A is reading records sequentially from a
database file and it reads record 1 just before calling Program B, and Program B
also reads the file sequentially, Program B reads record 2 with the first read
operation. If Program B then ends and Program A reads the next record, it receives
record 3. If the programs were not sharing the file, Program A would read record 1
and record 2, and Program B would read record 1.

For device files, the device remains in the same state as the last I/O operation.

For display and ICF files, programs other than the first program that opens the file
may acquire more display or program devices or release display or program
devices already acquired to the open data path. All programs sharing the file have
access to the newly acquired devices, and do not have access to any released
devices.

Close Considerations for Files Shared in a Job

14

The processing done when a program closes a shared file depends on whether
other programs currently share the open data path. If there are other programs, the
main function that is performed is to detach from the file the program that is
requesting the close. For database files, the program also releases any record locks

Data Management V4R4

| that it holds.. The program will not be able to use the shared file unless it opens it
| again. All other programs sharing the file are still attached to the ODP and can
[perform 1/O operations.

If the program closing the file is the last program sharing the file, then the close
operation performs all the functions it would if the file had not been opened with the
share option. This includes releasing any allocated resources for the file and
destroying the open data path.

The function provided by this last close operation is the function that is required for
recovering from certain run-time errors. If your application is written to recover from
such errors and it uses a shared file, this means that all programs that are attached
to the file when the error occurs will have to close the file. This may require
returning to previous programs in the call stack and closing the file in each one of
those programs.

Allocating File Resources

Resources are those parts of the system that are required by a job or task,
including main storage, devices, the processing unit, programs, files, libraries, and
folders. When you write a high-level language program, you should be aware of
what resources the system has allocated for each file type.

| Normally, the system will perform the allocation whenever a requested operation
| requires it. For example, the system allocates resources for each file that is used in
[a program when the file is opened.

To ensure that all of the resources that are needed by a program are available
before the program is run, you can use the Allocate Object (ALCOBJ) CL command
in the job before you run the program. In particular, the ALCOBJ command can
allocate database files and most devices.

The following operations are examples of operations that require resource
allocation:

e Open
* Acquire
» Starting a program on a remote system

[See the following topics for more information:

| File resource allocation

When a high-level language program uses a file, several operations require that the
system allocate the resources that are needed to perform that operation. The
system generally does this to ensure that multiple users do not use the file in
conflicting ways.

[For example, the system will not allow you to delete a file while any application
[program is using it. The system does this by obtaining a lock on the file when it

Chapter 2. File Processing 15

opens. The delete file operation also attempts to get a lock on the file and is
unsuccessful because the program using the file still has the lock from when the file
was opened, and the locks conflict.

File resources that must be allocated

The file resources that the system must allocate depend on the type of file and the
operation. File resources consist of the following:

* Open
— For printer and diskette files that are spooled (SPOOL(*YES)), the file
resources include the file description, the specified output queue, and storage

in the system for the spooled data. Because the data is spooled, the device
need not be available.

— For database files, the file resources consist of the entire file; this includes the
file, member, data, and the associated access path.

— For printer and diskette files that are not spooled (SPOOL(*NOQ)) as well as for
tape files, display files, and some ICF files, the file resources include the file
description and the device. For ICF files that use APPC, APPN, or intrasystem
communications, the file resources include the file description and the session
resources that are associated with the device.

— For save files, the file resources consist of the entire file, including the file and
data.

— For DDM files, the file resources include the file description and the session
resources that are associated with the device.

* Acquire operation

For display files and ICF files that do not use APPC/APPN or intrasystem
communications, the system allocates the device as a resource. For ICF files that
use APPC/APPN or intrasystem communications, resources include the session
resources that are associated with the device.

» Starting a program on a remote system

Session resources that are needed for APPC and APPN.

How the system allocates resources

16

When it allocates resources, the system waits for a predefined time if the resources
are not immediately available. If the resources do not become available within the
time limit, the system generates an error. If you are using the ALCOBJ command,
the command fails. If your program is performing a file operation, that operation
fails, and the system sends an error message to the program message queue. You
may attempt to use the error handling functions of your high-level language to try
the operation again. For example, if an open operation fails because another job is
using the device associated with the file, you could retry the open operation a
specified number of times, in the hope that the other job would finish with the
device and your program would then be able to use it.

The length of time that the system waits when allocating resources is specified on
the ALCOBJ command and on the WAITFILE parameter of the CL command used
to create the file. If the ALCOBJ command is used prior to running a program, then
the value of the WAITFILE parameter does not matter, because the resources will
be available.

If your application has error handling procedures for handling device errors
occurring on device files, you should specify a value of something other than

Data Management V4R4

*IMMED to allow the system to recover from the error. The allocation of resources
requested by your program on an open or acquire operation that allows your
program to recover from the error will not be successful until the system recovery
procedures have been completed for the device.

The following chart describes the values that are allowed for the WAITFILE
parameter:

Values Definition

*IMMED This value specifies that no wait time is
allowed. An immediate allocation of the file
resources is required.

*CLS The job default wait time is used as the wait
time for the file resources to be allocated.

number-of-seconds Specify the maximum number of seconds that
the program is to wait for the file resources to
be allocated. Valid values are 1 through
32767 (32 767 seconds).

Opening Files

When you want an application to use a file, you do so by referring to that file by
name. The file description for that file will then control how the program and the
system will interact.

You have two options regarding how your application program uses the file
description:

* You can use the file description as it currently exists. In this case, the system
uses the file description as is, without any change.

* You can change some or all of the parameters that are associated with the file
description. A change made to a file description can be permanent or temporary.
See the appropriate book for the device that you are using for information about
permanent changes.

See the following topics for information on how the system handles open files:

Scoping of opened files

Files that are opened within the user default activation group are scoped to the call
level number of the calling program (default). A call level number is a unique
number that the system assigns to each call stack entry. Files that are opened

Chapter 2. File Processing 17

within a named activation group are scoped to the activation group level (default).
You can change the scope of an open operation by using override commands. For
example, you can change the scope of an open operation to the job level. For more
information on using overrides to change the scope of an open operation, see

[i ides” . For information on displaying the scope of
existing open operations, see LDi ing-i i iles”

Opening files using temporary file descriptions

18

Temporary changes can provide greater flexibility to the application. The system
makes temporary changes when the program is first establishing a path to the file
by opening the file. Temporary changes can be made in one of two ways:

* By information that is specified within the program itself, and which is passed as
parameters on the open operation.

* By using override CL commands in the input stream that is used to set up the
run-time environment for the application

The ability to use the first way depends very much on which programming language
you used to write the program. Some programming languages do not allow you to
control the open process to any great extent. These languages do the open process
more or less automatically and control what information gets passed. Other
languages allow you to have greater control over the open process.

You can use the second option regardless of which programming language you use.
AS/400 provides override CL commands for each file type. By including override
commands with the application, you may temporarily change the file description in a
file that the program wants to use.

You can use both options together. Information that is contained in the application
can change some parameters; an override command can change others. Both can
change the same parameter. The operating system follows this order when making
temporary changes to a file:

1. The file description provides a base of information.

2. Change information received from the application during the open process is
applied first to the base information.

3. Change information found in the override command is applied last. If both the
change information from the application and the override change the same
information, the override has precedence.

Only the application that makes the changes can see the temporary changes. The
file, as seen by another application, remains unchanged. In fact, two applications
may use the same file at the same time, and each may change it temporarily
according to its needs. Neither application is aware the other has made a temporary
change. [Eigure 2 on page 19 and Eigure 3 on page 20 illustrate the permanent and
temporary change processes.

Data Management V4R4

Before Change

File Z

P1 = PAGE

All Applications
See the Parameter
P1 Value of PAGE

After Change

Change command used to

change P1

to END

File Z l

P1 = END

All Applications
See the Parameter

P1 Value of END

Application

Program
N

Program

Application
Program
1

Application

Application

Program
N

Program

Application
Program
1

Application

Figure 2. Permanently Changing a File

RSLH143-2

Chapter 2. File Processing

19

Application 1

Override CL command
changes parameter P2
to END

Application program

to QRT

Open changes
parameter P1

|

v

Opened file

P1
P2

QRT
END |«

Application 2

Override CL command
changes parameter P2
to IMD

Application program

Open changes
parameter P3

P3 =30

to 10
v
Opened file
P1 = RPT
> P2 = IMD
P3 =10

File

P1

P2
P3

RPT
NEXT
30

Figure 3. Temporarily Changing a File

Once an application establishes a connection between itself and the file by opening
the file, it can then proceed to use the file for either input or output operations. In

RSLH196-1

the case of a database file, the open process establishes a path between the
application and the actual database file. For device files, a path is established

between the application and the actual device, or to a spooled file if the spooling

attribute is active for the device file. In all cases, the application connects to what it
wants to use, and those connections determine what input or output operations are
valid. Not all operations are valid with all file types. The application must be aware

of what file types it uses and then use only those operations which are valid for

those types.

Open Considerations When Using *LIBL with a DDM File

Take note of the following considerations when you open DDM files and specify

*LIBL for the library:

» The system first searches the library list for a local database file with the

specified member. Even if the local database file is located in a library later in
your library list than the library containing the DDM file, the local database file

containing the specified member is used.

20 Data Management V4R4

Therefore, if you want to open a DDM file using *LIBL, you must ensure that
there are no local database files with the same name, and that contain the
specified member, anywhere in your library list.

 If the system does not locate a local database file with the specified member, it
searches the library list for the first file that has the specified name. If this file is
not of the proper type, or if it does not contain the specified member, an open
failure occurs.

Therefore, if you want to open a DDM file using *LIBL, you must ensure that the
DDM file you want to open is the first file in your library list with the specified
name.

Detecting File Description Changes

When a program that uses externally described files is compiled, the high-level
language compiler extracts the record-level and field-level descriptions for the files
referred to in the program and makes those descriptions part of the compiled
program. When you run the program, you can verify that the descriptions with which
the program was compiled are the current descriptions.

The system assigns a unique level identifier for each record format when it creates
the associated file. The system uses the following information to determine the level
identifier:

* Record format name

* Field name

» Total length of the record format

* Number of fields in the record format

» Field attributes (for example, length and decimal positions)

» Order of the field in the record format

Note: It is possible for files with large record formats (many fields) to have the
same format level identifiers even though their formats may be slightly
different. Problems can occur when copying these files if the record format
names of the from-file and the to-file are the same.

Display, printer, and ICF files may also use the number of and order of special
fields called indicators to determine the level identifier.

If you change the DDS for a record format and change any of the items in the
preceding list, the level identifier changes.

To check the record format identifiers when you run the program, specify
LVLCHK(*YES) on the create file or change file commands.

The level identifiers of the file opened and the file description that is part of the
compiled program are compared when the file is opened and LVLCHK(*YES) is
specified. The system does a format-by-format comparison of the level identifiers. If
the identifiers differ or if any of the formats specified in the program do not exist in
the file, a message is sent to the program to identify the condition.

When the identifiers differ, this means that the file format has changed. If the
changes affect a field that your program uses, you must compile the program again
for it to run properly. If the changes do not affect the fields that your program uses,
you can run the program without compiling again by entering an override command
for the file and specifying LVLCHK(*NO). Specifying LVLCHK(*NO) causes the

Chapter 2. File Processing 21

system to omit the level identifier check when the file opens. For example, suppose
that you add a field to the end of a record format in a database file, but the program
does not use the new field. You can enter the Override with Database File
(OVRDBF) command with LVLCHK(*NO) to enable the program to run without
compiling again.

There are several CL commands available to you to check the changes. You can
use the Display File Field Description (DSPFFD) command to display the
record-level and field-level descriptions or, if you have the source entry utility (SEU),
you can display the source file containing the DDS for the file. You can display the
format level identifier that is defined in the file by using the Display File Description
(DSPFD) or the DSPFFD commands. The format level identifier which was used
when the program was created can be displayed by the Display Program
References (DSPPGMREF) command.

There are also some changes to a file description that will not cause an error when
the file opens. These happen because the record format identifiers did not change
or because your program does not use the changed formats. You can add or
remove formats from a file without affecting existing programs that do not use the
added or deleted formats.

Even though the level identifier does not change, some DDS functions that you add
or delete could require changes in the logic of your program. You should review the
functions you added or deleted to determine whether the program logic requires
changes.

Normally, the use of LVLCHK(*YES) is a good file integrity practice. The use of
LVLCHK(*NO) can produce unpredictable results.

Displaying information about open files

22

You can display information about your open files in two ways:
» Type dspjob option(*opnf) on any command line and press Enter.
* Type wrkjob option(*opnf) on any command line and press Enter.

The following screen displays:

Data Management V4R4

Display Open Files

Job . . : (QPADEV0027 User . . : KELLYMR Number . . . : 032138
Number of open data paths: 2
Member/
File Library Device Scope Activation Group
QDUI80 QSYS QPADEV0027 *ACTGRPDFN 0000000002 *DFTACTGRP
QDDSPOF QSYS QPADEV0027 *ACTGRPDFN 0000000002 *DFTACTGRP

Press Enter to continue.

F3=Exit F5=Refresh F10=Display I/0 details Fl2=Cancel F16=Job menu)

The Scope column identifies the level to which the open is scoped. *ACTGRPDFN
indicates that the open is scoped to the activation group level. If the file opened in
the user default activation group, the open is scoped to the call level number of the
calling program. If the file opened in a named activation group, the open is scoped
to the activation group level. *JOB indicates that the open is scoped to the job level.
You can change the scope of an open operation by using override commands. For
information on how to use overrides to change the scope of an open operation, see

Chapter 3 Using Overrided,

The Activation Group column identifies the number and name of the activation
group. *DFTACTGRP indicates the default activation group.

Open and 1/0O Feedback Area

The system monitors the status of a file in feedback areas once it has successfully
opened the file. As the system performs operations on a file, it updates the
feedback areas to reflect the latest status. These feedback areas give you greater
control over applications and provide important information when errors occur.

The feedback areas are established at open time, and there is one feedback area
for each open file. One exception is for shared files, which share feedback areas as
well as the data path between the program and the file. For more information on
shared opens, see L i ileg”

Some high-level languages on the system allow you to access the status and other
information about the file against which operations are being performed. There are
two feedback areas of interest to you:

* Open feedback area

This area contains information of a general nature about the file after the system
has successfully opened the file. Examples include the name and library of the
file and the file type. See tQpen Feedhack Area” on page 153 for a complete list
of the information that you can retrieve from the open feedback area. In addition
to general information about the file, the open feedback area also contains
file-specific information after the system has successfully opened the file. The
applicable fields depend on the file type.

Chapter 2. File Processing 23

The open feedback area also contains information about each device or
communications session that is defined for the file.
* Input/output feedback area

There are two sections of the I/O feedback area that are updated on the
successful completion of input and output operations:

— Common area

This area contains information about 1/0 operations that were performed on
the file. This includes the number of operations and the last operation

performed. See l/Q Feedback Area” on page 163 for a complete list of the

information that you can retrieve from the common 1/O feedback area.

— File-dependent feedback area

This area contains file-specific information for display, database, printer, and
ICF files; for example, the major and minor return code and amount of data
received from the device. See kQ Eeedback Area far ICE and Display Eiles]
bn page 16d, [110 Eeedback Area for Printer Files” on page 173, and [ud
Eeedhack Area far Datahase Files” an page 173 for a complete list of the

information that you can retrieve from the file-dependent I/O feedback area.

The above information areas can be useful to you. For example, when an error
occurs with a device file, the program could determine predefined error handling
operations based on the major/minor return code in the file-dependent feedback
area. If data is being received from a communications device and the application on
the other end sends an error, the program could determine that the next operation
should be to wait until the next block of data is sent indicating the error. Possibly,
the next operation may be to close the file and end the conversation with the
application on the other side or wait for the next request from the application.

Another way might include detecting the type of file that actually opened to
determine the type of operations that are allowed. If the file type is printer, only
output operations are allowed.

Error handling

The system can detect errors when a file is opened, when a program device is
acquired or released, during 1/O operations to a file, and when the file is closed.
When appropriate, the system will automatically try to run a failing operation again,
up to a retry limit. When a retry is successful, neither operator nor program action is
required.

How the system reports errors:

The system reports errors that can affect the processing of the program in any or all
of the following ways:

* A notify, status, diagnostic, or escape message may be sent to the program
message queue of the program using the file. These messages may also appear
|n the job log, depending on the message logging level that is set for the job. See

” for more information.

* The high-level language may return a file status code.

* A major and minor return code is returned in the 1/0O feedback area for
intersystem communications function (ICF), display, and printer files. See

land Minar Return Codes” on page 26 for more information.

24 Data Management V4R4

* A notify, status, diagnostic, or escape message may be sent to the operator
message queue (QSYSOPR) or the history message queue (QHST).

» Information regarding the error may be saved in the system error log for use by
the problem analysis and resolution programs.

* An alert message may be sent to an operator at another system in the network.

* The normal program flow may be interrupted and control may be transferred to
an error-handling subroutine, or other language operations may occur. For
additional information about how to handle run-time errors, see the appropriate
book for the high-level language.

Only some of these are significant to a program that is attempting error recovery.

Actions to take when you receive an error:

See [Recavering from errars” on page 24 for information on the actions you should

take when you receive an error.

Nonrecoverable errors:

Not all file errors allow programmed error recovery. Some errors are permanent;
that is, the file, device, or program cannot work until you take some corrective
action. This might involve resetting the device by varying it off and on again, or
correcting an error in the device configuration or the application program. Some
messages and return codes inform the user or the application program of conditions
that are information rather than errors, such as change in the status of a
communications line, or system action taken for an unexpected condition. In many
cases, it is possible for the application program to test for an error condition and
take some preplanned recovery action which allows the program to continue without
intervention from the operator.

For more information:

The CL Programming, SC41-5721-02 book discusses how to use the debug
functions to resolve unexpected errors that you encounter in the application
programs.

The chapter on handling problems in the Basic System Operation, Administration,
and Problem Handling, SC41-5206-03 book describes the programs that are
available for analyzing and reporting system errors and hardware failures.

Messages and Message Monitors

Displayed messages are the primary source of information for an operator or a
programmer who is testing a new application. A message usually contains more
specific information than the file status code, the indicators, and the major and
minor return code. The control language lets you monitor messages so that the CL
program can intercept a message and take corrective action. See the CL
Programming, SC41-5721-02 book for more information about message types and
message monitors. In most high-level languages, the file status code and return
codes (which are described in the following section) are more convenient sources of
information.

Message numbers are assigned in categories to make it easier for a program to

monitor for a group of related messages. [lable 6 an page 26 shows the message
number ranges that are assigned for file error messages.

Chapter 2. File Processing 25

Table 6. 0S/400 Data Management Message Number Ranges

Message IDs Operation Message Type

CPF4001-40FF Open Diagnostic and status.

CPF4101-43FF Open Escapes that make the file
unusable.

CPF4401-44FF Close Diagnostic and status.

CPF4501-46FF Close Escapes that make the file
unusable.

CPF4701-48FF I/O, Acquire, and Release Notify with a default reply of

cancel, status and escapes
that do not make the file or
device unusable.

CPF4901-49FF I/0, Acquire, and Release Notify with a default reply of
ignore or go.

CPF5001-50FF I/0, Acquire, and Release Notify with a default reply of
cancel.

CPF5101-53FF I/O, Acquire, and Release Escapes that make the file or

device unusable.

CPF5501-56FF I/0, Acquire, and Release Escapes that make the file or
device unusable.

Some status messages, CPF4018 for example, are preceded by a diagnostic
message that provides additional information. Diagnostic messages may be kept in
the job log, depending on the message logging level of the job. If a CL program
monitors for CPF4018, CPF5041, or similar messages, it can retrieve the
accompanying diagnostic message from the program message queue.

If an error occurs for which an escape message is issued and the message is not
monitored, your program will be ended and the message displayed for the operator.
You can also monitor status messages, but if you do not monitor them the program
continues. Most high-level languages except CL monitor for all the file errors that
you are likely to encounter, and provide some standard recovery. Depending on the
severity of the error, the high-level language may simply end the program and issue
a message of its own. Alternatively, the application programmer may code an error
recovery routine to handle errors that are anticipated in that particular application.

Within these error-handling routines, it is usually necessary to examine the file
status or major and minor return codes to determine the cause of the error. The
books for the language you are using explain how to access file status and major
and minor return codes. The information for each language also explains the file
status codes as each language defines them.

Major and Minor Return Codes

Major and minor return codes report errors and certain status information for ICF,
display, and printer files. They are not used for other files. They usually appear as
four characters: the first two refer to the major code and the second two refer to the

Data Management V4R4

minor code. The major code indicates the general type of error, and the minor
provides further detail. Minor codes, except zero, have the same or a similar
meaning, regardless of the major code with which they are combined.

The application program can test the return code after each I/O operation. If the
major return code is 00, the operation completed successfully and the minor return
code contains status information that indicates whether a read or a write operation
should be performed next. A major return code of 04 or higher indicates that an
error occurred. The program may test for any specific errors for which it will attempt
programmed recovery. The application program may test for a specific condition by
comparing the major and minor codes as a unit, or may identify a class of
conditions by testing the major code alone.

Most major and minor return codes are accompanied by any one of several
message numbers, for which the typical recovery action is similar. The individual
languages file status codes; they may set based on the major and minor return
codes.

[fable 7 defines the major return codes. See the Application Display Programming,
SC41-5715-00 book for specific definitions of the major and minor return codes as
they are used for display files and the message numbers associated with each.
Similar specific definitions for printer files and each of the communications types
valid on an ICF file can be found in the Printer Device Programming, SC41-5713-03
book and the books for each communications type.

Table 7. Major Return Code Definitions

Code Definition

00 The operation requested by your program completed
successfully. The minor includes state information, such as
change direction.

02 Input operation completed successfully, but job is being
ended (controlled). The minor includes state information.

03 Successful input operation, but no data was received. The
minor includes state information.

04 Error occurred because an output operation was attempted
while data was waiting to be read.

08 An acquire operation failed because the device has already
been acquired or the session has already been established.

11 A read-from-invited-program-devices operation failed
because no device or session was invited.

34 An input exception occurred. The data length or record
format was not acceptable for the program.

80 A permanent (unrecoverable) system or file error occurred.
Programmer action is required to correct the problem.

81 A permanent (unrecoverable) device or session error
occurred during an /O operation.

Chapter 2. File Processing 27

Table 7. Major Return Code Definitions (continued)

Code Definition

82 A device or session error occurred during an open or
acquire operation. Recovery may be possible.

83 A device or session error occurred during an 1/0O operation.
Recovery may be possible.

Recovering from errors

28

The following topics describe the actions you should take to recover from errors that

you receive. EMajor and Minar Return Codes” an page 26 describes return codes.

Normal Completion

A major and minor return code of 0000 indicates that the operation requested by
your program completed successfully. Most of the time, the system issues no
message. In some cases, the system might use a diagnostic message to inform the
user of some unusual condition that it could not handle, but which might be
considered an error under some conditions. For example, it might ignore a
parameter that is not valid, or it might take some default action.

For communications devices, a major return code of 00, indicating successful
completion with data received, is accompanied by a minor return code that indicates
what operation the application program is expected to perform next. The nonzero
minor does not indicate an error. No message is issued.

Completion with Exceptions

The system assigns several rather specific major return codes to conditions for
which a specific response from the application program is appropriate.

A major return code of 02 indicates that the requested input operation completed
successfully, but the system is ending the job in a controlled. The application
program should complete its processing as quickly as possible. The controlled
cancel is intended to allow programs time to end in an orderly manner. If your
program does not end within the time specified on the ENDJOB command, the
system will end the job without further notice.

A major return code of 03 indicates that an input operation completed successfully
without transferring any data. For some applications, this might be an error
condition, or it might be expected when the user presses a function key instead of
entering data. It might also indicate that all the data has been processed, and the
application program should proceed with its completion processing. In any case, the
contents of the input buffer in the program should be ignored.

A major and minor code of 0309 indicates that the system received no data and is
ending the job in a controlled manner. A major and minor code of 0310 indicates
that there is no data because the specified wait time has ended. Other minor return
codes accompanying the 02 or 03 major code are the same as for a 00 major code,
indicating communications status and the operation to be performed next.

A major return code of 04 indicates that an output exception occurred. Specifically,
your program attempted to send data when data should have been received. This is
probably the result of not handling the minor return code properly on the previous

Data Management V4R4

successful completion. Your program can recover by simply receiving the incoming
data and then repeating the write operation.

A major return code of 34 indicates that an input exception occurred. The received
data was either too long or incompatible with the record format. The minor return
code indicates what was wrong with the received data, and whether the data was
truncated or rejected. Your program can probably handle the exception and
continue. If the data was rejected, you may be able to read it by specifying a
different record format.

Two other return codes in this group, 0800 and 1100, are both usually the result of
application programming errors, but are still recoverable. 0800 indicates that an
acquire operation failed because the device has already been acquired or the
session has already been established. 1100 indicates that the program attempted to
read from invited devices with no devices invited. In both cases, the program
ignored the request that is not valid, and the program may continue.

No message is issued with a 02 major code or most minor codes with the 03 major
code, but the other exceptions in this group are usually accompanied by a message
in the CPF4701-CPF47FF or CPF5001-CPF50FF range.

Permanent System or File Error

A major return code of 80 indicates a serious error that affects the file. The
application program must close the file and reopen it before attempting to use it
again, but recovery is unlikely until the problem causing the error is found and
corrected. To reset an error condition in a shared file by closing it and opening it
again, all programs sharing the open data path must close the file. This may require
returning to previous programs in the call stack and closing the shared file in each
of those programs. The operator or programmer should refer to the text of the
accompanying message to determine what action is appropriate for the particular
error.

Within this group, several minor return codes are of particular interest. A major and
minor code of 8081 indicates a serious system error that probably requires an
APAR. The message sent with the major and minor return code may direct you to
run the Analyze Problem (ANZPRB) command to obtain more information.

A major and minor code of 80EB indicates that incorrect or incompatible options
were specified in the device file or as parameters on the open operation. In most
cases you can close the file, end the program, correct the parameter that is not
valid with an override command, and run the program again. The override
command affects only the job in which it is issued. It allows you to test the change
easily, but you may eventually want to change or re-create the device file as
appropriate to make the change permanent.

Permanent Device or Session Error on I/0O Operation

A major return code of 81 indicates a serious error that affects the device or
session. This includes hardware failures that affect the device, communications line,
or communications controller. It also includes errors due to a device being
disconnected or powered off unexpectedly and abnormal conditions that were
discovered by the device and reported back to the system. Both the minor return
code and the accompanying message provide more specific information regarding
the cause of the problem.

Chapter 2. File Processing 29

30

Depending on the file type, the program must either close the file and open it again,
release the device and acquire it again, or acquire the session again. To reset an
error condition in a shared file by closing it and opening it again, all programs
sharing the open data path must close the file. In some cases, the message may
instruct you to reset the device by varying it off and on again. It is unlikely that the
program will be able to use the failing device until the problem causing the error is
found and corrected, but recovery within the program may be possible if an
alternate device is available.

Some of the minor return codes in this group are the same as those for the 82
major return code. Device failures or line failures may occur at any time, but an 81
major code occurs on an I/O operation. This means that your program had already
established a link with the device or session. Therefore, the program may transfer
some data, but when the program starts from the beginning when it starts again. A
possible duplication of data could result.

Message numbers accompanying an 81 major code may be in the range that
indicates either an 1/O or a close operation. A device failure on a close operation
simply may be the result of a failure in sending the final block of data, rather than
action specific to closing the file. An error on a close operation can cause a file to
not close completely. Your error recovery program should respond to close failures
with a second close operation. The second close will always complete, regardless
of errors.

Device or Session Error on Open or Acquire Operation

A major return code of 82 indicates that a device error or a session error occurred
during an open or acquire operation. Both the minor return code and the
accompanying message will provide more specific information regarding the cause
of the problem.

Some of the minor return codes in this group are the same as those for the 81
major return code. Device or line failures may occur at any time, but an 82 major
code indicates that the device or session was unusable when your program first
attempted to use it. Thus no data was transferred. The problem may be the result of
a configuration or installation error.

Depending on the minor return code, it may be appropriate for your program to
recover from the error and try the failing operation again after some waiting period.
You should specify the number of times you try in your program. It may also be
possible to use an alternate or backup device or session instead.

Message numbers accompanying an 82 major code may be in the range indicating
either an open or an acquire operation. If the operation was an open, it is
necessary to close the partially opened file and reopen it to recover from the error.
If the operation was an acquire, it may be necessary to do a release operation
before trying the acquire again. In either case, you should specify a wait time for
the file that is long enough to allow the system to recover from the error.

Recoverable Device or Session Errors on 1/0O Operation

A major return code of 83 indicates that an error occurred in sending data to a
device or receiving data from the device. Recovery by the application program is
possible. Both the minor return code and the accompanying message provide more
specific information regarding the cause of the problem.

Data Management V4R4

Most of the errors in this group are the result of sending commands or data that are
not valid to the device, or sending valid data at the wrong time or to a device that is
not able to handle it. The application program may recover by skipping the failing
operation or data item and going on to the next one, or by substituting an
appropriate default. There may be a logic error in the application.

Related Information on File Types

Refer to the following books for more information on the file types discussed in this
chapter:

Database files: DB2 UDB for AS/400 Database Programming, SC41-5701-02
Display files: Application Display Programming, SC41-5715-00

DDM files: Distributed Data Management, SC41-5307-00

ICF files: ICF Programming, SC41-5442-00

Printer files: Printer Device Programming, SC41-5713-03

Save files: Backup and Recovery

Tape and diskette files: Tape and Diskette Device Programming, SC41-5716-01

Chapter 2. File Processing 31

32 Data Management V4R4

Chapter 3. Using Overrides

This topic describes how you use overrides on AS/400.

Overrides

An override is a CL command that temporarily changes a file name, a device
name, or remote location name associated with the file, or some of the other
attributes of a file. You can enter override commands interactively from a display
station or submit them as part of a batch job. You can include them in a control
language (CL) program, or issue them from other programs by calling the program
QCMDEXC. Regardless of how they are issued, overrides remain in effect only for
the job, program, or display station session in which they are issued. Furthermore,
they have no effect on other jobs that may be running at the same time.

When you create an application program, the file names specified in the program
associate files with it. The system lets you override these file hames or the
attributes of the specified file when you compile a program or run a program.

You can use overrides to change most, but not all, of the file attributes that are
specified when the file is created. In some cases, you can specify attributes in
overrides that are not part of the original file definition. Refer to the command
descriptions in the CL Reference (Abridged) for details.

Overriding a file is different from changing a file in that an override does not
permanently change the attributes of a file. For example, if you override the number
of copies for a printer file by requesting six copies instead of two, the file description
for the printer file still specifies two copies, but six copies are printed. The system
uses the file override command to determine which file to open and what its file
attributes are.

How you work with overrides:

The system supplies three override functions:

For additional information:

[Benefits of using averrides” on page 34 provides information about the types of

situations where overrides can be especially useful.

[Summary of the override commands” on page 34 provides a list of the commands

that you can use to work with overrides.

[i z provides information about
how the override commands interact with other system functions.

Handling overrides for message files is different in some respects from handling
overrides for other files. You can override only the name of the message file, and
not the attributes. For more information on message handling, refer to the CL
Programming book.

© Copyright IBM Corp. 1997, 1999 33

Benefits of using overrides

Overrides are particularly useful for making minor changes to the way a program
functions or for selecting the data on which it operates without having to recompile
the program. Their principal value is in allowing you to use general purpose
programs in a wider variety of circumstances. Examples of items where you can
use overrides include the following:

* Changing the name of the file to process

» Selecting the database file member to process

* Indicating whether to spool output

» Directing output to a different tape unit

» Changing printer characteristics such as lines per inch and number of copies
» Selecting the remote location to use with an ICF file

» Changing the characteristics of a communications session

Summary of the override commands

You can process override functions for files by using the following CL commands:

DLTOVR
The Delete Override command deletes one or more file overrides, including
overrides for message files, that were previously specified in a call level.

DSPOVR
The Display Override command displays file overrides at any active call
level, activation group level, or job level for a job.

OVRDBF
The Override with Database File command iverrides (replaces) the
database file named in the program, overrides certain parameters of a
database file that is used by the program, or overrides the file and certain
parameters of the file to be processed.

OVRDKTF
The Override with Diskette File command overrides (replaces) the diskette
file named in the program, overrides certain parameters of a diskette file
that is used by the program, or overrides the file and certain parameters of
the file to be processed.

OVRDSPF
The Override with Display File command overrides (replaces) the display
file named in the program, overrides certain parameters of a display file that
is used by the program, or overrides the file and certain parameters of the
file to be processed.

OVRICFF
The Override with Intersystem Communications Function File command
overrides the file that is named in the program, and overrides certain
parameters of the processed file.

OVRMSGF
The Override with Message File command overrides a message file that is
used in a program. The rules for applying the overrides in this command
are different from the other override commands. For more information on
overriding message files, see the CL Programming book.

OVRPRTF
The Override with Printer File command overrides (replaces) the printer file

34 Data Management V4R4

named in the program, overrides certain parameters of a printer file that is
used by the program, or overrides the file and certain parameters of the file

to be processed.
OVRSAVF

The Override with Save File command overrides (replaces) the file named
in the program, overrides certain attributes of a file that is used by the
program, or overrides the file and certain attributes of the file to be

processed.
OVRTAPF

The Override with Tape File command overrides (replaces) the file named in
the program, overrides certain attributes of a file that is used by the
program, or overrides the file and certain attributes of the file to be

processed.

Effect of overrides on some commands

The following commonly used commands ignore overrides entirely:

ADDLFM
ADDPFM
ALCOBJ
APYJRNCHG
CHGOBJOWN
CHGPTR
CHGSBSD
CHGXXXF (all change file commands)
CLRPFM
CLRSAVF
CPYIGCTBL
CRTDKTF
CRTDUPOBJ
CRTAUTHLR
CRTSBSD
CRTTAPF
DLCOBJ
DLTF
DLTAUTHLR
DSPDBR

DSPFD
DSPFFD
DSPJRN
EDTOBJAUT
EDTDLOAUT
ENDJRNPF
GRTOBJAUT
INZPEM
MOVOBJ
RGZPFM
RMVJIRNCHG
RMVM
RNMOBJ
RTVMBRD
RVKOBJAUT
SBMDBJOB
SIGNOFF
STRDBRDR
STRJIRNPF

Note: Save operations and restore operations ignore all file overrides that are
related to the respective media (tape, diskette, save file).

The system does not apply overrides to any system files that are opened as part of
an end-of-routing step or end-of-job processing. For example, you cannot specify
overrides for the job log file. In some cases, when you need to override something
in a system file, you may be able to change it through a command other than an
override command. For example, to change the output queue for a job log, the
output queue could be changed before sign-off using the OUTQ parameter on the
Change Job (CHGJOB) command to specify the name of the output queue for the
job. If the printer file for the job log contains the value *JOB for the output queue,
the output queue is the one that is specified for the job.

The following commands allow overrides for the SRCFILE and SRCMBR

parameters only:

Chapter 3. Using Overrides 35

CRTCMD CRTPRTF

CRTICFF CRTSRCPF
CRTDSPF CRTTBL
CRTLF CRTPF
CRTXXXPGM

(All create program commands. These commands also use overrides to determine which file

will be opened by a compiled program. See EApplying overrides when compiling a programd
bn page 54

for more information.)

The following command allows overrides for the TOFILE, MBR, SEQONLY,
LVLCHK, and INHWRT parameters:

OPNQRYF

The following commands allow overrides, but do not allow changing the MBR to
*ALL:

CPYFRMPCD CPYTOPCD

The following commands do not allow overrides to affect the display files that they
use. Overrides to the printer files they use should not change the file type or the file
name. Some restrictions are placed on changes that may be made to printer files
used by these commands, but the system can not guarantee that all combinations
of possible specifications will produce an acceptable report.

DMPOBJ and DMPSYSOBJ
(In addition to the preceding limitations, these commands do not allow
overrides to the file they dump.)

DSPXXXXXX
(All display commands. The display commands that display information
about a file do not allow overrides to that file.)

DSPIGCDCT
EDTIGCDCT
GO (You can override message files.)

PRTXXXXXX
(All print commands.)

QRYDTA

TRCXXX
(All trace commands.)

WRKXXXXXX
(All work-with commands.)

Applying overrides

You can perform two general types of overrides:
* File overrides
File overrides let you override the following things:
— File attributes
— File names
— File attributes and file names simultaneously

Data Management V4R4

— File open scope
— File types

For more information on overriding file types, see IRedirecting files” od

» Overrides for program device entries

Overrides for program device entries let you override the attribute of an ICF file
that provides the link between the application and each of the remote systems or
devices with which your program communicates. For more information on
overrides on program device entries, see the ICF Programming book.

How to apply overrides:

The following scenarios provide detailed examples of how you perform each of the
override types:

For additional information:

The following topics provide additional information about how overrides work on
AS/400 and how they affect and are affected by different events:

‘ : ”
.

Overriding file attributes

The simplest form of overriding a file is to override some attributes of the file. File
attributes are built as a result of the following:

» Create file and add member commands. Initially, these commands build the file
attributes.

» Program using the files. At compile time, the user program can specify some of
the file attributes. (The attributes that you can specify depend on the high-level
language in which the program is written.)

* Override commands. At the time when a program runs, these commands can
override the file attributes previously built by the merging of the file description
and the file parameters specified in the user program.

For example, assume that you create a printer file OUTPUT whose attributes are:

Chapter 3. Using Overrides 37

38

» Page size of 60 by 80

* Six lines per inch

* Two copies of printed output
* Two pages for file separators
* Overflow line number of 55

The Create Printer File (CRTPRTF) command looks like this:

CRTPRTF FILE(QGPL/OUTPUT) SPOOL(*YES) +
PAGESIZE(60 80) LPI(6) COPIES(2) +
FILESEP(2) OVRFLW(55)

You specify the printer file OUTPUT in your application program with an overflow
line number of 58 and a page size of 66 by 132.

However, before you run the application program, you want to change the number
of printed copies to 3, and the overflow line to 60. The override command looks like
this:

OVRPRTF FILE(OUTPUT) COPIES(3) OVRFLW(60)

Then you call the application program, and three copies of the output print.

When the application program opens the OUTPUT file, the system merges the
file-specified attributes, program-specified attributes, and override-specified
attributes to form the open data path. The system uses the open data path when
the program runs. The system merges file-specified overrides with the
program-specified attributes first. Then it merges these merged attributes with the
override attributes. In this example, when the OUTPUT file is opened and output
operations are performed, spooled output will be produced with a page size of 66
by 132, six lines per inch, three copies, two file separator pages, and overflow at 60
lines.

Eigure 4 on page 39 explains this example.

Data Management V4R4

Override Command

COPIES(3)
OVERFLW(60)

I

Program A

PAGESIZE(66 132)
OVRFLW(58)

Open OUTPUT

!

File OUTPUT

SPOOL(*YES)
PAGESIZE(60 80)
LPI(6)

COPIES(2)
FILESEP(2)
OVRFLW(55)

—» Open Data Path

SPOOL(*YES)
Override-Specified | PAGESIZE(66 132)
Attributes LPI(6)
COPIES(3)
FILESEP(2)
OVRFLW(60)
Program-Specified
Attributes T
A
Attributes
are
Merged
File-Specified
Attributes -

RV2H087-0

Figure 4. Overriding File Attributes

| Overriding file names

Another simple form of overriding a file is to change the file that is used by the
program. This may be useful for files that you moved or renamed after the program
compiled.

For example, you want to print the output from your application program by using
the printer file REPORTS instead of the printer file OUTPUT (the application
program specifies the OUTPUT printer file). Before you run the program, enter the
following:

OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)

The CRTPRTF command must have created the file REPORTS before it can use
the file.

Overriding file names and file attributes

This form of overriding files is simply a combination of overriding file attributes and
overriding file names. With this form of override, you can override the file that is to
be used in a program and you can also override the attributes of the overriding file.
For example, you want the output from your application program to print using the
printer file REPORTS instead of the printer file OUTPUT (the application program
specifies the OUTPUT printer file). In addition to having the application program use
the printer file REPORTS, you want to produce three copies. Assume that the
following command created the file REPORTS:

Chapter 3. Using Overrides 39

CRTPRTF FILE(REPORTS) SPOOL(*YES) +
PAGESIZE(68 132) LPI(8) OVRFLW(60) +
COPIES(2) FILESEP(1)

Before you run the program, type the following command:
OVRPRTF FILE(OUTPUT) TOFILE(REPORTS) COPIES(3)

Then call the application program, and the program produces three copies of the
output using the printer file REPORTS.

Note that this is not equal to the following two override commands:

Override 1 OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)
Override 2 OVRPRTF FILE(REPORTS) COPIES(3)

Only one override is applied for each call level for an open of a particular file;
therefore, if you want to override the file that the program uses and also override
the attributes of the overriding file from one call level, you must use a single
command. If you use two overrides, the first override uses the printer file REPORTS
to print the output. The system ignores the second override.

Overriding the scope of an open file

To change the scope of a file open operation, use the open scope (OPNSCOPE)
parameter on the appropriate override command. The values for the OPNSCOPE
parameter can be either *JOB or *ACTGRPDFN (default). Use this parameter to
change the scope of an open operation from the call level number or activation
group level to the job level.

For example, the following override command scopes the open operation of the
BILLING file to the job level:

OVRDBF FILE(BILLING) OPNSCOPE(*JOB)

How the system processes overrides

40

Eigure 5 on page 41 shows a representation of a job running in the integrated
language environment.

Data Management V4R4

Job

Job level overrides u I

User Default Activation Group

Program Call level
9 overrides E
Program

Call level
Program overrides B

Named Activation Group

Activation group E
level overrides
Program
Program Call level
9 overrides E
Program

RV3H012-1

Figure 5. A Job in the Integrated Language Environment

In the description that follows, the reference keys refer to the corresponding
reference keys in

In the integrated language environment, overrides can be scoped to the call level,
the activation-group level (the default), and the job level. A job is a piece of work
that the system performs. An interactive job begins when a user signs on and
ends when a user signs off. Overrides (A) that are scoped to the job level have
affect on all programs that are running in any activation group within the job. There
can be only one active override for a file at the job level. If you specify more than
one, the most recent one takes effect. An override that is scoped to the job level
remains in effect until one of the following occurs:

* The job ends

* The system explicitly deletes the override

* Another job level override for the same file replaces the override

This is true regardless of the call level in which the overrides were specified. For
example, an override that is issued in call level 3 that is scoped to the job level

remains in effect when call level 3 is deleted. Overrides can be scoped to the job
level by specifying OVRSCOPE(*JOB) on the override command.

Chapter 3. Using Overrides 41

Overrides (B) that are specified in the user default activation group can be scoped
to the call level or to the job level. They cannot be scoped to the user default
activation group level. However, overrides (C and D) that are specified in a named
activation group can be scoped to the call level, activation group level, or the job
level. Overrides (C) scoped to a named activation group level remain in effect until
the system replaces or deletes the override, or until the system deletes the named
activation group.

Overrides (D) that are scoped to the call level within a named activation group
remain in effect until they are replaced, deleted, or until the program in which they
were issued ends. Overrides can be scoped to the call level by specifying
OVRSCOPE(*CALLLVL) on the override command.

[Overrides that are scoped to a named activation group level apply only to programs
[that run in the named activation group. They have no affect on programs that run in
| other named activation groups or in the user default activation group.

Call levels identify the subordinate relationships between related programs when
one program calls another program within a job. Overrides that are scoped to the
call level remain in effect from the time they are specified until they are replaced, or
deleted, or until the program in which they are specified ends. This is true whether
you issue the override in the user default activation group or in a named activation

group.

| For example:

Job

User Default Activation Group

Call Level 1 PGM A
[]
[]
[]

CALL PGM B

Call Level 2 PGM B
(]
L]
L]

TFRCTL PGM C

PGM C
°
°
°

CALL PGM D

Call Level 3 PGM D
[]
[]
[)

RETURN

RV3HO11-1

Figure 6. Call Levels within a Job

[Several commands, such as Work with Job (WRKJOB), Work with Active Jobs
| (WRKACTJOB), or Display Job (DSPJOB), have options that allow you to display
[the call stack of an active job. There is a one-to-one relationship between a

42 Data Management VAR4

program that is displayed in the call stack and the call level. The first program name
displayed (at the top of the list) on the call stack is the program at call level 1 for
that job. Call level 1 is the lowest call level for a job. The second program name
displayed is the program at call level 2 for that job. The last program name
displayed is the program at the highest call level for that job.

In the example in Eigure 6 on page 43, the transfer control (TFRCTL) command to
PGMC causes PGMC to replace PGMB from the call stack. A CALL command
places another program in the call stack. A RETURN command removes a program
from the stack.

Processing priority of overrides

The system processes overrides when an open operation occurs in the following
order:

1. Call level overrides up to and including the level of the oldest procedure in the
activation group are applied first.

2. Activation group level overrides that were specified within the same activation
group that the open operation was issued are applied.

3. Call level overrides below the level of the oldest procedure in the activation
group are applied.

4. Job level overrides are applied.
How the system processes overrides-scenario 1

The following shows an example of how overrides work in multiple activation
groups:

Chapter 3. Using Overrides 43

Call Level

Call Level

Call Level

Call Level

Call Level

Call Level

Call Level

Call Level

Call Level

3

Program A (in user default activation group)
OVRPTRF FILE(YYY) FOLD(*YES) OVRSCOPE(*CALLLVL)
CALL PGM B

Program B (in activation group 8)

OVRPTRF FILE(ZZZ) TOFILE(YYY) DEV(P1) LPI(6) +
OVRSCOPE (*CALLLVL)

CALL PGM C

Program C (in user default activation group)
OVRPTRF FILE(ZZZ) CPI(12) OVRSCOPE (*CALLLVL)
CALL PGM D

Program D (in activation group 21)
OVRPTRF FILE(YYY) DEV(P2) OVRSCOPE (*JOB)
CALL PGM E

Program E (in activation group 21)
OVRPTRF FILE(ZZZ) LPI(12) OVRSCOPE(*ACTGRPDFN)
CALL PGM F

Program F (in activation group 8)
OVRPTRF FILE(ZZZ) LPI(9) OVRSCOPE (*CALLLVL)
CALL PGM G

Program G (in activation group 8)

OVRPTRF FILE(ZZZ) DUPLEX(*NO) +
OVRSCOPE (*ACTGRPDFN)

CALL PGM H

Program H (in activation group 8)
OVRPTRF FILE(YYY) LPI(5) OVRSCOPE (*ACTGRPDFN)
CALL PGM I

Program I (in activation group 8)
OPEN FILE(ZZZ)

Figure 7. Example of Override Processing in Multiple Activation Groups

When program | opens file ZZZ, file ZZZ has the following attributes:

CPI(12)
From call level 4

FILE(YYY)
From call level 3

LPI(5) From call level 9

FOLD(*YES)
From call level 2

DEV(P2)
From call level 5

The system processes the overrides in the following order:
1. File ZZZ opens at call level 10. The system looks for any overrides issued at
call level 10 that were scoped to the call level. There are no such overrides.

2. The system searches the next previous call level (level 9) for applicable
overrides that were scoped to the call level. There are no such overrides. (The
override issued in call level 9 is for file YYY and does not apply.)

3. The system searches call level 8 for applicable overrides that were scoped to
the call level. There is an override for file ZZZ; however, it is scoped to the

44 Data Management V4R4

10.

11.

activation group level. The system does not process this override until it has
processed all overrides with call levels greater than or equal to the call level of
the oldest procedure in activation group 8. In this example, the call level of the
oldest procedure in activation group 8 is 3. Therefore, the system will process
all call level overrides that are issued at call levels greater than or equal to 3
before processing the activation group override that is issued at call level 8.

The system searches call level 7 for applicable overrides that were scoped to
the call level. Because the override issued at call level 7 is scoped to the call
level, it is processed. The LPI(9) attribute is assigned to file ZZZ.

The system searches call level 6 for applicable overrides that were scoped to
the call level. Notice that call level 6 is in activation group 21. There is an
override for file ZZZ; however, it is scoped to the activation group level of
activation group 21. The system ignores this override altogether because it is
scoped to an activation group other than activation group 8.

The system searches call level 5 for applicable overrides that were scoped to
the call level. There are no such overrides. (The override issued in call level 5
is for file YYY and does not apply.)

The system searches call level 4 for applicable overrides that were scoped to
the call level. Because the override issued at call level 4 is scoped to the call
level, it is processed. The CPI(12) attribute is assigned to file ZZZ.

The system searches call level 3 for applicable overrides that were scoped to
the call level. Because the override issued at call level 3 is scoped to the call
level, it is processed. Notice that the file being opened has been changed to
YYY from ZZZ. The DEV(P1) attribute is assigned to file YYY. The LPI(9)
attribute is changed to LPI(6) and is assigned to file YYY.

Call level 3 is the call level of the oldest procedure in activation group 8.
Therefore, any overrides (for file YYY) that were scoped to the activation group
level of activation group 8 are processed. The override issued at call level 9 is
processed. This changes the LPI(6) attribute to LPI(5).

The system searches call level 2 for applicable overrides that were scoped to
the call level. The override issued in call level 2 is processed. This assigns the
FOLD(*YES) attribute to file YYY.

The system searches call level 1 for applicable overrides that were scoped to
the call level. There are no such overrides.

The system searches the job level for applicable overrides that were scoped to
the job level. Because, the override issued in call level 5 was scoped to the job
level and it is for file YYY, it is processed. This changes the DEV(P1) attribute
to DEV(P2).

How the system processes overrides-scenario 2

When several overrides that override the file type to be used by a program are
applied, only the attributes specified on the overrides of the same type as the final
file are applied. In the following example, assume that program MAKEMASTER
attempts to open the diskette file DKA:

Chapter 3. Using Overrides 45

Override 1 OVRDKTF FILE(PRTA) TOFILE(DKB) +
LABEL (DKFIRST)
CALL PGM(A)

Program A
Override 2 OVRPRTF FILE(DKA) TOFILE(PRTA) +
SPOOL (*YES)
CALL PGM(B)

Program B
Override 3 OVRDKTF FILE(PRTB) TOFILE(DKA) +
DEV(DKT02) LABEL(DKLAST)

Override 4 OVRDKTF FILE(DKA) TOFILE(DKC) +
DEV(DKT02) LABEL(DKTTST)
CALL PGM(C)

Program C
Override 5 OVRPRTF FILE(DKA) +
TOFILE(PRTB) +
SCHEDULE (*JOBEND)
CALL PGM(D)

Program D
Override 6 OVRDKTF FILE(DKA) +
VOL (MASTER)
CALL PGM(MAKEMASTER)

Program MAKEMASTER
(Program
MAKEMASTER
attempts to open file
DKA, but actually
opens the diskette file
DKB.)

In the preceding example, the file that program MAKEMASTER actually opens is
the diskette file DKB because of the following reasons:

» Override 6, which is applied first, does not cause file DKA to be overridden with
any other file.

* Override 5, which is applied second, causes file DKA to be overridden with
printer file PRTB.

» Override 4 is ignored at this level because override 5 changed the file name to
PRTB.

* Override 3, which is applied third, causes file PRTB to be overridden with
diskette file DKA.

* Override 2, which is applied fourth, causes file DKA to be overridden with printer
file PRTA.

* Override 1, which is applied last, causes file PRTA to be overridden with diskette
file DKB.

Therefore, the file that program MAKEMASTER opens is the diskette file DKB.
Because file DKB is a diskette file, the system overrides only those attributes that

46 Data Management VAR4

are specified on the Override with Diskette File (OVRDKTF) commands:
VOL(MASTER) from override 6; DEV(DKTO02) from override 3; and
LABEL(DKFIRST) from override 1.

The attributes specified on the Override with Printer File (OVRPRTF) commands
are ignored (even though they might have been allowed on the OVRDKTF

commands). Refer to tRedirecting files” on page 65 for more information on the

effect of overrides that change the file type.

Processing overrides: general principles

The system processes overrides according to the following general principles:

Overrides applied include any that are in effect at the time a file is opened by an
application program, when a program that opens a file is compiled, or when

certain system commands are used. (See L&m@gw
LAppI;ung_mLemmﬂmepMQg_a_pmgmm_m_pagﬁd and

). Thus, any overrides that are to be
applied must be specified either before the file is opened by a program or before
a program that opens the file is compiled. It is not necessary that overrides must
be supplied for every file that is used in a program. Any file name for which no
override is supplied is used as the actual file name.

Override commands that are scoped to the job level remain in effect until they
are replaced, deleted, or until the job |n wh|ch they are specmed ends. For more
information on deleting overrides, see L

There can be only one active override for a file at each level (job level, activation
group level, or call level). If more than one override for the same file exists at the
same level, the most recent one is active.

For an example of how the system processes overrides when more than one
override for the same file exists at the same level, see lQverrides to the samd

Override commands that are scoped to the job level apply to all programs that
are running in the job regardless of the call level or activation group in which the
overrides are specified.

Override commands that are scoped to an activation group level apply to all
programs that are running in the activation group regardless of the call level in
which the overrides are specified.

An override command (scoped to the call level) that is entered interactively exists
at the call level for the caller of that command processor. For example, an
override (scoped to the call level) that is entered on the command entry display
cannot be deleted or replaced from a command processor that is called from the
command entry display.

The call level of an override (scoped to the call level) that is coded in a CL
program is the call level of the CL program.

An override (scoped to the call level) outside a program in a batch job takes the
call level of the batch job command processor.

If an override command (scoped to the call level) is run using a call to the
QCMDEXC program, the override takes the call level of the program that called

the eQ_CMDEXC program. For an example, see LCL program overrides” on

Chapter 3. Using Overrides 47

* Exits (ENDPGM, RETURN, or abnormal exits) from a call operation delete
overrides scoped to that call level. However, they do not delete overrides that are
issued in that call level when they are scoped to the activation group level or the
job level.

For an example, see FEffect of exits on overrides: Q(‘nnnrin’l_

* The TFRCTL command causes one program to be replaced by another program
at the same call level. The program, to which control is transferred, runs at the
same call level as the program that contained the TFRCTL command. An
override command in a program that transfers control to another program is not
deleted during the transfer of control.

For an example, see L ides-

» Several overrides (possibly one per call level, one at the activation group level,
and one at the job level) to a single flle are allowed They are processed
according to the priorities in

For an example of processing overrides, see lHow the system processes

* You can protect an override from being overridden by overrides at lower call
levels, the activation group level, and the JOb Ievel specn‘y SECURE(*YES) on
the override. For an example, see

Effect of exits on overrides: scenario

48

Exits (ENDPGM, RETURN, or abnormal exits) from a call operation delete overrides
that are scoped to that call level. However, they do not delete overrides that are
issued in that call level that are scoped to the activation group level or the job level.
For example, a RETURN command deletes all overrides scoped to that call level.
Thus, overrides that are scoped to the call level in called programs that end with a
RETURN or ENDPGM command do not apply to the calling program. This is not
true for programs that use the Transfer Control (TFRCTL) command.

In Eigure 8 on page 49, the RETURN command deletes the first override in program
B, and FILE X is opened in program A. However, the RETURN command does not
delete the second override because it is scoped to the job level. FILE B is opened
in program A when program A processes the Open FILE A command.

Data Management V4R4

Program A

CALL PGM(B)
Program B
Override 1 OVRDBF FILE(X) FILE(Y)

Override 2 OVRDBF FILE(A) TOFILE(B) +
OVRSCOPE (*JOB)

RETURN

OPEN FILE X

OPEN FILE A

Figure 8. Example of Effect of Exits on Overrides

Effect of TFRCTL on overrides-Scenario

The TFRCTL command replaces one program with another program at the same
call level. The program to which control is transferred runs at the same call level as
the program that contained the TFRCTL command. An override command in a
program that transfers control to another program is not deleted during the transfer
of control. In the following example, program A transfers control to program B, and
program B runs in the same call level as program A. The Override with Database
File (OVRDBF) command causes the file to be positioned at the last record of the
member when it is opened and is used for both programs A and B.

CALL PGM(A)

Program A

OVRDBF FILE(INPUT) POSITION(*END)
(INPUT is opened and positioned at the last
record of the member and closed after

processing.)

TFRCTL PGM(B)
Program B

(INPUT is opened and positioned at the last
record of the member.)

Chapter 3. Using Overrides 49

Overrides to the same file at the same call level: scenario 1

When you enter two overrides for the same file name at the same call level, the
second override replaces the first override. This allows you to replace an override at
a single call level, without having to delete the first override (see

byerrides” an page 55). For example:

Override 1 OVRDKTF FILE(QDKTSRC) LABEL(X)
CALL PGM(REORDER)

Override 2 OVRDKTF FILE(QDKTSRC) LABEL(Y)
CALL PGM(REORDER)

Assume that program REORDER uses the diskette file QDKTSRC. Override 1
causes the first call to program REORDER to use the source file with a label of X
for its processing. Override 2 causes the second call to program REORDER to use
the source file with a label of Y for its processing.

Overrides to the same file at the same call level: scenario 2

50

When you enter two overrides for the same file name at the same call level, the
second override replaces the first override.

In the following example, when the program attempts to open FILE A, FILE B
overrides FILE A because of override 2. Because only one override can be applied
for each call level, the system ignores override 1, and the file opened by the
program is FILE B.

Program A
Override 1 OVRDBF FILE(B) TOFILE(C)
Override 2 OVRDBF FILE(A) TOFILE(B)
OPEN FILE A

To open FILE C, replace the two Override with Database File (OVRDBF)
commands with the following command:

OVRDBF FILE(A) TOFILE(C)

This does not prevent applying an override at the same call level or job level in
which the file is created. Regardless of which attribute is encountered first, file
attributes on the override take the place of corresponding attributes on the create
statement for the file.

Data Management V4R4

| CL program overrides

If a CL program overrides a file and then calls a high-level language program, the
override remains in effect for the high-level language program. However, if a
high-level language program calls a CL program that overrides a file, the system
deletes the override automatically when control returns to the high-level language
program.

High-level language program:
CALL PGM(CLPGM1)

CL Program CLPGM1
OVRDKTF FILE(DK1) TOFILE(MSTOUT)

ENDPGM
High-level language program:
OPEN DK1

The file opened is DK1, not MSTOUT. This is because the system deletes the
override in the CL program when the CL program ends.

To perform an override from a high-level language program, call the QCMDEXC
program from the high-level language program. The override specified on the
QCMDEXC command, takes the call level of the program that called QCMDEXC.
High-level language program:

CALL QCMDEXC PARM('OVRDKTF FILE(DK1) +

TOFILE(MSTOUT)' 32)
OPEN DK1

The file MSTOUT opens because of the override that is requested by the call to the
QCMDEXC program.

In an actual program, you might want to use data that is supplied by the program
as a parameter of the override. You can do this by using program variables in the
call to QCMDEXC. For more information on the use of program variables, refer to
the appropriate language information.

Securing files against overrides

On occasion, you may want to prevent the person or program that calls your
program from changing the file names or attributes you have specified. You can
prevent additional file overrides by coding the SECURE(*YES) parameter on a file
override command for each file that needs protection. This protects your file from
overrides at lower call levels, the activation group level, and the job level.

The following shows an example of a protected file:

Chapter 3. Using Overrides 51

Override 1 OVRPRTF FILE(PRINT1) SPOOL(*NO)

Override 2 OVRDBF FILE(NEWEMP) TOFILE(OLDEMP) +
MBR (N67)
CALL PGM(CHECK)

Program CHECK
Override 3 OVRDBF FILE(INPUT) +
TOFILE(NEWEMP) MBR(N77) +
SECURE (*YES)
CALL PGM(EREPORT)

Program EREPORT
(NEWEMP and PRINT1 are opened.)

Override 4 OVRDBF FILE(INPUT) +
TOFILE(NEWEMP) MBR(N77)
CALL PGM(ELIST)

Program ELIST
(OLDEMP and PRINT1 are opened.)

When the example calls program EREPORT, it attempts to open the files INPUT
and PRINT1. EREPORT actually opens file NEWEMP, member N77. Because
override 3 specifies SECURE(*YES), the system does not apply override 2. When
the example calls program ELIST, it also attempts to open the files INPUT and
PRINTL1. ELIST actually opens files OLDEMP, member N67. Because override 4
has the same name as override 3 and is at the same call level as override 3, it
replaces override 3. Thus, the file is no longer protected from overrides at lower call
levels, and the system applies override 2 for program ELIST.

PRINT1 is affected only by override 1, which is in effect for both programs
EREPORT and ELIST.

Using a generic override for printer files

52

The OVRPRTF command allows you to have one override for all the printer files in
your job with the same set of values. Without the generic override, you would have
to do a separate override for each of the printer files.

Applying OVRPRTF with *PRTF: scenario

You can apply the OVRPRTF command to all printer files by specifying *PRTF as
the file name.

The OVRPRTF command with *PRTF is applied if there is no other override for the
printer file name at the same call level. The following example shows how *PRTF
works:

Override 1 OVRPRTF FILE(OUTPUT) COPIES(6) +

LPI(6)
Override 2 OVRPRTF FILE(*PRTF) COPIES(1) +
LPI(8)
CALL PGM(X)

Data Management V4R4

When program X opens the file OUTPUT, the opened file has the following
attributes:

COPIES(6)
From Override 1

LPI(6) From Override 1

When program X opens the file PRTOUT (or any printer file other than OUTPUT),
the opened file has the following attributes:

COPIES(1)
From Override 2

LPI(8) From Override 2

Applying OVRPRTF with *PRTF from multiple call levels:
scenario

The following example shows how printer-file overrides are applied from multiple
call levels by using the *PRTF value.

Program A
Override 1 OVRPRTF FILE(*PRTF) COPIES(1)
Override 2 OVRPRTF FILE(PRT2) COPIES(2)

Override 3 OVRPRTF FILE(PRT4) COPIES(2)
CALL PGM(B)

Program B
Override 4 OVRPRTF FILE(*PRTF) LPI(4)
Override 5 OVRPRTF FILE(PRT3) LPI(8)
Override 6 OVRPRTF FILE(PRT4) LPI(8)

CALL PGM(X)

When program X opens the file PRT1, the opened file has the following attributes:

COPIES(1)
From Override 1

LPI(4) From Override 4

Because no specific overrides are found for PRT1, *PRTF overrides (1 and 4) are
applied.

When program X opens the file PRT2, the opened file has the following attributes:

COPIES(2)
From Override 2

LPI(4) From Override 4
Because no specific override is found for PRT2 in program B, override 4 is applied.
In program A, override 2 specifies PRT2 and is applied.

When program X opens the file PRT3, the opened file has the following attributes:

COPIES(1)
From Override 1

LPI(8) From Override 5

Chapter 3. Using Overrides 53

In program B, override 5 specifies PRT3 and is applied. Because no specific
override is found for PRT3 in program A, override 1 is applied.
When program X opens the file PRT4, the opened file has the following attributes:

COPIES(2)
From Override 3

LPI(8) From Override 6

In program B, override 6 specifies PRT4 and is applied. In program A, override 3
specifies PRT4 and is applied.

Applying overrides when compiling a program

54

Overrides may be applied at the time a program is being compiled for either of two
purposes:

¢ To select the source file

» To provide external data definitions for the compiler to use in defining the record
formats to be used on 1/O operations

Overrides to the source file are handled just like any other override. They may
select another file, another member of a database file, another label for diskette or
tape, or change other file attributes.

You can also apply overrides to files that are used within the program being
compiled, if they are being used as externally described files in the program. These
files are not opened at compile time, and thus the overrides are not applied in the
normal manner. These overrides are used at compile time only to determine the file
name and library that will be used to define the record formats and fields for the
program to use I/O operations. Any other file attributes specified on the override are
ignored at compile time. It is necessary that these file overrides be active at compile
time only if the file name specified in the source for the program is not the file name
that contains the record formats that the application needs.

The file name that is opened when the compiled program is run is determined by
the file name that the program source refers to, changed by whatever overrides are
in effect at the time the program runs. The file name used at compile time is not
kept. The record formats in the file that is actually opened must be compatible with
those that were used when the program was compiled. Obviously, the easiest way
to assure that records are compatible is to have the same overrides active at run
time that were active at compile time. If your program uses externally described
data and a different field level file is used at run time, it is usually necessary to
specify LVLCHK(*NO) on the override. See LRedirecting files” on page 64 for
details.

The following example shows how overrides work when compiling a program:

Data Management V4R4

Override 1 OVRDBF FILE(RPGSRC) +
TOFILE(SRCPGMS) MBR(INVN42)
Override 2 OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)
CALL PGM(A)

Program A
Override 3 OVRPRTF FILE(LISTOUT) +
TOFILE(OUTPUT)
Override 4 OVRDBF FILE(RPGSRC) WAITFILE(30)
CRTRPGPGM PGM(INVENTORY) +
SRCFILE(RPGSRC)
RETURN

Override 5 OVRPRTF FILE(LISTOUT) +
TOFILE(REPORTS) LPI(8)
CALL PGM(INVENTORY)

The program INVENTORY opens the printer file REPORTS in place of printer file
LISTOUT and creates output at 8 lines per inch.

The program INVENTORY is created (compiled) from the member INVN42 in the
database file SRCPGMS. Override 4, which is applied first, overrides an optional file
attribute. Override 1, which is applied last, causes the file RPGSRC to be
overridden with the database file SRCPGMS, member INVN42.

The program INVENTORY is created with the printer formats from the file
REPORTS. Assume that the source for the program INVENTORY, which is taken
from file SRCPGMS and member INVN42, contains an open to the printer file
LISTOUT. Override 3, which is applied first, causes the file LISTOUT to be
overridden with OUTPUT. Override 2, which is applied last, overrides OUTPUT with
REPORTS. Other attributes may be specified here, but it is not necessary because
only the record formats are used at compile time.

At run time, override 3 is no longer active, because program A has ended.
Therefore override 2 has no effect on LISTOUT. However, override 5, which is
active at run time, replaces LISTOUT with REPORTS and specifies 8 lines per inch.
Because the same file is used for compilation and run-time, you can leave level
checking on.

Deleting overrides

When a program that has been called returns control to the calling program, any
overrides specified in the call level of the called program are deleted. This does not
include overrides that are scoped to the activation group level or the job level.
Overrides that are scoped to the activation group level remain in effect until they
are explicitly deleted, replaced, or until the activation group in which they are
specified is deleted. Overrides that are scoped to the job level remain in effect until
they are explicitly deleted, replaced, or until the job in which they are specified
ends.

When control is transferred to another program (TFRCTL command), the overrides
in the call level of the transferring program are not deleted.

To delete overrides:

Chapter 3. Using Overrides 55

You use the Delete Override (DLTOVR) command to explicitly delete overrides on
your system. The DLTOVR command can delete overrides that are scoped to the
call level, activation group level, or the job level. To delete overrides that are scoped
to the activation group level, you do not need to specify a value for the OVRSCOPE
parameter because OVRSCOPE(*ACTGRPDFN) is the default. To delete overrides
that are scoped to the job level, you must specify OVRSCOPE(*JOB) on the
DLTOVR command.

To identify an override, use the file name that is specified on the FILE parameter of
the override command. You can delete all overrides at the current level (call level,
activation group level, or job level) by specifying value *ALL for the FILE parameter.

See the following topics for additional information on deleting overrides:

Deleting overrides: scenario 1

In the following example, assume that all the commands are entered at the same
call level:

Override 1 OVRDBF FILE(DBA) +

TOFILE(DBB)
Override 2 OVRPRTF FILE(PRTC) +

COPIES(2)
Override 3 OVRDKTF FILE(DKT) +

EXCHTYPE (*BASIC)

Delete Override 1 DLTOVR FILE(DBA)
Delete Override 2 DLTOVR FILE(*ALL)

Delete override 1 causes override 1 to be deleted. Delete override 2 causes the
remaining overrides (overrides 2 and 3) to be deleted.

Deleting overrides: scenario 2

56

In the following example, assume that commands 1, 2, and 14 are entered
interactively, at call level 1:

Data Management V4R4

Program A (in user default activation group)

Command 1 OVRDBF FILE(DBA) TOFILE(DBB) SECURE(*YES)
Command 2 CALL PGM(B)

Program B (in activation group 4)
Command 3 OVRPRTF FILE(DBB) TOFILE(PRTC) LPI(6) OVRSCOPE (*CALLLVL)
Command 4 OVRDBF FILE(DBC) TOFILE(DBD) OVRSCOPE(*JOB)
Command 5 TFRCTL PGM(C)

Program C
Command 6 OVRDKTF FILE(DKTE) TOFILE(DKTF) OVRSCOPE (*CALLLVL)
Command 7 CALL PGM(QCMDEXC) +

PARM('OVRDSPF FILE(DSPG) TOFILE(DSPH)' 31)

Command 8 DLTOVR FILE(DBA DBB) LVL(*)
Command 9 MONMSG MSGID(CPF9841)
Command 10 CALL PGM(QCMDEXC) PARM('DLTOVR FILE(*ALL) LVL(%)' 24)
Command 11 DLTOVR FILE(DBC) OVRSCOPE(*JOB)
Command 12 DLTOVR FILE(DSPG)
Command 13 RETURN

Command 14 DLTOVR FILE(*ALL)
Command 1 causes an override at level 1 from file DBA to file DBB.
Command 2 calls program A and creates a new call level (call level 2).

Command 3 causes an override at level 2 from file DBB to file PRTC. Also, the LPI
attribute of file PRTC is overridden to 6.

Command 4 causes an override at the job level from file DBC to file DBD.

Command 5 transfers control from program A to program B at the same call level
(call level 2).

Command 6 causes an override at level 2 from file DKTE to file DKTF.

Command 7 causes an override at activation group level 4 from file DSPG to file
DSPH. OVRSCOPE(*ACTGRPDFN) is the default.

Command 8 deletes any overrides of files DBA and DBB at level 2. The override
specified by command 3 is deleted, but the override specified by command 1 is not
deleted. Because an override for DBA cannot be found at level 2, the
override-not-found escape message (CPF9841) is sent.

Command 9 monitors for a message to prevent a function check, but it specifies no
action to be taken if the message is sent.

Command 10 deletes all remaining overrides at level 2. The override specified by
command 6 is deleted, but the overrides specified by commands 1, 4, and 7 are not
deleted.

Command 11 deletes overrides to file DBC that are scoped to the job level. The
override specified by command 4 is deleted.

Command 12 deletes the override to file DSPG that was scoped to activation group
level 4 by command 7.

Command 13 causes a return to level 1, and level 2 is deleted. If any overrides
were specified at level 2 (scoped to the call level) between command 10 and

Chapter 3. Using Overrides 57

command 12, they are deleted at this point. Also, if any overrides were specified at
level 2 (scoped to the activation group level) between command 10 and 12, they
are deleted assuming that activation group 4 is ended after the RETURN.

Command 14 causes all overrides specified at call level 1 to be deleted. The
override specified by command 1 is deleted.

Note: Command 14 would not delete any overrides that were scoped to the job
level. (However, there are none in this example at the time command 14 is
issued). In general, to delete all overrides at the job level, you would have to
specify DLTOVR FILE(*ALL) OVRSCOPE(*JOB).

Displaying overrides

You can use the Display Override (DSPOVR) command to display file overrides at
the job level, the activation group level, and at multiple call levels for a job. You can
display all file overrides or overrides for a specific file.

The file overrides may be merged before being displayed. A merged override is the
result of combining overrides from the job level to the current level or any specified
call level, producing a composite override which will be applied when the file is
used at the specific call level. The current call level is the call level of the program
that is currently running. This program is the last program name that is displayed on
the call stack. This command may be requested from either a batch or interactive
environment. You can also access this function from option 15 (Display file
overrides) from the Work with Job menu (using the WRKJOB command) or by
selecting option 15 (Display file overrides) from the Display Job menu (using the
DSPJOB command).

For additional information:

See the following topics for more information on displaying overrides:

Displaying all overrides for a specific activation group: scenario

To display all overrides for a specific activation group, you type:
DSPOVR FILE(REPORTS) ACTGRP(*)

This displays all the overrides for the REPORTS file for the activation group in
which the override is issued. ACTGRP(*) is the default and is shown here for
illustration purposes. To specify an activation group other than the one the
command is to be issued in, specify the name of the activation group on the
ACTGRP parameter.

Data Management V4R4

| Displaying merged file overrides for one file: scenario

To display the merged file override for a particular file at a specific call level, you
type:
DSPOVR FILE(REPORTS) MRGOVR(*YES) LVL(3)

This command produces a display that shows the merged override for the file
REPORTS at call level 3 with text descriptions of each keyword and parameter. Any
applicable overrides at the job level, the activation group level, and at call levels 1,
2, and 3 are used to form the merged override, but overrides at higher call levels
are ignored. If the call level specified is not active, all applicable overrides up to the
current level are used.

Displaying all file overrides for one file: scenario

To display all file overrides for a specific file up to a specific call level, you type:
DSPOVR FILE(REPORTS) MRGOVR(*NO) LVL(2)

This command produces a display that shows the file name, the call level for which
the override was requested, the type of override, and the override parameters in
keyword-parameter form. If no file overrides are found for the file up to and
including the specified call level, escape message CPF9842 is sent. If you are using
DSPOVR in a CL program, you might want to add a MONMSG command following
the DSPOVR command to prevent your program from ending if there are no
overrides for the file. This technique is illustrated in some of the examples later in
this chapter. For more information on the MONMSG command, refer to the CL
Programming book.

Displaying merged file overrides for all files: scenario

To display the merged file overrides for all files at the current call level, you type:
DSPOVR FILE(*ALL) MRGOVR(*YES) LVL(*)

This command produces a display showing the file name, the type of override, and
the merged overrides in keyword-parameter form, where only the keywords and
parameters entered on the commands are displayed. This is the same as what
happens when you type DSPOVR with no parameters. Only those keywords for
which parameters were specified are displayed. The associated text descriptions
are not displayed. Overrides at call levels greater than 999 are not displayed.

Displaying overrides with WRKJOB: scenario

When overrides are displayed not by the DSPOVR command, but through an option
on one of the system interfaces to work with jobs (for example, WRKJOB), all file
overrides from the job level to the current call level are displayed. This would be the
same as typing the following command:

DSPOVR FILE(*ALL) MRGOVR(*NO) LVL(*)

This produces a display showing the file name, the level (call level, activation group
level, or job level) for which the override was requested, the type of override, and
the override parameters in keyword-parameter form for each override.

Because the display overrides function uses a copy of the internal control blocks,
overrides that were deleted between the time the display overrides function was

Chapter 3. Using Overrides 59

called and the time the output was produced may not be reflected in the output.
This can occur only when the overrides in another job are being displayed.

Displaying overrides: comprehensive scenario

Command
Command
Command

Command

Command
Command
Command
Command

Command

Command
Command
Command
Command
Command
Command

Command
Command

Command
Command

N

16

17
18
19

The following example is intended only to illustrate what the various forms of the
display override command can do. The DSPOVR command is typically entered
interactively or added temporarily to a CL program, or to any high-level language
program via QCMDEXC, to verify that the proper overrides are in effect at the time
a program is called or a file is opened. Assume that commands 1, 2, 3, and 18 are
entered at call level 1:

Program A (in the user default activation group)
OVRPRTF FILE(PRTA) COPIES(3)

OVRDBF FILE(DBC) WAITFILE(*IMMED)

CALL PGM(B)

Program B (in activation group 5)

OVRPRTF FILE(PRTB) TOFILE(PRTA) COPIES(6) +
OVRSCOPE (*CALLLVL)

OVRDBF FILE(DBC) WAITFILE(60) OVRSCOPE(*CALLLVL)

OVRDBF FILE(DBE) TOFILE(DBF) OVRSCOPE(*JOB)

DSPOVR FILE(PRTB) MRGOVR(*YES)

CALL PGM(C)

Program C (in activation group 5)

CALL PGM(QCMDEXC) PARM('OVRDSPF FILE(DSPE) +
TOFILE(DSPF) OVRSCOPE (*CALLLVL)' 50)

OVRDBF FILE(DBC) TOFILE(DBD) OVRSCOPE(*CALLLVL)

DSPOVR FILE(DBC) MRGOVR(*NO) LVL(3)

DSPOVR FILE(DBD) MRGOVR(*NO) LVL(2)

MONMSG MSGID(CPF9842)

OVRDSPF FILE(CREDITS) TOFILE(DEBITS)

CALL PGM(QCMDEXC) PARM('DSPOVR FILE(*ALL) MRGOVR(*YES) +
LVL(*) OUTPUT(*)' 47)

RETURN

DSPOVR FILE(*ALL) MRGOVR(*NO)

RETURN
DSPOVR FILE(*ALL) MRGOVR(*NO) LVL(2) OUTPUT (%)

Command 1 overrides the value of the COPIES attribute of file PRTA at level 1 to 3.

Command 2 overrides the value of the WAITFILE attribute of file DBC at level 1 to
*IMMED.

Command 3 calls program A and creates a new call level, 2.

Command 4 causes an override at level 2 from file PRTB to file PRTA. Also, the
command overrides the value of the COPIES attribute to 6.

Command 5 overrides the the value of the WAITFILE attribute for file DBC at level
2 to 60.

Command 6 causes an override of file DBE to file DBF and scopes the override to
the job level.

Command 7 displays a merged override for file PRTB at level 2 with text

descriptions of each keyword and parameter, as shown in Eigure 9 on page 61. The
to-file is

60 Data Management V4R4

PRTA because of command 4, and the COPIES attribute is 3 because of

command 1.
4 N
Display Override with Printer File
File: PRTB
Call level *
Merged *YES
Keyword Value
Name of file being overridden . . : FILE PRTB
Overriding to printer file . . . : TOFILE PRTA
Library L *LIBL
Number of copies : COPIES 3
Press Enter to continue.
F3=Exit Fl2=Cancel
- J

Figure 9. Override with Printer File Display

Command 8 calls program B and creates the new call level 3.

Command 9 causes an override at level 3 from file DSPE to file DSPF. An override

done via a call to the QCMDEXC program takes the call level of the program that

called the QCMDEXC program.

Command 10 causes an override of file DBC to file DBD.

Command 11 displays all overrides for file DBC from the job level to level 3, as

shown in Eigure 10 on page 62. The overrides specified by commands 10, 5, and 2

are displayed in keyword-parameter form. Observe that this form of the DSPOVR

command shows all the overrides for the selected file, regardless of redirection. The
three overrides that are shown would not be merged because of the name change
at level 3.

Chapter 3. Using Overrides

61

62

Display A1l File Overrides
EN I8l 6 0 0 6 6 6 0 6 00 0 B &

Type options, press Enter.
5=Display override details

Opt File Level Type Keyword Specifications

DBC 3 DB TOFILE(*LIBL/DBD)
_ 2 DB WAITFILE(60)
1 DB WAITFILE (*IMMED)

F3=Exit F5=Refresh Fl2=Cancel
o J

Figure 10. All File Overrides Display (One File)

Command 12 attempts to display all file overrides for file DBD from the job level to
level 2. Because no overrides for file DBD exist at levels 1 or 2, no overrides are
displayed, and the override-not-found escape message (CPF9842) is sent.

Command 13 monitors for message CPF9842 on the preceding command. The
monitor specifies no action to be taken, but will prevent a function check if the
message is sent.

Command 14 causes an override of the display file CREDITS to the display file
DEBITS. The override is scoped to the activation group level of activation group 5.
OVRSCOPE(*ACTGRPDEFN) is the default.

Command 15 displays the merged overrides at the job level to call level 3 for all
files in keyword-parameter form, as shown in Eigure 11 on page 63. File DBC is
overridden to file DBD because of command 10 (commands 5 and 2 are therefore
not effective). File DSPE is overridden to file DSPF because of command 9. File
PRTB is overridden to file PRTA and COPIES(3) because of commands 4 and 1.
File DBE is overridden to file DBF because of command 6. The file DEBITS
overrides the file CREDITS because of command 14.

Data Management V4R4

4 Display A1l Merged File Overrides)

Call level *
Type options, press Enter.

5=Display override details 8=Display contributing file overrides

Opt File Type Keyword Specifications
DSPE DSP TOFILE(*LIBL/DSPF)
8 PRTB PRT ~ TOFILE(*LIBL/PRTA) COPIES(3)

_DbBC DB TOFILE(*LIBL/DBD)
_ PRTA PRT COPIES(3)
DBE DB TOFILE(*LIBL/DBF)

CREDITS DSPF TOFILE(*LIBL/DEBITS)

F3=Exit F5=Refresh F11=A11 file overrides F12=Cancel

- /

Figure 11. All Merged File Overrides Display

If you enter a 5 on the line for PRTB, you get a detail display like the one shown in
Eigure 9 on page 61. If you enter an 8 on this same line, you get a display showing
commands 4 and 1 on separate lines, as shown in Eigure 1. These are the
overrides that were merged to form the PRTB override.

4 Display Contributing File Overrides h
File : PRTB
Call level *

Type options, press Enter.
5=Display override details

Opt Level Type Keyword Specifications
2 PRT TOFILE(*LIBL/PRTA) COPIES(6)
1 PRT COPIES(3)

F3=Exit F5=Refresh Fl2=Cancel Fl4=Display previous override
- J

Figure 12. Contributing File Overrides Display

Command 16 causes a return to level 2, and level 3 is deleted. The overrides
issued at level 3 that are scoped to the call level are implicitly deleted. The override
issued by command 14 is not deleted because it is scoped to the activation group
level.

Chapter 3. Using Overrides 63

Command 17 displays all overrides issued for the job level to the current call level

(level 2), as shown in Eigure 13. The overrides specified in commands 1, 2, 4, 5, 6,
and 14 display in keyword-parameter form. The override issued in command 10 is

not displayed because call level 3 is no longer active. Pressing F11 on this display
allows you to see a display that is similar to the one shown in Ei

4 Display A1l File Overrides)

Call Tevel %

Type options, press Enter.
5=Display override details

Opt File Level Type Keyword Specifications
_ CREDITS =*ACTGRP PRT TOFILE(*LIBL/DEBITS)
_ PRTB 2 PRT TOFILE(*LIBL/PRTA) COPIES(6)
_DBC 2 DB WAITFILE(60)
_ 1 DB WAITFILE (*IMMED)
_ PRTA 1 PRT COPIES(3)
DBE *JOB DB TOFILE(*LIBL/DBF)

F3=Exit F5=Refresh F11=A11 merged file overrides F12=Cancel
- J

Figure 13. All File Overrides Display (All Files)

Command 18 causes a return to level 1, and level 2 is deleted. The overrides
issued at level 2 that are scoped to the call level are implicitly deleted. The override
that is caused by command 14 (scoped to the activation group level) is implicitly
deleted when activation group 5 ends. In this example, assume that activation
group 5 is a nonpersistent activation group and that ends when command 18
processes. The override caused by command 6 is not deleted.

Command 19 displays all overrides for the job level to call level 2 in
keyword-parameter form. Because level 2 is no longer active, only the overrides
scoped to the job level (command 6) and those specified at level 1 in commands 1
and 2 are displayed.

Displaying overrides: tips

64

Note that when specifying a call level, as in the first two examples in this section,
the call level on which you first entered override commands may not be level 1.
Depending on the contents of the first program and first menu specified in your user
profile, and any other programs or menus you may have come through, you may
have entered your first override commands at level 3 or 4. You may enter WRKJOB
and select option 11 (call stack) to see what programs are running at lower call
levels.

Data Management V4R4

Unless you know exactly what you want to see, it is usually best to request the
override display with no parameters, because options on the basic override display
allow you to select a detailed display of any override you are interested in. The
specific options available are:

* From the merged dlsplay of all overndes you can request the display that is not
merged, as in

* From the unmerged display of all overrides, you can request the merged display.
* From the merged display of all overrides, you can request a merged detail

display of any override, equivalent to the command in tDisplaying merged fild
buemdes_tar_ane_me&ena.m_an_pageid

* From the merged display of all overrides, you can request a display of all the
individual overrides that contributed to the merged display, showing the level (call
level or job level) for which each was requested.

* From either the display of contributing overrides or the display (not merged) of all
overrides, you can request a detail display of the override for a particular file at a
single call level.

Redirecting files

File redirection lets you use overrides to direct data input or output to a device of a
different type; for example, to send data that was intended for a diskette to a printer
instead. This use of overrides requires somewhat more foresight than the override
applications listed above, because the program must be able to accommodate the
different characteristics of the two devices involved.

To override to a different type of file, use the override command for the new type of
file. For example, if you are overriding a diskette file with a printer file, use the
Override with Printer File (OVRPRTF) command.

This section applies to using an appllcatlon program only. System code may or may
not support file redirection. Refer to L
for rules on how system code processes overrides.

You use the OVRDBF command to redirect a file to a Distributed Data Management
(DDM) file. If the remote system is another AS/400 system, all normal rules
discussed in this chapter apply. If the remote system is not an AS/400 system or
System/38, then normally you should not specify an expiration date or end-of-file
delay. For more information, refer to the Distributed Data Management book.

When you replace the file that is used in a program with another file of the same
type, the new file is processed in the same manner as the original file. If you
redirect a field-level file, or any other file that contains externally described data,
you should usually specify LVLCHK(*NO) or recompile the program. Even when you
turn level checking off, the record formats in the file must remain compatible with
the records in the program. If the formats are not compatible, the results cannot be
predicted.

Overrides that have a TOFILE parameter value other than *FILE remove any
database member specifications that may be on overrides applied at higher call
levels. The member name will default to *FIRST unless it is specified with the
change to the file name or library or on another override at a lower call level.

If you change to a different type of file, the system ignores device-dependent
characteristics and records that the system reads or writes sequentially. You must

Chapter 3. Using Overrides 65

specify some device parameters in the new device file or the override. The system
uses defaults for others. The effect of specific redirection combinations is described
later in this section.

The system ignores any attributes that are specified on overrides of a different file
type than the final file type. The parameters SPOOL, SHARE, and SECURE are
exceptions to this rule. The system accepts the parameters from any override that
is applied to the file, regardless of device type.

Planning for redirecting files

able d summarizes valid file redirections.

To use this chart, identify the file type that you want to override in the FROM-FILE
columns, and the file type that you want to override in the TO-FILE column. The
intersection specifies an | or O or both; this means that the substitution is valid for
these two file types when used as input files or as output files.

For instance, you can override a diskette output file with a tape output file, and a
diskette input file with a tape input file. The chart refers to file type substitutions
only. That is, you cannot change the program function by overriding an input file
with an output file.

Table 8. File Redirections

From-File

intersystem

communications

function
To-File Printer (ICF) Dis- kette Display Data- base Tape
Printer O* (e} (e} (e} (e} (e}
ICF (@] /10O | Ol /10O | Ol Ol
Diskette (0] ol ol ol ol ol
Display (@] /10O | ol /10O | ol ol
Database (@] Ol Ol Ol Ol Ol
Tape O ol ol ol ol ol

* |=input file O=output file I/O=input/output file
» *=redirection to a different type of printer

Redirecting files: tips

66

Some redirection combinations present special problems due to the specific
characteristics of the device. In particular:

¢ You should not redirect save files.

* You can redirect nonsequentially processed database files only to another
database file or a DDM file.

* You can redirect Display files and ICF files that use multiple devices (MAXDEV or
MAXPGMDEV > 1) only to a display file or ICF file.

» Redirecting a display file to any other file type, or another file type to a display
file, requires that the program be recompiled with the override active if there are

Data Management V4R4

any input-only or output-only fields. This is necessary because the display file
omits these fields from the record buffer in which it does not use them, but other
file types do not.

Default actions for redirected files

The charts in this section describe the specific defaults that the system takes when
it redirects files, and which defaults it ignores for each redirection combination.

From

To

From
To

Printer

ICF: Records are written to the file one at a time. Printer control information
is ignored.

Display: Records are written to the display with each record overlaying the
previous record. For program-described files, you can request each record
using the Enter key. Printer control information is ignored.

Database: Records are written to the database in sequential order. Printer
control information is ignored.

Diskette: The amount of data written on diskette is dependent on the
exchange type of the diskette. Diskette label information must be provided
in the diskette file or on an override command. Printer control information is
ignored. Refer to the Tape and Diskette Device Programming book for a
description of exchange types.

Tape: Records are written to the tape in sequential order. Tape label
information must be specified in the tape file or on an override command.
Printer control information is ignored.

ICF input

Display: Records are retrieved from the display one at a time. Type in the
data for each record and press the Enter key when the record is complete.

Database: Records are retrieved from the database.

Diskette: Records are retrieved in sequential order. Diskette label
information must be provided in the diskette file or on an override
command. Refer to the Tape and Diskette Device Programming book for a
description of exchange types.

Tape: Records are retrieved in sequential order. Tape label information must
be specified in the tape file or on the override command.

Chapter 3. Using Overrides 67

68

From

To

From
To

From
To

From

To

Data Management V4R4

ICF output

Printer: Records are printed and folding or truncating is performed as
specified in the printer file.

Display: Records are written to the display with each record overlaying the
previous record.

Database: Records are written to the database in sequential order.

Diskette: The amount of data written on diskette is dependent on the
exchange type of the diskette. Diskette label information must be provided
in the diskette file or on an override command. Refer to the Tape and
Diskette Device Programming book for a description of exchange types.

Tape: Records are written to the tape in sequential order. Tape label
information must be specified in the tape file or on the override command.

ICF input/output

Display: Input records are retrieved from the display one at a time. Type in
the data for each record and press the Enter key when the record is
complete. Output records are written to the display with each record
overlaying the previous input or output record. Input and output records are
essentially independent of each other and may be combined in any manner.
Diskette input

ICF: Records are retrieved from the ICF file one at a time.

Display: Records are retrieved from the display one at a time. Type in the
data for each record and press the Enter key when the record is complete.
A nonfield-level device file must be specified. Diskette label information is
ignored.

Database: Records are retrieved in sequential order. Diskette label
information is ignored.

Tape: Records are retrieved in sequential order. If a label value is specified
in the program, that value is used as the label for the tape file.

Diskette output

ICF: Records are written to the ICF file one at a time.

Database: Records are written to the database in sequential order.

Display: Records are written to the display with each record overlaying the
previous record. You can request each output record using the Enter key.

Printer: Records are printed and folding or truncating is performed as
specified in the printer file.

Tape: Records are written on tape in sequential order.

From Display input
To ICF: Records are retrieved from the ICF file one at a time.

Diskette: Records are retrieved in sequential order. Diskette label
information must be provided in the diskette file or on an override
command. Refer to the Tape and Diskette Device Programming book for a
description of exchange types.

Database: Input records are retrieved.

Tape: Records are retrieved in sequential order. Tape label information must
be specified in the tape file or on an override command.

From Display output
To ICF: Records are written to the ICF file one at a time.
Database: Records are written to the database in sequential order.

Diskette: The amount of data written on diskette is dependent on the
exchange type of the diskette. Diskette label information must be provided
in the diskette file or on an override command. Refer to the Tape and
Diskette Device Programming book for a description of exchange types.

Tape: Records are written on tape in sequential order. Tape label
information must be specified in the tape file or on an override command.

Printer: Records are printed and folding or truncating is performed as
specified in the printer file.
From Display input/output

To ICF: Input records are retrieved from the ICF file one at a time. Output
records are written to the ICF file one at a time. The relationship between
the input and output records is determined by the application program.

From Database input (sequentially processed)

To ICF: Records are retrieved from the ICF file one at a time.

Display: Records are retrieved from the display one at a time. Type in the
data for each record and press the Enter key when the record is complete.
A nonfield-level device file must be specified.

Diskette: Records are retrieved in sequential order. Diskette label
information must be provided in the diskette file or on an override
command. Refer to the Tape and Diskette Device Programming book for a
description of exchange types.

Tape: Records are retrieved from tape in sequential order. Tape label
information must be specified in the tape file or on an override command.

Chapter 3. Using Overrides 69

70

From

To

From
To

From

To

Data Management V4R4

Database output (sequentially processed)

Printer: The number of characters printed is determined by the page size
specified. If folding is specified, all of a record is printed.

ICF: Records are written to the ICF file one at a time.

Display: Records are written to the display with each record overlaying the
previous record. You can request each output record using the Enter key.

Diskette: The amount of data written on diskette depends on the exchange
type of the diskette. Diskette label information must be provided in the
diskette file or on an override command. Refer to the Tape and Diskette
Device Programming book for a description of exchange types.

Tape: Records are written on tape in sequential order. Tape label
information must be specified in the tape file or on an override command.

Tape input

ICF: Records are retrieved from the ICF file one at a time.

Display: Records are retrieved from the display one at a time. Type in the
data for each record and press the Enter key when the record is complete.

A nonfield-level device file must be specified. Tape label information is
ignored.

Database: Records are retrieved in sequential order. One record is read as
a single field. Tape label information is ignored.

Diskette: Records are retrieved in sequential order. If a label value is
specified in the program, that value is used as the label for the diskette file.
Tape output

Printer: Records are printed, and folding or truncating is performed as
specified in the printer file.

ICF: Records are written to the ICF file one at a time. Tape label information
is ignored.

Diskette: The amount of data written on diskette depends on the exchange
type of the diskette. If a label value is specified in the program, that value is
used as the label for the diskette file. Refer to the Tape and Diskette Device
Programming book for a description of exchange types.

Display: Records are written to the display with each record overlaying the
previous record. You can request each output record using the Enter key.

Database: Records are written to the database in sequential order.

Chapter 4. Copying files

You can use the copy function to move data between device files, database files, or
both device and database files with the AS/400 field-level sensitive copy function.
This function allows you to rearrange, enlarge, or drop any of the fields. You can
also define database files.

Copying files

To copy a physical or logical file (the from-file) on AS/400 into another physical file
(the to-file), which does not yet exist, you can use the CPYF command, as in the
following example:

CPYF FROMFILE(PERSONNEL/PAYROLL)

TOFILE(TESTPAY/PAYROLL) MBROPT(*ADD)
CRTFILE(*YES) ERRLVL(10)

Full service copy support:

A variety of copy commands that are modified by numerous parameters gives you a
great deal of flexibility in the way you copy your data. For instance, you usually can
copy your data into existing files (or to-files). As shown in the example above, you
can use the CRTFILE parameter on the CPYF or CPYFRMQRYF commands to
create the to-file during the copy operation. See [Create the To-File (CRTEII H
Barameter)” an page 73 for details.

Copy only the information you need:

The copy function lets you specify selected records and members of your files:

m You can copy from a source file to a data file or from a data file to a
source file. If the from-file or to-file is a device file, this function is automatic. If
both files are database files, you must specify FMTOPT(CVTSRC). If either file is
a device file or inline data file, the FMTOPT parameter does not apply.

+ lCaopy hetween different systems” on page 122, This is especially important for
when you are using Data Warehousing, and when you want to use existing
export products from other platforms to move data to the AS/400.

Make the copy function work for your particular needs:

You can accomplish a wide variety of tasks with careful use of the options that are
available to you through the copy function.

o FDri * ”

. g . W |

© Copyright IBM Corp. 1997, 1999 71

Create the To-File (CRTFILE Parameter)

To copy a physical or logical file when no to-file exists to receive the data, you can
create the to-file by specifying CRTFILE(*YES). Specify the name of the new to-file
on the TOFILE parameter. Qualify the name with the name of an existing library for
which you have the required authority. (You must also have authority to the CRTPF
command). You cannot override the created to-file that you specified to a different
file or library.

CRTFILE(*YES) automatically adds members and records to the new file.

The newly created file has certain authorities, capabilities, and a user profile

associated with it. For more information, see LALmhanne_s,_use_meiLles,_a.nd_ﬁlel
I:a.pabmms_of_thp_c.teale.d_m_mﬁan_pagp_zd Your system specifies different

identifiers and attributes to the new file based on whether you use the CPYF or
CPYFRMQRYF command. See [Specifying CRTEI E(*YES) on either the CPYE ail

Specifying CRTFILE(*YES) on either the CPYF or CPYFRMQRYF

command

72

If you specify CRTFILE(*YES) on the CPYF command , the to-file that is created
has the same record format and type of access path as the from-file. The file level
and the format level identifiers of the new to-file are identical to the file level and the
format level identifiers of the from-file. The text of from-file members that are copied
is used as the text of any to-file members that are created.

When the from-file is a logical file, the system assigns the following physical file
attributes: SIZE(*NOMAX), ALLOCATE(*NO), and CONTIG(*NO). If the from-file is a
logical file with multiple record formats, the to-file is created with the format that is
specified on the RCDFMT parameter on the CPYF command. See

Lsing a specified record format name (RCDEMT Parameter)” on page 79 for more

information on the RCDFMT parameter.

If you specify CRTFILE(*YES) on the CPYFRMQRYF command , the file level
and the format level identifiers of the new to-file are generated at the time the new
to-file is created. Furthermore, the physical file’s attributes match the first file that is
specified on the FILE parameter of the corresponding Open Query File (OPNQRYF)
command. However, the system assigns some of the attributes. The file is created
with CONTIG(*NO), SIZE(*NOMAX), ALLOCATE(*NO), AUT(*NORMAL) and
FILETYPE(*DATA).

The name, type, length, null capability, date, or time format, separators, and
decimal positions attributes of each field on the format that is specified are used.
The file is created without key fields and is an arrival sequence physical file.

In some cases, the OPNQRYF command changes the format of the format that is
specified on the new to-file. The new to-file format may become null-capable when
the OPNQRYF command uses one of the following grouping functions:

Data Management V4R4

* %STRDEV
* %VAR

* %SUM

* %AVG

* %MIN

* %MAX

Note: A new to-file with a changed format has a format level identifier that is
different from the format level identifier that is specified on the OPNQRYF
command.

Authorities, user profiles, and file capabilities of the created to-file

When the Copy File (CPYF) command creates the local physical file, the from-file
gives the created to-file all the authorities of the from-file. These authorities include
public, private, and authorization lists. When CPYFRMQRYF creates the local
physical file, the authorities given are of the first file that is specified on the FILE
parameter of the corresponding Open Query File (OPNQRYF) command. The
authorities include public, private, and authorization lists.

In both cases, the owner of the created to-file is the user profile running the copy
command. The user running the copy command inherits *ALL authority to the
object. This is true unless the user is a member of a group profile and has
OWNER(*GRPPRF) specified for the profile.

If you specify OWNER(*GRPPRF), the group profile becomes the owner of the
to-file. In this case, if the user profile running the copy command does not have
authority to add a member or write data to the new file, the copy command fails.

The created to-file does not maintain the file capabilities of the from-file. The to-file
allows update, delete, read, and write operations, regardless of whether the
from-file allowed these operations. Following are special considerations for the new
to-file:

 If the number of records copied into a member is greater than the maximum size
of the created to-file, the to-file is extended without intervention by the system
operator.

» If the from-file is an SQL table, view, or index, the created to-file will be a
physical file that is not an SQL table. However, when the from-file contains LOBS,
datalinks, or user-defined types, the created to-file is an SQL table.

 If the from-file has a trigger program associated with it, the CPYF and
CPYFRMQRYF commands do not copy the trigger information to the to-file when
the CRTFILE parameter is used.

* If you create a new file (CRTFILE(*YES)) from a file with constraints, the
constraint definitions do not copy to the new file.

» If you create a new file (CRTFILE(*YES)) from a file with user-defined functions,
the user-defined functions do not copy to the new file.

Chapter 4. Copying files 73

Add, replace, and update records (MBROPT parameter)

On the CPYF, CPYFRMDKT, CPYFRMQRYF, CPYFRMTAP, or CPYSRCF
commands, you can add or replace existing data in the to-file by specifying different
attributes on the MBROPT parameter. The CPYF command also allows you to
update duplicate key records and add non-duplicate key records to a to-file

member. You can do these tasks by specifying *REPLACH, kpecifying *ADD, 0
Epecifying *UPDATH on the MBROPT parameter (see page Epeuiymg_REEl_AC.El)

Specifying *REPLACE

By specifying *REPLACE, you essentially clear the member. The copied records are
the only records in the member when the operation completes. You must have
authority to clear the member in order to specify MBROPT(*REPLACE).

For copy commands except the CPYFRMQRYF command, when you specify
*REPLACE, copy command processing fails if the from-file does not contain any
records. When you specify *REPLACE on the CPYFRMQRYF command, the to-file
member will be cleared even if the open query file contains no records.

*REPLACE is the default value for the CPYSRCF command. All other copy
commands have the default value of *NONE; however, *NONE is valid only for
copying to a device file.

Specifying *ADD

By specifying *ADD, each record copied is added to the end of the existing records
in the member. This is always true, even for keyed files. (With keyed files, the
added records appear merged in key sequence when accessed through keyed
access path.) When you specify *ADD, the copy completes normally even if the
from-file contains no records.

Specifying *UPDADD

74

When you specify *UPDADD on the CPYF command, a from-file key value builds
before the from-file record moves into the to-file. The from-file builds this key value
by using the key specifications of the to-file. Before the key value is built, the
system performs any necessary field or data mapping, data conversion, or record
selection. The system checks the to-file to see if this key value already exists in it
(duplicate key of the from-file data). If the key value does exist in the to-file,the
from-file record that contains the key value updates that to-file record.

The following apply if you specify MBROPT(*UPDADD) on the CPYF command:

* The to-file must be a local database physical file that contains a primary or
unique key.

* You may not specify CRTFILE(*YES). The to-file must exist before you run
CPYF.

* CPYF cannot copy from multiple formats.

» Detected duplicate keys are not skipped but updated with the new from-file
record value. Duplicate key errors (CPF5026) are not included as ERRLVL
errors.

* CPF5027 will be included as an ERRLVL error. This error can occur if another
process has a record that is locked. To avoid this error, you may want to

Data Management V4R4

pre-allocate the to-file within your job before performing the CPYF. You can use
the WAITRCD parameter on the CRTPF and CHGPF commands to limit the
length of time spent waiting for a record lock to be released in the to-file.

» All existing FMTOPT values are allowed. However, when using
MBROPT(*UPDADD), take care to avoid updating records that you do not want
to update. Also avoid updating the same record multiple times when it is not
desired.

* Nulls are not used in determining duplicate key values if FMTOPT(*NOCHK) is
specified or if the from-file is a device file.

* You must have the minimum following authorities to the to-file:
— Object operational (*fOBJOPR)
— Add (*ADD)
— Update (*UPD)

Select members to copy

AS/400 gives you several options for copying file members:

Copying file membhers: averview! gives an explanation of how the system handles

this process.

For more information:

For more details, see the following topics:

Copying file members: overview

You can copy multiple database members or diskette labels to corresponding
like-named to-file members or labels. They can also be copied and concatenated,
one after another, into a single to-file member or label. If the to-file is a spooled file,
then the copy command copies each member or label to a separate spooled file. If
TOFILE(*PRINT) is specified, then all the members/labels are copied to a single
spooled file, with the records for each member/label starting on a new page.

A single member or label, or multiple members or labels, can be copied to
corresponding like-named to-file members or labels by specifying
TOMBR(*FROMMBR), TOLABEL(*FROMMBR), or TOMBR(*FROMLABEL)
depending on the copy command used. If the to-file is tape, you cannot specify this
unless you are copying from a single from-file member or label. *FROMMBR is the
default value for the TOMBR parameter on the CPYSRCF command, which copies
the from-file members to like-named to-file members.

For more information:

Chapter 4. Copying files 75

For additional information, see the following topics:

Allowed copy operations and parameters

This table shows the file types into which you can copy members or labels based
on the source file type:

Diskette To: batabase To:

Database (physical file) Database (physical file)

Diskette (Note 1) Diskette

Tape (Note 2) Tape (Note 2)

Printer Printer

*PRINT *PRINT

Notes:

1. The to-file must be spooled for diskette-to-diskette copy operations.

2. Multiple from-file members or labels can only be copied to a single tape file label.

This table shows the valid member or label parameters for copy commands:

Table 9. Valid Member or Label Parameters for Copy Commands

FROMMBR* FROMLABEL TOMBR TOLABEL
CPYF X X
CPYFRMDKT X X
CPYFRMQRYF X
CPYFRMTAP X X
CPYSRCF X X
CPYTODKT X X
CPYTOTAP X
CPYFRMIMPF X X
CPYTOIMPF X X
. FROMMBR is not a parameter on the CPYFRMQRYF command because the
members to be queried are specified on the OPNQRYF command.

Copy all members or labels within a file

For database or diskette files , copy all members by specifying *ALL on the the
FROMMBR or FROMLABEL parameter.

For diskette files , when you specify FROMLABEL (*ALL) on the CPYFRMDKT
command and you specify a LABEL parameter value on an OVRDKTF command,
only the single-file label identifier specified in the override is copied.

Copy only certain members or labels within a file

For database or diskette files , you first specify a generic name on the FROMMBR
or FROMLABEL parameter. You then modify the generic name to indicate the
starting character string that each member or label has in common, then follow it
with an * (asterisk). For example, if you specified FROMMBR(ORD¥), the copy
command would copy all database members or diskette labels that start with ORD.

76 Data Management V4R4

Note:

» If a generic name is specified for the FROMLABEL parameter on the
CPYFRMDKT command and a LABEL parameter value is also specified
on an Override Diskette File (OVRDKTF) command, the command copies
only the single-file label identifier that you specified on the override.

» If you copy a generic set from a diskette, and a label that is being copied
continues on another diskette volume, then the copy command copies all
the affected labels on the continuation volume. This is also true when you
copy all labels.

Specifying the label identifier or member name for the copy operation

If you specify TOMBR (*FIRST), the copy operation does not specify a label
identifier. Therefore, you must specify a label identifier (LABEL parameter) either:

* In the device file on an OVRDKTF command (for a diskette file) OR
* On an OVRTAPF command (for a tape file)

If you specify the special value *FIRST, *DKTF, or *TAPF on the copy command,
then the copy command uses the label from the device file description.

If the from-file is diskette or tape, the copy command uses the from-file label as the
label for a diskette or tape to-file. If the to-file is a database file, the command uses
the nonblank characters to the extreme right of the from-file label for the member
name of the to-file. The command uses up to a maximum of either 10 characters or
to the period at the extreme right in the from-file label. The copy operation uses
only valid member names for a database to-file. It does not ensure that a to-file
label is valid for tape or diskette, so a label identifier that is nonstandard or not valid
may be used for the to-file.

If the from-file is a tape file that is not labeled, then a to-file member or label name
is created that corresponds to the data file on the tape from-file in the form of
CPYnnnnn, where nnnnn is the tape sequence number of the data file.

If you specify a tape or diskette label in the FROMMBR or TOMBR parameter, it
can have a maximum length of 10 characters. If the label contains special
characters or more than 10 characters, you must specify the label on one of the
following commands:

* Create Tape File (CRTTAPF)

* Change Tape File (CHGTAPF)

* Override with Tape File (OVRTAPF)

* Create Diskette File (CRTDKTF)

* Change Diskette File (CHGDKTF)

» Override with Diskette File (OVRDKTF)

Special considerations for the Override Database File (OVRDBF),
Override Diskette File (OVRDKTF), and Override Tape File (OVRTAPF)

commands

For a database from-file or to-file, if a MBR parameter is specified on an OVRDBF
(Override Database File) command, then the override member name is used
instead of the value specified on the copy command. If the TOFILE parameter is
specified with no MBR parameter value on the OVRDBF command, then the first
member (in creation order) in the database file is used instead of the member

Chapter 4. Copying files 77

specified on the copy command. For a diskette or tape from-file or to-file, if a
LABEL parameter is specified on an OVRDKTF or OVRTAPF command,
respectively, the override label name is used instead of the label specified on the
copy command.

If you copy multiple members or labels to corresponding like-named to-file members
or labels, then you cannot use an override to a single to-file member or label unless
you also override the from-file to a single member or label.

How the copy function adds members to the to-file

The copy function adds a member to the to-file when the member does not exist.
The member name used is either the TOMBR parameter value from the copy
command, or the member name that is specified in an override for the to-file.

If TOMBR(*FROMMBR) or TOMBR(*FROMLABEL) is specified on the copy
command (and is not overridden), the from-file member names or label identifiers
are used for the members added to the file.

If TOMBR(*FIRST) is specified on the copy command, or if there is an override that
specifies a TOFILE parameter with no MBR parameter, then no member name is
known. The copy function does not add a member in this case unless the following
are true:

* You specified CRTFILE(*YES) on the copy command
* The copy function must create the to-file

Except for the CPYFRMQRYF command, when the copy function creates the to-file
without a specific member name specified, the from-file name is used for the
member that is added to the to-file. When using the CPYFRMQRYF command, the
member added to the physical file that is created by the copy operation has the
name specified by the TOMBR parameter. If you specify TOMBR(*FIRST), the
to-file member has the same name as the to-file file name that is specified on the
TOFILE parameter of the CPYFRMQRYF command. The copy command ignores
the MBROPT parameter value when it creates the to-file, and adds records to the
new file members.

If the from-file is a database file, the copy command uses the member text and
SEU source type of the from-file member for the member that is added to the to-file.
If the from-file is a device or inline data file, the copy command takes the text from
message CPX0411; the SEU source type is TXT. If both the from-file and to-file are
database source files, the SEU source type information in the added member will
be the same as the from-file member. When it adds the to-file member, the copy
command always assigns the SHARE(*NO) and EXPDATE(*NONE) attributes to the
to-file member. The copy command also sets the creation date of the new member
to the current system date (not the date when the from-file member was added).

When the copy command adds a member to a to-file that is a parent file, the
constraint becomes established at that time.

Select the records to copy

The following topics show how you can use parameters on the copy commands to
select only the specific records that you want to copy:

78 Data Management V4R4

‘ ”
.

The copy command parameters for record selection (FROMRCD, TORCD,
FROMKEY, TOKEY, INCCHAR, and INCREL) are not on the CPYFRMQRYF
command because you select records on the OPNQRYF command.

See the DB2 UDB for AS/400 Database Programming book for details on record
selection by using open query file. For a detailed description of all considerations
for each parameter, see the CL Programming book.

Select records using a specified record format name (RCDFMT

Parameter)

Note: You can use this parameter on the CPYF command only.

When you copy from a logical file to a physical file and the logical file has more
than one record format, you must specify a record format name unless you specify
FMTOPT(*NOCHK). If you use FMTOPT(*NOCHK), then you can specify
RCDFMT(*ALL) to copy all from-file record formats to the to-file. The command
uses this record format name to select records to copy.

This example shows how you can use the copy command to copy records from the
logical file ORDFILL to the physical file INVOICE by using the record format
ORDHDR:

CPYF FROMFILE(DSTPRODLB/ORDFILL) +

TOFILE (DSTPRODLB/INVOICE) RCDFMT(ORDHDR) +
MBROPT (*ADD)

When you copy from a logical file that has more than one record format to a device
file, you can specify either a single record format to be used or specify
RCDFMT(*ALL) to copy using all the record formats. If the record formats have
different lengths, the command pads the shorter records with blanks.

Select records by relative record numbers (FROMRCD and TORCD

Parameters)

Note: You can use this parameter on the CPYF command only.

Relative record numbers can be specified for a copy from any file type except a
keyed logical file. A keyed physical file can be copied in arrival order if relative
record numbers are specified for the FROMRCD or TORCD parameter. Records
can be copied:

* From a specified record number (FROMRCD parameter) to a specified record
number (TORCD parameter) OR

Chapter 4. Copying files 79

» Until a specified number of records (NBRRCDS parameter) has been copied (see
t'Select a specified number of records (NBRRCDS Parameter)” on page 85)

If the command reaches the end of the file before it reaches the specified ending

record number or number of records, the copy completes normally.

When a relative record number is specified, records are copied, starting with the
specified relative record number, in the order in which they physically exist in the
database file being copied from. This is true even if the physical file has a keyed
sequence access path. You can use the COMPRESS parameter with the

FROMRCD and TORCD parameters to further define which records you want to

select for copying (see ECopy deleted recards (COMPRESS Parameter)” an

If the from-file is a physical file or a logical file with an arrival sequence access
path, the TORCD value is a relative record number that counts both the deleted and
undeleted records ahead of it. If the from-file is a device file or inline data file, the
TORCD value is a record number that includes only undeleted records (even for an
I-format diskette file).

Deleted records retain their position among records that are not deleted. However
these records do not necessarily retain their relative record number when they are
copied if they are in the specified subset and COMPRESS(*NO) is specified. If you
specify COMPRESS(*YES), the command skips the deleted records and does not
copy them. In this case, when the record number that is specified (FROMRCD
parameter) is a deleted record, copying starts with the first undeleted record that
follows.

This example shows how you can use the command to copy records from relative
record number 500 to relative record number 1000 in the file EMP1 to the file
EMP1T.

CPYF FROMFILE(PERSONNEL/EMP1) +

TOFILE(TESTLIB1/EMP1T) MBROPT(*REPLACE) +
FROMRCD(500) TORCD(1000)

Note: If you use record numbers to select records, you cannot use record keys
(FROMKEY/TOKEY parameters) to select records on the same CPYF
command.

For information about using the FROMRCD and TORCD parameters with distributed
files, see the DB2 Multisystem for AS/400 book.

Select records by record keys (FROMKEY and TOKEY Parameters)

80

Note: You can use this parameter on the CPYF command only.

You can specify record keys to copy only from a keyed database file. You can copy
records:

* From a specified key value (FROMKEY parameter) to a specified key value
(TOKEY parameter) OR

* Until a specified number of records (NBRRCDS parameter) is reached (see

If the command reaches the end of the file before it reaches the specified ending
key value or number of records, the copy completes normally.

Data Management V4R4

If no record in the from-file member has a key that is a match with the FROMKEY
value, but there is at least one record with a key greater than the specified value,
the first record copied is the first record with a key greater than the FROMKEY
value. If the specified key value is greater than any record in the member, the
command sends an error message and does not copy the member.

You can specify *BLDKEY on the FROMKEY and TOKEY parameters to use a list
of character and numeric values in their natural display form for the fields in a key.
The command converts each element to the corresponding key field data type. The
command then provides the composite key value (a key that is comprised of more
than one field) to the database.

If you specify fewer values than the complete database key contains, the command
builds a partial key and passes it to the database. If you specify more values than
the database key contains, an ending error occurs. The command always applies
values to the consecutive fields that are in the extreme left of the key so that it is
impossible to skip key fields.

The command pads character fields on the right with blanks. The command adjusts
numeric fields to the implied decimal point in the key field with the correct zero
padding.

All regular rules for specifying numeric fields in an external character format apply.
The command does not allow a floating-point value of *NAN (Not a Number).

See [Example: huild-key function” an page 82 and lExample: using FROMKEY and
[COKEY” on page 83 for specific coding examples.

It is also important to understand EKey string comparisons made hy the copy
bperation” on page 82 in order to interpret various warning messages.

Note: If you use record keys to select records, you cannot use relative record
numbers (FROMRCD/TORCD parameters) to select records on the same
CPYF command.

You should not specify COMPRESS(*NO) when selecting records by record key
from a keyed physical file. Because the keyed access path of a file does not
contain deleted records, the copy command never copies them, so the compression
is automatic.

Because deleted records are canceled in a copy by this method, it is also possible
that the relative record numbers have changed in the new file, even if you have
specified MBROPT(*REPLACE).

See the following topics for more information about specifying data for:

Chapter 4. Copying files 81

Key string comparisons made by the copy operation

The check made by the copy operation (when the TOKEY value is specified) is a
logical character comparison between the key string for each record retrieved and
the key string that is:

» Specified explicitly (using the first TOKEY parameter format) OR
« Built implicitly by the copy operation (that uses the list of values that are given)
A warning message is sent (but the copy operation continues) if this comparison

gives different results than the ordering in which the database identifies the records
in the keyed access path. The order may be different if:

* The key contains mixed ascending and descending fields

» The key contains fields for which a sort sequence other than *HEX is in effect
OR

* The key contains any of the following DDS keywords:

ABSVAL
Absolute value

ALTSEQ
Alternative collating sequence

ALWNULL
Allow null

DATFMT
Date format (*MDY, *DMY, *YMD, *JUL, SAA *EUR, or SAA *USA)

DIGIT Digit force

SIGNED
Signed numeric

TIMEMT
Time format (*USA)

ZONE Zone force
If there are both ascending and descending fields in the file key, the first (the far
left) key field determines whether the copy operation uses an ascending or
descending key test to look for the last record to copy.

Using *BLDKEY is the easiest way to specify (and ensure correct padding) values
for packed, binary, and floating-point fields.

Example: build-key function

An example of the build-key function is:

Key Field

Number Type Length Decimal Precision Value

1 CHAR 6 KEN
2 ZONED 6 2 54.25
3 BINARY 4 1 10.1

You could specify the FROMKEY (or TOKEY) parameter as follows:
FROMKEY(2 x'D2C5D5404040FOFOF5F4F2F50065")

Or, you could use the *BLDKEY value and specify the FROMKEY as follows:

82 Data Management V4R4

FROMKEY (*BLDKEY ~ (KEN 54.25 10.1))

Another example using key fields 1 and 2 is:
FROMKEY (2 'KEN 005425")

Or, you can specify the *BLDKEY value:
FROMKEY (*BLDKEY (KEN 54.25))

Example: using FROMKEY and TOKEY

In this example, the copy command copies records in the file EMPL1 to the file
EMPLT. EMPA1T is a file in a test library. Because you only need a subset of the
records, you specify a from-key value and a to-key value. Both are full key values.
Note that a 1 specified in the FROMKEY and TOKEY parameters indicates the
number of key fields to be used in searching the record keys, starting with the first
key field.

CPYF FROMFILE(PERSONNEL/EMP1) +

TOFILE(TESTLIB1/EMP1T) MBROPT(*REPLACE) +
FROMKEY (1 438872) TOKEY(1 810199)

All positions in a key value should be specified. If the value is shorter than the key
field length, it will be padded on the right with zeros. Thus, a 5-position key field
specified as FROMKEY(1 8) causes a search for a key equal to hex F800000000. If
the key value contains blanks or special characters, you must enclose them in
apostrophes.

Variable-length fields

When the number of key fields and a value are used to specify the FROMKEY or
TOKEY parameter, the string should include the 2-byte length field for each
variable-length key field. You must pad the variable-length key field with blanks so
that keys following the variable-length key field are in the correct position. You can
specify the data in hexadecimal format.

When you specify *BLDKEY on the FROMKEY or TOKEY parameter for
variable-length key fields, specify the character string without the 2-byte length field.
Only the amount of data that is entered for the key value is used for key
comparisons. You can specify a zero-length string for variable-length key fields.

Date, time, and timestamp fields

When the number of key fields and a value are used to specify the FROMKEY or
TOKEY parameter, no conversion of data occurs if the corresponding key field in
the from-file is a date, time, or timestamp field. The user input string that you
specify (including the separators) must be in the same format as the date, time, or
timestamp field. If it is not, a file open error may occur, or the records copied may
not be the desired result.

If *BLDKEY is specified for the FROMKEY or TOKEY parameter and the
corresponding key field in the from-file is a date, time, or timestamp field, the
system attempts to convert the user-input key field value to the format (and
separators) of the from-file field. The following rules apply to the conversion:

» If the from-field is a date key field, the system first determines if the user-input
key value is in the same format and has the same separator as specified in the
current job under which the copy command is running. This can be *MDY, *DMY,

Chapter 4. Copying files 83

*YMD, or *JUL for the format and slash (/), hyphen (-), period (.), comma (,), or
blank () for the separator. If the user-input key value is not in the current job
specified format and separator form, it determines if it is in one of the Systems
Application Architecture (SAA) formats (*ISO, *USA, *EUR, or *JIS). It also
determines if it is in a YYYYDDD form (no separator). If the system can
determine the user-input key value is in one of these forms, the input string is
converted to the actual format (and separator) of the from-file date field, which is
used for the key comparison. If the user-input string format cannot be determined
or the length or data value is not valid, the system issues a diagnostic message.
You must left-justify the date portion of the user-input key value; it can contain
trailing blanks.

* If the from-field is a time key field, the system first determines if the user-input
key value is in the same format and has the same separator as specified in the
current job under which the copy command is running. This may be HHMMSS for
the format and colon (:), comma (,), period (.), or blank () for the separator. If the
user-input key value is not in the current job specified format and separator form,
the system determines if it is in one of the SAA formats (*ISO, *USA, *EUR, or
*JIS). If the system can determine the user-input key value is in one of these
forms, the input string is converted to the actual format (and separator) of the
from-file time field, which is used for the key comparison. If the user-input string
format cannot be determined, or the length or data value is not valid, the system
issues a diagnostic message. You must left-justify the time portion of the
user-input key value; it can contain trailing blanks.

» If the from-field is a timestamp key field, the system first determines if the
user-input key value is in the SAA format or YYYYMMDDHHMMSS form. If the
system determines the user-input key value is in one of these forms, the input
string is converted to the actual SAA timestamp format, which is used for the key
comparison. If the user-input string format cannot be determined, or the length or
data value is not valid, the system issues a diagnostic message. You must
left-justify the timestamp portion of the user-input key value; it can contain trailing
blanks.

Null-capable fields

When you use the number of key fields and a value to specify the FROMKEY or
TOKEY parameter, the copy command ignores the null values. The command uses
only the buffer default values for values that are actually null for the comparison.

When you specify *BLDKEY on the FROMKEY or TOKEY parameter, none of the
*BLDKEY values can refer to a null-capable field. If they do, the system sends an
error message.

Different CCSIDs

When you use the number of key fields and a value to specify the FROMKEY or
TOKEY parameter, the copy command does not make any CCSID conversions to
the input string.

When *BLDKEY is specified on the FROMKEY or TOKEY for character,
DBCS-open, DBCS-either, or DBCS-only fields, the value specified is assumed to
be in the CCSID of the process in which the copy command is running. The copy
command converts each of these key values from the job CCSID to the CCSID of
the from-file key field. If no conversion table is defined or an error occurs while
converting the input key value, a message is sent and the copy operation ends. If

84 Data Management V4R4

the value can be correctly converted, the converted value is used to build the key
value that determines the first and last record to be copied.

DBCS-graphic fields

When the number of key fields and a value are used to specify the FROMKEY or
TOKEY parameter, no conversions are done on the input string. The input string is
used as is.

When you specify *BLDKEY on the FROMKEY or TOKEY for DBCS-graphic fields,
you should enclose the DBCS data in shift-out and shift-in characters. The copy
command assumes that the DBCS data is in the associated DBCS CCSID of the
job CCSID. The shift-out and shift-in characters are removed before building the
key. A message is sent and the copy operation ends:

 If the input string is not enclosed in shift-out and shift-in (SO-SI) characters OR
* The data cannot be converted to the DBCS CCSID of the from-file key field

Select a specified number of records (NBRRCDS Parameter)

Note: You can use this parameter on the following commands: CPYF,
CPYFRMDKT, CPYFRMQRYF, CPYFRMTAP, CPYTODKT, and CPYTOTAP.

When you specify a FROMKEY or FROMRCD parameter, you can specify the
number of records (NBRRCDS parameter) to be copied instead of the TOKEY or
TORCD parameter. You cannot specify both the NBRRCDS and the TORCD or
TOKEY parameters. The specified number of records is copied starting with the
specified from-key value or from-record number.

You can specify the NBRRCDS parameter without specifying the FROMKEY or
FROMRCD parameter. The copy command copies records by starting with the first
record in the file. Note that the number of records specified is the number of
records actually copied to the to-file, which includes

» Deleted records in the from-file if COMPRESS(*NO) is specified, but DOES NOT
INCLUDE

* Records excluded by the INCCHAR and INCREL parameters

This example shows how you can use the copy command to copy 1000 records in
the file EMP1 to the file EMP1T. The command copies records from the first
member in EMP1 and replace the records in the first member in EMPL1T.

CPYF FROMFILE(PERSONNEL/EMP1) +

TOFILE(TESTLIB1/EMP1T) MBROPT(*REPLACE) +
NBRRCDS (1000)

You can also use the NBRRCDS parameter to examine a subset of records on a
list:
CPYF FROMFILE(PERSONNEL/EMP1) TOFILE(*PRINT) +

FROMRCD (250) NBRRCDS(10) OQUTFMT (*HEX)

When you successfully copy an open query file, the file position is unpredictable. If
you want to run a different program with the same files or run another
CPYFRMQRYF, you must position the file or close the file and open it with the
same OPNQRYF command. You may position the file with the Position Database
File (POSDBF) command. In some cases, you can use a high-level language
program statement.

Chapter 4. Copying files 85

Select records based on character content (INCCHAR Parameter)

Note: You can use this parameter on the CPYF command only.

You can select records on the basis of the content of characters that start in a
specific position in the record or field. You can use the INCCHAR parameter with
the FROMKEY or FROMRCD parameter. You can select records first by their key
value or relative record number, and then by characters in some position in the
record or field.

You can test for any character string of 1 through 256 bytes. If the character string
contains any special characters or blanks, you must enclose the entire string in
apostrophes.

You can also specify *CT (contains) as the operator for the INCCHAR parameter.
This specifies that the copy command should scan each record in the from-file for
the selection character string. You can specify any valid starting position in the field
or record for the start of the scan. The data will then be scanned from that position
to the byte to the extreme right of the field or record.

If you specify both the INCCHAR and INCREL parameters, the copy command
copies a record only if it satisfies both the INCCHAR and INCREL conditions.

This example shows how you can test for all records in the file DBIN that have an
XXX starting in position 80. It then shows how you can copy these records to the
file DKTOUT. Because this example includes testing for positions relative to the
length of the whole record, you must specify *RCD on the INCCHAR parameter.

CPYF FROMFILE(DBIN) TOFILE(DKTOUT) +
INCCHAR (*RCD 80 *EQ XXX)

If you were testing for an XXX in a position in a particular field in the record, you
would specify the field name instead of *RCD, and the starting position of the
character relative to the start of the field.

CPYF FROMFILE(DBIN) TOFILE(DKTOUT) +
INCCHAR(FLDA 6 +EQ XXX)

A field name cannot be specified if RCDFMT(*ALL) is specified when copying from
a multiple-format logical file, or if the from-file is a device file or inline data file.

See the following topics for additional information about specifying data for:

Variable-length fields

86

When you specify *RCD for the INCCHAR parameter, the starting position
represents the position in the buffer. The 2-byte length field of variable-length fields
must be considered when determining the position. Use single-byte blanks (X'40") to
pad variable-length fields if the INCCHAR value spans multiple fields.

Data Management V4R4

You can specify variable-length fields for the INCCHAR string when you specify a
field name. The starting position represents the position in the data portion of the
variable-length from-field value. The number of bytes that are compared is the
number of bytes in the value that is specified for the INCCHAR string. If the actual
data in the variable-length from-field is shorter than the value specified for the
INCCHAR parameter, the from-field data is padded with single-byte blanks (X'40")
for the comparison.

You cannot specify a zero-length string for the INCCHAR value.
Null-capable fields

The INCCHAR parameter allows null-capable character-field and null-capable
DBCS-field names to be specified. However, any logical comparison with a null-field
value tests as false, and the record is not copied. The copy command performs no
special processing if the you specify the *RCD special value as the field name. The
command only compares buffer default values for actual null values.

Different CCSIDs

When you specify *RCD for the INCCHAR parameter, the copy command does not
perform any conversions on the input string. The command compares the byte
string that you entered at the specified position in the record buffer of the from-file.

When you specify a field name, the command assumes that the input string is in
the CCSID of the job in which the copy command runs. The input string is
converted to the CCSID of the from-field. If no conversion table is defined or if an
error occurs while converting the input string, a message is sent and the copy
operation ends. If the command can correctly convert the value, the command uses
the converted value for record selection.

DBCS-graphic fields

When you specify a graphic field for the INCCHAR parameter, you should enclose
the DBCS data in shift-out and shift-in characters. The command assumes that the
data is in the associated DBCS CCSID of the job CCSID. There must be a valid
conversion to the field CCSID; otherwise, an error occurs. The shift-out and shift-in
characters are removed before doing the comparison. The position specifies the
DBCS character position in which to begin the comparison.

Select records based on field value (INCREL Parameter)

Note: You can use this parameter on the CPYF command only.

You use the INCREL parameter to select records for copying by testing for the
value of an entire field. Unlike the INCCHAR parameter, you can use the INCREL
parameter only when you are copying from a database file, and you can test for
different values in different fields on one copy command.

You can use as many as 50 AND and OR relationships on one INCREL parameter.
The OR relationship groups the AND relationships. For example, the following
INCREL parameter essentially says this: If field FLDA is greater than 5 and field
FLDB is less than 6, select the record. If FLDB is equal to 9 (FLDA is any value),
select the record.

Chapter 4. Copying files 87

INCREL((*IF FLDA *GT 5) (*AND FLDB LT 6) +
(*OR FLDB *EQ 9))

The value you specify must be compatible with the field type. You must enclose
each INCREL relational set in parentheses.

The value *IF must be specified as the first value in the first set of comparison
values, if there is only one set or several sets of comparison values. If more than
one set of comparison values are specified, either *AND or *OR must be specified
as the first value in each set after the first set of values.

In the following discussion, an IF group refers to an IF set, optionally followed by
one or more AND sets. An OR group refers to an OR set, optionally followed by one
or more AND sets. All the comparisons specified in each group are done until a
complete group, which is a single IF set or OR set having no AND sets following it,
yields all true results. If at least one group has a true result, the copy command
includes the record in the copied file.

The first set of comparison values (*IF field-name operator value) and any AND sets
logically connected with the IF set are evaluated first. If the results in all of the sets
in the IF group are true, the testing ends and the record is copied. If any of the
results in the IF group are false and an OR group follows, another comparison
begins. The command evaluates the OR set and any AND sets that follow it (up to
the next OR set). If the results in the OR group are all true, the record is included. If
any result is false and another OR group follows, the process continues until either
an OR group is all true or until there are no more OR groups. If the results are not
all true for any of the IF or OR groups, the record is excluded (not copied to the
to-file).

If you specify both the INCCHAR and INCREL parameters, the copy command
copies a record only if it satisfies both the INCCHAR and INCREL conditions.

You cannot specify the INCREL parameter if you specify RCDFMT(*ALL) when
copying from a multiple-format logical file.

See the following for additional information on specifying data for:

Variable-length fields

You can use variable-length character fields for the INCREL parameter. Enter the
character value without the 2-byte length field. The length of the data that is entered
determines the number of bytes that are used for the comparison. If the actual data
in the variable-length from-field is shorter than the value specified for the INCREL
parameter, the from-field data is padded with single-byte blanks (X'40") for the
comparison.

88 Data Management V4R4

Date, time, and timestamp fields

The INCREL parameter allows date, time, and timestamp fields. The copy
command compares the input field value chronologically to the value in the date,
time, or timestamp field to determine if it should select the record. The system
attempts to convert the input string and the actual field value to an internal form that
is chronologically compared. These rules apply to the conversion:

» If the from-field is a date field, the system determines if the user-input field
value is in the same format and has the same separator as specified in the
current job under which the copy command is running. The format could be
*MDY, *DMY, *YMD, or *JUL and could use a slash (/), hyphen (-), period (.),
comma (,), or blank () for the separator. If the user-input field value does not use
the same format or separator form of the current job, the system determines if it
is one of the SAA formats (*ISO, *USA, *EUR, OR *JIS) or if it is a YYYYDDD
form with no separators. If the system determines that the user-input field value
is one of these forms, it converts the input string to an internal form. The
from-field is then converted to its internal form, and the comparison is made. If
the user-input string format cannot be determined, or the length or data value is
not valid, a diagnostic message is issued and the copy operation ends. You must
left-justify the date portion of the user-input field value; it can contain trailing
blanks.

* If the from-field is a time field, the system determines if the user-input field
value is in the same format and has the same separator as specified in the
current job under which the copy command is running. The format could be
HHMMSS and have a colon (;), comma (,), period (.), or blank () for the
separator. If the user-input field value is not in the specified format and separator
form of the current job, the system determines if it is in one of the SAA formats
(*1SO, *USA, *EUR, or *JIS). If the system determines that the user-input key
value is in one of these forms, it converts the input string to an internal form. The
from-field is then converted to its internal form, and the chronological comparison
is made. If the user-input string format cannot be determined or the length or
data value is not valid, a diagnostic message is issued and the copy operation
ends. You must left-justify the time portion of the user-input field value; it can
contain trailing blanks.

» If the from-field is a timestamp field, the system first determines if the
user-input field value is in the SAA format or YYYYMMDDHHMMSS form (no
separators). If the system determines that the user-input field value is in one of
these forms, it converts the input string to an internal form. The from-field is then
converted to its internal form and the chronological comparison is made. If the
user input string format cannot be determined, or the length or data value is not
valid, a diagnostic message is issued and the copy operation ends. You must
left-justify the timestamp portion of the user-input field value; it can contain
trailing blanks.

Null-capable fields

The INCREL parameter allows a value of *NULL as input for a field value. You can
use the *EQ and *NE operators with the *NULL value to test whether a field in a
database file contains the null value or not. *EQ means that the value is null, and
*NE means that the value is not null when you specify the *NULL value. The *NULL
value is not limited to null-capable fields.

Chapter 4. Copying files 89

Different CCSIDs

The copy command assumes that the input string for character, DBCS-open,
DBCS-either, or DBCS-only fields are in the CCSID of the job in which the copy
command is running. The input string is converted to the CCSID of the from-field. If
no conversion table is defined or an error occurs while converting the input string, a
message is sent and the copy operation ends. If the copy command can correctly
convert the value, it uses the converted value for record selection.

DBCS-graphic fields

When you specify a graphic field for the INCREL parameter, you should enclose the
DBCS data in shift-out and shift-in characters. The copy command assumes that
the data is in the associated DBCS CCSID of the job CCSID. There must be a valid
conversion to the field CCSID. Otherwise, an error occurs. The shift-out and shift-in
characters are removed before doing the comparison.

Copy deleted records (COMPRESS Parameter)

90

Note: You can use this parameter on the CPYF command only.

You can copy deleted and undeleted records from one physical file member to
another by specifying COMPRESS(*NO) on a copy command.

You may want to copy deleted records to preserve the relative record numbers of
records that are copied from the from-file. If you do not use COMPRESS(*NO), only
records that are not deleted are copied from the from-file. There are
[Requirements], FRestrictions’], and more EDetails” an page 91| about copying

deleted records.

Requirements

To use COMPRESS(*NO), the following conditions must be true:
* The from-file and to-file must both be physical files.
* The from-file and to-file must both be the same type (either source or data).

* The from-file and to-file must either have identical record formats or you must
specify FMTOPT(*NOCHK) to perform the copy.

* You must use all the following (default) parameter values on the copy command:
— PRINT(*NONE)
— INCCHAR(*NONE)
— INCREL(*NONE)
— SRCOPT(*SAME)
— ERRLVL(0)

Restrictions

You cannot specify COMPRESS(*NO) for the following types of access paths over
the to-file, including when the access path is contained in a logical file and is based
on the to-file member:

* Unique keys (you specified the UNIQUE keyword in the DDS).

Data Management V4R4

» Select/omit specifications without the DYNSLT keyword (in the DDS for the file),
and immediate or delayed maintenance (MAINT(*IMMED) or MAINT(*DLY)
specified on the CRTPF or CRTLF command).

» Floating-point key field or logical numeric key field (in the DDS for the file), and
immediate or delayed maintenance (MAINT(*IMMED) or MAINT(*DLY) specified
on the CRTPF or CRTLF command). Note that a logical numeric key field is one
of the following:

— A numeric key field in a logical file

— Afield specified as a to field on the JFLD keyword that has different attributes
than in the based-on physical file

— Afield specified as a sequencing field on the JDUPSEQ keyword that has
different attributes than in the based-on physical file

You cannot specify COMPRESS(*NO) for any of the following cases:
* If you use the JRNPF command to journal the to-file

* If the to-file member is in use or if any access path over the to-file member is in
use

* If you specify an EOFDLY wait time for the from-file on an OVRDBF command.
Details

COMPRESS(*NO) may allow the system to copy more quickly because records are
transferred in blocks, but this is not always true. Usually, the COMPRESS(*NO)
function does not significantly affect performance. One of the factors you should
consider before you specify COMPRESS(*NO) is that the internal system function
that must be used to perform this type of copy invalidates any keyed access paths
that use the to-file member before the records are copied and then rebuilds the
access paths after the copy is complete. The run time and resource that are
required to rebuild the keyed access paths may be larger than the performance
benefit that is gained by copying deleted records.

If COMPRESS(*NO) is not specified, the system may still use the internal functions
to perform the copy, but the choice of how the copy is performed is based on the
number of records in the from-file and to-file members before the copy, and the
number of keyed access paths over the to-file member.

If MBROPT(*REPLACE) is specified, all keyed access paths over the to-file
member must be invalidated and rebuilt, so specifying COMPRESS(*NO) does not
cause any additional overhead for rebuilding access paths.

If the from-file is a keyed physical file and neither a FROMRCD nor TORCD relative
record number value is specified on the copy commands to force the file to be
processed in arrival sequence, COMPRESS(*NO) has no meaning because a
keyed access path never contains any deleted records.

Print records (PRINT, OUTFMT, and TOFILE(*PRINT) parameters)

Note: You can use the parameters described in this topic on the CPYF,
CPYFRMDKT, CPYFRMQRYF, and CPYFRMTAP commands.

You can print a list of all records copied, all records excluded, or all records causing
ERRLVL output errors. You do this by specifying PRINT special values on a copy
command. You can specify one or more of these listings on a single copy
command, using character or hexadecimal format.

Chapter 4. Copying files 91

92

You can also print an unformatted listing of records. See ['Creating an unformatted
print listing” on page 93 for more information.

Printing a list of all records copied:

To print a list of all of the records that you copied, specify TOFILE(*PRINT) on the
copy command. The records are printed using the IBM-supplied printer file
QSYSPRT.

Printing a list of excluded records:

Specify *EXCLD on the PRINT parameter to print a listing of only the records that
you excluded from the copy. When you specify PRINT(*EXCLD), the records print in
the from-file format.

Printing a list of copied records:

Specify *COPIED on the PRINT parameter to print a listing of only the records that
you copied. When you specify PRINT(*COPIED) and MBROPT(*UPDADD), the
records copied and the records updated appear on the same listing. A message
follows each updated record that states that it was an update.

Printing a list of records that cause errors:

Specify *ERROR on the PRINT parameter to print a listing of the records that
caused ERRLVL output errors. (The ERRLVL parameter still controls the number of
recoverable errors that can occur.) See [Prevent errars when copying files” ad

for information on error recovery and the ERRLVL parameter. Only the
number of records up to one (1) greater than the ERRLVL value that is specified
are printed in the *ERROR listing. The listing is similar to the PRINT(*COPIED) and
PRINT(*EXCLD) listings.

Selecting the format of the listing:

Use the OUTFMT parameter to specify whether your listing prints in character or
hexadecimal format. The default value is *CHAR, and records print in character
format. If you specify *HEX, records print in both character and hexadecimal format.

If you specify TOFILE(*PRINT), the OUTFMT parameter again specifies the format
that is used to print the records.

When you specify PRINT(*EXCLD), the records print in the from-file format. All
character data is in the CCSID specified in the from-file field. For TOFILE(*PRINT)
and PRINT(*COPIED) listings, and when the to-file is a print file, character data is
in the CCSID specified in the to-file fields.

Example:
In this example, all records that are not copied (or excluded records) are printed:
CPYF FROMFILE(DKTIN) TOFILE(LIB1/PF) +

MBROPT (*ADD) INCCHAR(*RCD 80 *EQ X) +
PRINT (*EXCLD)

The records print in character format.

Data Management V4R4

Creating an unformatted print listing

If you want an unformatted print listing or if the from-file records should be
formatted using first-character forms control (CTLCHAR(*FCFC), you must specify a
program-described printer device file name. This file name can be QSYSPRT or
user-defined (instead of *PRINT).

To format the from-file records using first-character forms control, specify
CTLCHAR(*FCFC) on the Create Printer File (CRTPRTF), Change Printer File
(CHGPRTF), or Override Printer File (OVRPRTF) command.

For copy commands where TOFILE(*PRINT) is specified with a PRINT parameter

value of *COPIED, *EXCLD, or *ERROR (or any combination), the following limits

apply:

* The QSYSPRT file must be spooled [SPOOL(*YES)]

* You must specify the QSYSPRT in the device file or on the OVRPRTF command,
because separate print files open for each file requested.

All records are copied to a single spooled file, and the data for each member or
label identifier copied begins on a new print page.

Copying between different database record formats (FMTOPT

parameter)

(CPYF and CPYFRMQRYF commands)

When you copy from a database file to a database file, you must use the FMTOPT
parameter if the record formats are not identical or if the files are different types
(source or data). If either file is a device file or inline data file, the FMTOPT
parameter does not apply. The records are truncated or padded with blanks or
zeros when record lengths are different. A message is sent if the records are
truncated.

For database files, when either FMTOPT(*CVTSRC) or FMTOPT(*NOCHK) is
specified and the record data copied from any from-file record is not long enough to
fill a to-file record, the extra bytes in the to-file record are set to a default value. If a
default value other than *NULL is specified in the DDS (DFT keyword) for a field,
that field is initialized to the specified default; otherwise, all numeric fields are
initialized to zeros, all character fields are initialized to blanks, all date, time, and
timestamp fields are initialized to the current system date and time. If *NULL is
specified on the DFT keyword, only the default buffer value is used. A *NULL
default is ignored.

If the from-file or to-file is a device file or an inline data file, copy automatically adds
or deletes the source sequence number and date fields for each record copied.

If one file is a data file and the other a source file, you must specify
FMTOPT(*CVTSRC) to perform the copy. The sequence number and date fields are
added or deleted as appropriate and the data part of each record is copied without
regard to the other field definitions in the file record formats. The SRCSEQ
parameter can be used to control how the sequence numbers are created, provided
SRCOPT(*SEQNBR) is also specified.

For database-to-database copies, you can reconcile any differences in record
formats by specifying:

Chapter 4. Copying files 93

94

» *DROP to drop those fields in the from-file record format for which there are no
fields of the same name in the to-file record format.

* *MAP to convert fields in the from-file to the attributes of like-named fields in the
to-file and to fill extra fields in the to-file, that are not in the from-file, with their
default values. The default values are:

— The parameter value (including *NULL) for the DFT keyword, if specified for
the field

— Blanks (for character fields without the DFT keyword)
— Zeros (for numeric fields without the DFT keyword)

— Current date, time, or timestamp for those type fields without the DFT
keyword

*MAP is required if fields with the same name are in different positions in the file
record formats, even though these fields have the same attributes.

* *DROP and *MAP to drop fields in the from-file not named in the to-file and to
convert remaining fields through mapping rules to fit the to-file fields that have
different attributes or positions.

* *NOCHK to disregard the differences. Data is copied left to right directly from one
file to the other. Null values are ignored. The copied records are either truncated
or padded with default buffer values. Because no checking is done, fields in the
to-file may contain data that is not valid for the field as defined.

Dropping and mapping fields are based on a comparison of field names. Unless all
the fields in the from-file have the same name in the to-file, you must specify
*DROP. If the names are the same, but the attributes or position in the record is
different, you must specify *MAP. Dropped fields are not copied. There must be at
least one like-named field in both record formats to do mapping.

When *MAP is specified, fields in the to-file record format that do not exist in the
from-file record format are filled with their default values, as described earlier in this
section. For fields that have the same name and attributes, the field in the from-file
record format is mapped to the field with the same name in the to-file record format,
even if their positions in the formats are different.

For example, the field CUSNO is the first field in the record format ORDHD, but it is
the second field in record format ORDHD1. When the CUSNO field is copied with
*MAP, it is mapped to the second field of ORDHDL1.

Note: It is possible for files with large record formats (many fields) to have the
same format level identifiers even though their formats may be slightly
different. Problems can occur when copying these files if the record format
names of the from-file and the to-file are the same. When copying such files
using FMTOPT(*NONE) or FMTOPT(*MAP), it is recommended that the
record format names of the from-file and the to-file be different.

Table 10 on page 95 summarizes the database-to-database copy operations for
each value on the FMTOPT parameter.

Data Management V4R4

Table 10. Database-to-Database Copy Operations

FMTOPT Database File Record Formats
Parameter
values ALL Field Names in SOME Field Names in NO Field Names in Either File Are the Same
(see note | From-and To-Files Are From-and To-Files Are
4) the Same (like-named) the Same
Attributes and relative Attributes and relative Like-named Not all
order also the same (see |order not the same (see |fields have like-named
note 1) note 1) identical fields have
attributes and identical
relative order attributes and
(see note 1) relative order
(see note 1)
*NONE Complete copy Command ends Command ends | Command ends | Command
ends
*DROP Complete copy (value Command ends If there are Command ends | Command
ignored) extra fields in ends
the from-file,
they are
dropped, all
others are
copied. If there
are extra fields
in the to-file, the
command ends.
If there are
extra fields in
the from-file and
in the to-file, the
command ends.
*MAP (see | Complete copy (value Complete copy If there are extra fields in the Command
note 2) ignored) (corresponding fields are |from-file, the command ends. If ends
mapped) there are extra fields in the to-file,
they are filled, and the like-named
fields are mapped. If there are
extra fields in the to-file and the
from-file, the command ends.
*MAP and | Complete copy (value Complete copy Extra fields in the from-file are Command
*DROP ignored) (corresponding fields are | dropped; like-named fields are ends
(see note mapped) mapped; extra fields in the to-file
2) are filled.
*NOCHK | Complete copy (value Complete copy (direct data transfer disregarding fields) (see note 3)
ignored)
Notes:

1. Field attributes include the data type (character, zoned, packed, binary or floating point), field length, decimal
position (for numeric fields), date or time format (for date or time fields), null capability, CCSID, and whether the
field has variable length or fixed length.

2. Mapping consists of converting the data in a from-file field to the attributes of the corresponding (like-named)
to-file field. If the attributes of any corresponding fields are such that the data cannot be converted, the copy is

ended.

3. The records are padded or truncated as necessary. Data in the from-file may not match the to-file record format.
4. Any other value specified for the FMTOPT parameter is ignored when the *CVTFLOAT value or the *NULLFLAGS

value is specified (except the *CVTFLOAT and *NULLFLAGS values).

Chapter 4. Copying files

95

Specifying Data for Different Field Types and Attributes

96

Variable-Length Fields

FMTOPT(*MAP) can be used to map data between fixed- and variable-length fields
and between variable-length fields with different maximum lengths.

When mapping a variable-length field with a length of zero to a:
 variable-length to-field, the to-field length is set to zero.

« fixed-length to-field, the to-field is filled with single-byte blanks (X'40"), unless the
to-field is a DBCS-only field. A DBCS-only to-field is set to X'4040's and
surrounded by shift-out and shift-in (SO-SI) characters.

The following applies when the from-field does not have a length of zero and
graphic fields are not being mapped to or from bracketed DBCS fields.

Mapping Variable-Length Fields to Variable-Length Fields

The length of a variable-length from-field is copied to a variable-length to-field when
the from-field data length is less than or equal to the maximum length of the to-field.
If the from-field data length is greater than the maximum length of the to-field, the
data of the from-field is truncated to the maximum length of the to-field, and the
to-field length is set to the maximum length. The data is truncated in a manner that
ensures data integrity.

Note: In the examples, x represents a blank, < represents the shift-out character,
and > represents the shift-in character. The 2-byte length is actually a binary
number shown as a character to make the example readable.

Variable-Length Variable-Length
Character From-Field Character To-Field
(maximum length of (maximum length
eight) of five)

DOXXXXXXXX — mapped —»00XXXXX
0 XXXX — mapped —»03ABCXX
07/ABCDEFG X| — mapped —»05ABCDE

Variable-Length Variable-Length
DBCS-Only From- DBCS-Open To-
Field (max!mum Field (maximum
length of eight) length of five)

04<AA>XXXX — mapped —»04<AA>X
08<AABBCC>— mapped—+05<AA>X

RV2H082-1
Mapping Variable-Length Fields to Fixed-Length Fields

If the data length of the from-field is less than or equal to the to-field length, the
data is copied to the fixed-length to-field and padded to ensure data integrity.

Data Management V4R4

If the length of the from-field data is greater than the to-field length, the from-field
data is copied to the to-field and truncated on the right in a manner that ensures
data integrity.

Variable-Length

Character From-Field Fixed-Length
(maximum length of Character To-Field
eight) (length of six)

OOXXXXXXXX —mapped—»XXXXXX

04/ABCDXXXX — mapped —ABCD|XX
08/ABCDEFGH| — mapped »ABCDEF

RV2H083-1

Mapping Fixed-Length Fields to Variable-Length Fields

If the to-field has a maximum length greater than or equal to the from-field length,
the from-field data is copied to the data portion of the to-field and padded to the
right with single-byte blanks. The to-field length is set to the length of the from-field
length.

Fixed-Length Variable-Length
Character Character To-Field
From-Field (maximum length
(length of six) of nine)

XXXXXX —— mapped —»06XXXXXXXXX

[ABCXXX —— mapped —»06ABCXXXXXX
ABCDEF|—— mapped —»06ABCDEFXXX

RV2H084-1

If the length of the from-field is greater than the maximum length of the
variable-length to-field, the length portion of the variable-length to-field is set to the
maximum length of the variable-length to-field. The data from the fixed-length
from-field is copied to the data portion of the variable-length to-field and truncated
on the right in a way that ensures data integrity.

Variable-Length

Fixed-Length Character To-Field
Character From-Field (maximum length
(length of eight) of four)

[ABCDEFGH]—— mapped —04/ABCD]

Variable-Length

Fixed-Length DBCS- DBCS-Only To-Field
Only From-Field (maximum length
(length of eight) of four)
<AABBCC> mapped —04<AA>]|

RV2H085-1

Chapter 4. Copying files 97

Date, Time, and Timestamp Fields

FMTOPT(*MAP) or FMTOPT(*NOCHK) must be specified on the CPYF command
if:

* The from-file is a database data file.

* The to-file is a physical data file.

* The record formats are not identical.

Corresponding date, time, and timestamp fields in the from-file and to-file must have
the same format attribute and separator for the record formats to be identical. For

the CPYFRMQRYF command, the same is true except that the open query file
record format is used (rather than a from-file format).

When using FMTOPT(*NOCHK), record data is copied directly from left to right into
the to-file without any regard to field types.

When using FMTOPT(*CVTSRC), data portions of records are directly copied from
left to right into the to-file without any regard to the field types.

When using FMTOPT(*DROP), fields in the from-file but not in the to-file are
dropped. If any like-named fields in the from-file and to-file are date, time, or
timestamp fields, the corresponding field must be the same type, have the same
format attribute and separator, and have the same relative position in the record
format as the like-named field, otherwise FMTOPT(*MAP) may also be required.

FMTOPT(*MAP) allows copying between like date, time, and timestamp field types
regardless of the format or separator. Also, copies from and to date, time, and
timestamp fields are allowed from and to zoned-decimal or character field types,
provided the lengths, formats, and values can be converted. FMTOPT(*MAP) is
required in this case for conversion to the to-field type (format and separator, if it

Table 11. Conversion Table

Data types

Date
Zoned
Zoned
Zoned
Zoned
Character
Character
Character
Character
Character
Character
Character
Character
Character
Time
Zoned
Character

applies).

[Cable 11 on page 99 outlines the conversion possibilities for the date, time, and

timestamp.

Allowable
Allowable Field Field

Forms Length Direction Data Type Formats Length
Any date format 6, 8, or 10 <--> Date Any 6, 8, or 10
(MMDDYY) 6,0 <--> Date Any 6, 8, or 10
(DDMMYY) 6,0 <--> Date Any 6, 8, or 10
(YYMMDD) 6,0 <--> Date Any 6, 8, or 10
(YYDDD) 5,0 <--> Date Any 6, 8, or 10
(MMdDDdYY) 6 min <--> Date Any 6, 8, or 10
(DDAMMAYY) 6 min <--> Date Any 6, 8, or 10
(YYdMMdDD) 6 min <--> Date Any 6, 8, or 10
(YYdDDD) 6 min <--> Date Any 6, 8, or 10
(*USA) 6 min - Date Any 6, 8, or 10
(*ISO) 6 min — Date Any 6, 8, or 10
(*EUR) 6 min —— Date Any 6, 8, or 10
(*J1S) 6 min ———-> Date Any 6, 8, or 10
(YYYYDDD) 6 min - Date Any 6, 8, or 10
Any time format 8 <--> Time Any 8
(HHMMSS) 6,0 <--> Time Any 8
(HHtMMLSS) 4 min E—— Time Any 8

98 Data Management V4R4

Table 11. Conversion Table (continued)

Allowable

Allowable Field Field
Data types Forms Length Direction Data Type Formats Length
Character (*USA) 4 min — Time Any 8
Character (*ISO) 4 min - Time Any 8
Character (*EUR) 4 min > Time Any 8
Character (*JIS) 4 min ——> Time Any 8
Character (HHtMMLSS) 8 min <-mem Time Any 8
Timestamp SAA format 26 <--> Timestamp SAA 26
Zoned (YYYYMMDDHHMMSS) 14,0 <--> Timestamp SAA 26
Character SAA format 14 min - Timestamp SAA 26
Character (YYYYMMDDHHMMSS) 14 min <--> Timestamp SAA 26
Note: In the format columns,
d = date separator value
t = time separator value
any = job formats or SAA formats

In the allowable field-length column, min means the specified length is the minimum required for a conversion
attempt. Conversion errors may still occur if the length is not long enough for the desired or assumed format. Refer
to the DDS Reference for more information on the date, time, and timestamp data types and keywords.

When converting a character field to a date, time, or timestamp field;
FMTOPT(*MAP) is specified; and the corresponding from- and to-field names
match; an attempt is made to determine what similar date form the character field is
in. The following applies:

» For converting a character field to a date field, the minimum length required
for the character field is 6. The system first determines if the character field data
is in the same format and has the same separator as specified in the current job
under which the copy command is running. This may be *MDY, *DMY, *YMD, or
*JUL for the format and slash (/), hyphen (-), period (.), comma (,), or blank () for
the separator. If the character field is not in the current job specified format and
separator form, it determines if it is in one of the SAA formats (*ISO, *USA,
*EUR, or *JIS), or if it is in a YYYYDDD form (no separator). If the system
determines the character field is in one of the these forms, it converts it to the
date to-field. The date portion of the character field must be left justified and can
contain trailing blanks.

* For converting a character field to a time field, the minimum length required
for the character field is 4. The system first determines if the character field data
is in the same format and has the same separator as specified in the current job
under which the copy command is running. This may be *HMS for the format and
colon (:), comma (,), period (.), or blank (') for the separator. If the character field
is not in the current job specified format and separator form, the system
determines if it is in one of the SAA formats (*ISO, *USA, *EUR, or *JIS). If the
system determines the character field is in one of these forms, it converts it to
the time to-field. The time portion of the character field must be left justified and
can contain trailing blanks.

* For converting a character field to a timestamp field, the minimum length
required for the character field is 14. The system first determines if the character
field data is in one of the following:

— SAA format
- YYYYMMDDHHMMSS form

Chapter 4. Copying files 99

100

If the system determines the character field is in one of these forms, it converts it
to the timestamp to-field. The timestamp portion of the character field must be
left justified and can contain trailing blanks.

When converting a date, time, or timestamp field to a character field;
FMTOPT(*MAP) is specified; and the corresponding from and to-file field names
match; the system attempts to convert the date, time, or timestamp field into the
form specified by the current job. The following applies:

* For converting a date field to a character field, the minimum length required
for the character field is 6. The system first determines the date format and
separator attribute of the current job under which the copy command is running.
This may be *MDY, *DMY, *YMD, or *JUL for the format and slash (/), hyphen (-),
period (.), comma (,), or blank () for the separator. The date field is converted
into the character field in the specified format of the current job. For character
fields that are longer than required for the conversion, the data is left justified and
trailing blanks are added.

* For converting a time field to a character field, the minimum length required
for the character field is 8. The system first determines the time separator
attribute of the current job under which the copy command is running. This may
be colon (:), comma (,), period (.), or blank (). The time field is converted into
the character field in the *HMS format (including the specified separator of the
current job). For character fields that are longer than required for the conversion,
the data is left justified and trailing blanks are added.

* For converting a timestamp field to a character field, the minimum length
required for the character field is 14. The timestamp field is converted into the
character field in the YYYYMMDDHHMMSS form (no separators). For character
fields that are longer than required for the conversion, the data is left justified and
trailing blanks are added.

When converting a zoned decimal field to a date, time, or timestamp field,
FMTOPT(*MAP) is specified and the corresponding from- and to-field names match,
the system assumes the zoned decimal field is in the form specified by the current
job. The following applies:

* For converting a zoned decimal field to a date field, the system assumes the
zoned decimal field data is in the same date format (no separators) as specified
in the current job under which the copy command is running. This may be *MDY,
*DMY, *YMD, or *JUL. The length of the zoned decimal field must be 5,0 (if the
current job format is *JUL) or 6,0 (if the current job format is *MDY, *DMY, or
*YMD). The system attempts to convert or copy it to the date to-field.

* For converting a zoned decimal field to a time field, the system assumes the
zoned decimal field data is in the *HMS format (no separators). The length of the
zoned decimal field must be 6,0. The system attempts to convert or copy it to the
time to-field.

* For converting a zoned decimal field to a timestamp field, the system
assumes the zoned decimal field data is in the YYYYMMDDHHMMSS form (no
separators). The length of the zoned decimal field must be 14,0. The system
attempts to convert or copy it to the timestamp to-field.

When converting a date, time, or timestamp field to a zoned decimal field,
FMTOPT(*MAP) is specified and the corresponding from- and to-field names match,
the system uses the current job specified form to determine what format the zoned
decimal data should be in. The following applies:

* For converting a date field to a zoned decimal field, the system assumes the
zoned decimal field data is to be in the same date format (no separators) as

Data Management V4R4

specified in the current job under which the copy command is running. This may
be *MDY, *DMY, *YMD, or *JUL. The length of the zoned decimal field must be
5,0 (if the current job format is *JUL) or 6,0 (if the current job format is *MDY,
*DMY, or *YMD). The system attempts to convert or copy the date field to it.

» For converting a time field to a zoned decimal field, the system assumes the
zoned decimal field data is to be in the *HMS format (no separators). The length
of the zoned decimal field must be 6,0. The system attempts to convert or copy
the time field to it.

* For converting a timestamp field to a zoned decimal field, the system
assumes the zoned decimal field data is to be in the YYYYMMDDHHMMSS form
(no separators). The length of the zoned decimal field must be 14,0. The system
attempts to convert or copy the timestamp field to it.

Any conversion not successful because of a data value, data format, or data-length
error causes an information message to be sent. The to-file field is set with its
default value.

Null-Capable Fields

FMTOPT(*MAP) or FMTOPT(*NOCHK) must be specified on the CPYF command
if:

¢ The from-file is a database data file.

* The to-file is a physical data file.

e The record formats are not identical.

For the record formats to be identical, corresponding fields in the from-file and
to-file must both be null-capable or not null-capable. For the CPYFRMQRYF
command, the same is true except that the open query file record format is used
(rather than a from-file format).

When you use FMTOPT(*MAP):

* Null values are copied from null-capable from-file fields to null-capable to-file
fields that are named alike. This copying can only happen if the field attributes
and lengths are compatible.

» Fields that are not null-capable can also be copied from and to null-capable
fields, provided the field attributes and lengths are compatible. The results to
expect in the to-file field are:

— Copying a null-capable field to a null-capable field

Null values in the from-file field are copied to the to-file field. Values that are
not null in the from-file field are also copied to the to-file field. For values that
are not null in the from-file field that cause conversion errors during the copy,
the default value of the to-file field is placed into the to-file field.

— Copying a field that is not null capable to a null-capable field

Values that are not null in the from-file field are copied to the to-file field. For
values in the from-file field that cause conversion errors during the copy
operation, the default value of the to-file field is placed into the to-file field.

— Copying a null-capable field to a field that is not null capable

Values that are not null in the from-file field are copied to the to-file field. If a
conversion error occurs when copying values that are not null or the from-file
field value is null, the to-file field default value is placed into the to-file.

Chapter 4. Copying files 101

102

When you use FMTOPT(*NONE), the null values in the from-file are copied to the
to-file when copying a database file to a physical data file with identical record
formats.

When you use FMTOPT(*DROP), the null values are copied.

When you use FMTOPT(*NOCHK) or FMTOPT(*CVTSRC), the record data is
copied directly from left to right into the to-file without any regard to field types. Null
values are not copied if *NOCHK or *CVTSRC is specified, because the record
formats need not be identical. Either a user-specified or default value is copied to
the to-file rather than a null value.

CCSIDs

When FMTOPT(*NOCHK) is specified, no CCSID conversions are done. Record
data is copied directly from left to right into the to-file without any regard to field
types or CCSIDs.

When FMTOPT(*MAP) is specified and a valid conversion is defined between the
CCSID of the from-field and the CCSID of the to-file field, the character data is
converted to the CCSID of the to-file field. However, if the CCSID of the from-file
field or the CCSID of the to-file field is 65535, no conversions are done.

When FMTOPT(*NONE) is specified, the from-file and to-file attributes must be the
same, unless one of the CCSIDs in corresponding fields is 65535.

For the CPYFRMQRYF command, the FMTOPT rules are the same except that the
changed query format is used instead of a from-file format.

DBCS-Graphic Fields

When mapping graphic fields to bracketed DBCS fields, shift-out and shift-in
characters are added around the DBCS data. When mapping from bracketed-DBCS
fields to graphic fields, the shift-out and shift-in characters are removed. For
variable-length fields, the graphic field length is expressed in the number of DBCS
characters and the bracketed DBCS length is expressed in number of bytes
(including the shift-out and shift-in characters). This difference is accounted for
when mapping variable-length graphic fields to or from variable bracketed DBCS
fields.

When using the CPYF command with FMTOPT(*MAP) to copy a DBCS-open field
to a graphic field, a conversion error occurs if the DBCS-open field contains any
SBCS data (including blanks). When copying to a graphic field, it may be desirable
to ignore trailing SBCS blanks that follow valid DBCS data (in a DBCS-open field).
This allows the copy operation to be done without a conversion error. This type of
copy may be done using a combination of the OPNQRYF and CPYFRMQRYF
commands. The OPNQRYF command is used to remove trailing single-byte blanks
and place the data into a variable-length DBCS-open field. The CPYFRMQRYF
command with FMTOPT(*MAP) specified is used to copy the variable-length
DBCS-open field to the graphic field.

For example, assume the DBCS-open fields in the file named FILEO are copied
into graphic fields in the file named FILEG. An additional file (FILEV) must be
created.

The DDS for the original from-file FILEO:

Data Management V4R4

Fkkkkkk kkkkxkkxkkkkkrkk Beginning of data rwxsxsrsrkrkkrrrhrhkhkkkkkhrs

A R FMTO1

A FLD1 100 CCSID(65535)
A FLD2 70 CCSID(65535)
A FLD3 20A

*xkkhkkk kkkkkrkkkkrkxkkrxkk ENd 0f data *xssrrsdkkrrdkhrxhhrrkhhkrkhhrkrhhrr

DDS for FILEV: This file’s format will be specified on the OPNQRYF command
FORMAT parameter. The only difference from FILEO is that the DBCS-open fields
to be converted to graphic fields are defined to be variable length.

*hkkkhkk khkhkkkhrkhkrhxk Beginnjng 0f data ****xkkrkxkdkrhrhkrkhrhdrhrrhrr

A R FMTO1

A FLD1 100 VARLEN CCSID(65535)
A FLD2 70 VARLEN CCSID(65535)
A FLD3 20A

*hkkkkkk khkkxkkhrkxkrrkxkdrkxx End 0f data #**xxskrrxskhrxkhhrkhhrkkhhrkkdhrxrdk

DDS for the new file FILEG: The graphic fields are defined as fixed length;
however, they could be made variable length, if desired.

*kkkkkk kkkkkkkrkkrkrxrx Beginning of data sxsxsxsrmrsrtrtrrhrshrkrk

A R FMTO1

A FLD1 4G CCSID(65535)
A FLD2 3G CCSID(65535)
A FLD3 20A

*hkkkkkk Khkxkkkrkxkkrxkkrxx End 0f data #**xxskxxkkrrkhhrkhhrkrkhrkrsk

The following commands are used to copy the data from the DBCS-open fields in
FILEO to the graphic fields in FILEG:

CHGJOB CCSID(65535)
OPNQRYF FILE((MYLIB/FILEO))
FORMAT (MYLIB/FILEV *ONLY)
MAPFLD((FLD1 '%STRIP(1/FLD1 *TRAIL)')
(FLD2 '%STRIP(1/FLD2 *TRAIL)'))
CPYFRMQRYF FROMOPNID(FILEQ) TOFILE(MYLIB/FILEG)
MBROPT (*REPLACE) FMTOPT (MAP)

Add or change source file sequence number and date fields (SRCOPT
and SRCSEQ Parameters)

You can perform additions or changes to sequence number fields and date fields
sequence number and date fields when you are:

Copying device source files to database source files

When you copy from a device source file to a database source file, the system
adds sequence number fields and date fields at the start of the records. The system
assigns the first record a sequence number of 1.00, the next 2.00, and so on,
increasing in increments of 1.00. If more than 9999 records are copied, the
sequence number wraps back to 1.00 and continues to increment unless you
specify the SRCOPT and SRCSEQ parameters on the copy command.

Chapter 4. Copying files 103

If several copies to the same file are made with MBROPT(*ADD), you will have
duplicate sequence numbers in the file. You can correct this using the Reorganize
Physical File Member (RGZPFM) command.

Date fields are initialized to zeros.

When copying to or from a device, it is more efficient to use a device data file than
a device source file. The copy function automatically adds or removes sequence
number fields and date fields source sequence number and date fields as
necessary.

Copying database source files to device source files

When you are copying to a device source file, the system removes the date fields
and the sequence number fields from the start of the records.

When copying to or from a device, it is more efficient to use a device data file than
a device source file. The copy function automatically adds or removes source
sequence number fields and date fields as necessary.

Copying Database Source Files to Database Source Files

You can copy between database source files by using the CPYSRCF or CPYF
command. The CPYSRCF command may be easier to use because the parameter
defaults are better suited for copying database source files.

If you specify SRCOPT(*SEQNBR) to update the sequence numbers, the system
considers the SRCSEQ parameter. The SRCSEQ parameter specifies the starting
value that is assigned to the first record that is copied and the increment value. The
defaults are 1.00 and 1.00. You can specify a whole number of no more than 4
digits or a fraction of no more than 2 digits for the starting value and the increment
value. (You must use a decimal point for fractions.)

For example, if you specify SRCSEQ(100.50), then the records copied will have
sequence numbers 100.00, 100.50, 101.00, 101.50, and so on.

Suppose that you have a file that contains more than 9999 records. Use a fractional
increment value so that each record has a unique sequence number. If you specify
a starting value of .01 and an increment value of .01, the maximum number of
records copied with unique sequence numbers is 999 999. When the maximum
sequence number is exceeded (9999.99), all remaining records on that copy are
initialized to 9999.99. The system does not wrap back to 1.00.

If the database source file that you are copying to has only an arrival sequence
access path, the records are always physically placed at the end of the file.
(Because the file does not have a keyed sequence access path, you cannot insert
records into the middle of the file keyed access path.)

Prevent errors when copying files

104

You can prevent many copy errors when you plan for certain conditions and
situations ahead of time. The topics listed below provide guidance on the more
common errors.

Data Management V4R4

Limiting recoverable errors during copy

When you copy to or from a database file or from a tape file, you can limit the
number of recoverable errors that you accept before the copy ends. Use the
ERRLVL parameter to specify this limit. This parameter applies to the following
types of errors:

CPF4826
Media error

CPF5026
Duplicate key in the access path of this member. (Note: The copy command
does not count CPF5026 as an ERRLVL error when you specify
MBROPT(*UPDADD) on CPYF.)

CPF5027
Record in use by another job. (Note: The copy command only counts
CPF5027 as an ERRLVL error when you specify MBROPT(*UPDADD) on
CPYF)

CPF5029
Data or key conversion error

CPF502D
Referential integrity constraint violation

CPF502E
Referential integrity constraints could not be validated

CPF5030
Partial damage on member

CPF5034
Duplicate key in the access path of another member

CPF5036
Invalid length tape block read

CPF504B
DataLink error

CPF504C
DataLink preparation error

CPF5097
*NAN (Not a Number) value not allowed in floating-point key field

The ERRLVL parameter specifies the maximum number of recoverable errors
allowed for each label pair or each member copied. The value specified for ERRLVL
indicates the total errors that are allowed on both the from-file and the to-file that
are combined for each label pair or each member copied. Each time an error
occurs, the following process runs:

1. The process increases the count for that label pair or that member by 1.

Chapter 4. Copying files 105

2. A message identifying the last good record that is read or written is printed on
all copy lists if TOFILE(*PRINT), PRINT(*COPIED), or PRINT(*EXCLD) was
specified.

3. The error record is printed if you specified PRINT(*ERROR).

4. Copying continues.

5. If the copy command completely copies the from-file member without exceeding
the limit, the process resets the counter to 0, and the copy of the next member
starts.

6. If the limit is exceeded during the copy of a member, copying ends and a
message is sent, even if more records or members remain to be copied.

For a database from-file, including the open query file, the recoverable errors
are:

* Those that occur when data is converted (mapped) AND
* Those caused by a damaged area on the disk (in auxiliary storage)

For a tape from-file, the recoverable errors are
* A block length that is not valid AND
* A media-read operation from the tape volume on the device resulting in an error

For a physical to-file, the recoverable errors are
* Those that occur when data is converted AND
* Those that occur when more than one of the same key is found

Any record that causes an error is not copied to the to-file. For a write error, the
record is printed on a PRINT(*COPIED) and PRINT(*EXCLD) printout. A message
then follows this printout. This message indicates that the record was not actually
copied. If you specified PRINT(*ERROR), the command prints the records that
caused write errors on the *ERROR listing. A message then indicates that an error
occurred. For a read error, no record is available to be printed on the copy printouts
(TOFILE(*PRINT), PRINT(*COPIED), PRINT(*EXCLD), or PRINT(*ERROR)).
However, a message prints on all specified printouts that indicates that a record
could not be read.

When the command cannot read a portion of the file from disk, partial object
damage to the contents of a database file occurs. If a file is damaged in such a
way, you can bypass the records that are in error by copying the good records and
manually adding the records that were not copied because of the damage.

Regardless of the value of the ERRLVL parameter, recoverable errors always
appear in the job log with a reply of “C” for “Cancel.”

For files that have constraint relationships, the ERRLVL parameter only affects the
to-file. If you set the ERRLVL parameter to 0, the copy command does not copy into
the file any record that causes the to-file to violate the constraint relationship. The
copy operation ends. If ERRLVL is greater than 0, the copy command does not
copy into the file any record that causes the to-file to violate the constraint
relationship. However, the copy operation continues until enough violations
(recoverable errors) have occurred so that the ERRLVL value has been reached. If
this value is exceeded, the copy operation ends.

You can use the ERRLVL parameter to bring files with constraint relationships in
check pending status back into non-check pending status. Do this by setting up the
dependent to-file with constraints that are the same as the dependent from-file.

106 Data Management V4R4

Then, use a CPYF command with the ERRLVL(*NOMAX) to copy all valid records.
The to-file should not contain any records. The copy command does not insert into
the to-file any records that it encounters from the from-file that would cause the
to-file constraints to go to check pending status. With ERRLVL set to *NOMAX, the
copy command processes all records in the from-file.

Other copy commands (CPYSRCF, CPYFRMTAP, CPYTOTAP, CPYFRMDKT, and
CPYTODKT) end immediately if the systems signals one of the recoverable errors
because there is no ERRLVL parameter for them.

Preventing date, time, and timestamp errors

For FMTOPT(*MAP), FROMKEY with *BLDKEY, TOKEY with *BLDKEY, and
INCREL parameters, 2-digit year-date fields or values will be assumed to have:

* A century of 19 if the year is in the range from 40 to 99 OR
* A century of 20 if the year is in the range from 00 to 39

For example, 12/31/91 is considered December 31, 1991, while 12/31/38 is
considered December 31, 2038.

However, any from-files containing 2-digit year-date fields with actual internal date
values outside the range January 1, 1940 to December 31, 2039 cause input
mapping errors, and the copy operation fails.

When FMTOPT(*MAP) is used to convert or copy a from-file field date value in a
4-digit year form to a 2-digit year form, the from-file field value must be within the
range of January 1, 1940 to December 31, 2039. Otherwise, a mapping error
occurs, and the copy command sets the to-file field with its default value.

Likewise, when using a 4-digit year date as a record selection input string on
FROMKEY with *BLDKEY or TOKEY with *BLDKEY, the value must be within the
same range if the corresponding from-file field is a date field with a 2-digit
year-date. Otherwise, an error occurs. INCREL record selection is the exception to
this rule, as 4-digit year date values outside this range may be used for
corresponding 2-digit year-date fields.

See [Mapping considerations’| for details about how to handle different field types

and formats.

Mapping considerations

When mapping a character field to a date, time, or timestamp field and a
format form is being used in the character field, leading zeros may be omitted from
month, day, and hour parts. Microseconds may be truncated or omitted entirely in
the character field.

For mapping to time fields, the seconds part (and corresponding separator) may
be omitted from the character field.

For *USA form values, the AM or PM with a preceding blank is required. These
rules are also true for date, time, or timestamp values that are entered when using
FROMKEY with *BLDKEY, TOKEY with *BLDKEY, or INCREL parameters on the
CPYF command. All other instances of date, time, and timestamp data require
leading zeros when necessary and no truncation.

Chapter 4. Copying files 107

For both forms of the TOKEY parameter (*BLDKEY or non-*BLDKEY) the
from-field data must be in a particular format for a chronological comparison

to be made. For the date field, you must use the *ISO or *JIS format to make a
chronological comparison. For the time fields, you must use the *HMS, *ISO, *EUR,
or *JIS formats to make the chronological comparison. For any other formats of
date or time fields (for date (*MDY, *DMY, *YMD, *JUL, *EUR, or *USA) or for time
(*USA)), chronological comparisons are not possible because the TOKEY
parameter performs a straight character string comparison. When you cannot make
chronological comparisons, the system sends an informational message, and the
copy operation continues.

When copying data into a file with date, time, or timestamp fields, and the
from-file is a device file or FMTOPT(*NOCHK) or FMTOPT(*CVTSRC) has been
specified, output mapping errors may occur if the data copied to a date, time, or
timestamp field is not valid data for the to-file field format and separator attributes.
You cannot copy the record if this occurs. If you use the CPYF or CPYFRMQRYF
command, you can specify an error level other than zero (ERRLVL parameter) to
bypass the record and continue the copy operation. When copying into date, time,
or timestamp fields in these instances, it is important that the from-file data is valid
for the to-file.

Preventing position errors

A position error occurs when the copy file function cannot locate the first record to

copy in the from-file member. This can happen when using the CPYF, CPYSRCEF,

CPYTODKT, or CPYTOTAP commands. If any of the following conditions are true,

you may receive a position error for the from-file member:

* You specified the FROMKEY parameter, and all records in the member are less
than the FROMKEY value or the member is empty.

* You specified the FROMRCD parameter beyond the end of the member or the
member is empty.

* The value of the from-file member position (the POSITION parameter of the
OVRDBF command) is beyond the end of the member, is not valid for the access
path of the from-file, or the member is empty.

If a member position error occurs, the member may not be added to the to-file, and
no information about the member is added to the print lists.

If a member position error occurs during a copy operation that involves multiple
members, the copy operation will continue with the next member.

If a member position error occurs for all members, a print list is not produced, and
the to-file may not be created.

Preventing allocation errors

108

When a database file is copied, each from-file member is allocated with a
shared-for-read (*SHRRD) lock state. When a device file is copied, the copy
command allocates it with a shared-for-read (*SHRRD) lock state. The copy
command allocates the member only while it copies it. A shared-for-read lock state
lets other users read and update the file while you are copying it.

Data Management V4R4

Generally, the member being copied to is allocated with a shared-for-update
*SHRUPD) lock state. However, if you specify MBROPT(*REPLACE), the command
allocates the member you are copying to with an exclusive (*EXCL) lock state, and
the records in the to-file are removed

When you are copying one physical file to another, you can place stronger locks on
the members to allow internal system functions to perform the copy.

¢ The command can allocate the from-file member with an exclusive-allow-read
(*EXCLDRD) lock state.

* The command can allocate the to-file member with an exclusive (*EXCL) lock
state.

The command requires these stronger locks depending on the type of copy you
perform. If you cannot get these locks, run the copy command and specify a value
of 1 (or any valid value other than 0) on the ERRLVL parameter. These values do
not require the stronger locks.

There are many EReasons for allocation errars]. For instance, you should not use

functions that touch the to-file during the copy.

Reasons for allocation errors

If another job allocates a member with too strong a lock state, the copy operation
may end with an error message. This is also true if the library containing the file is
renamed during the copy operation.

When a copy command runs, the to-file may be locked (similar to an *EXCL lock
with no time-out) so that no access is possible. Any attempt to use a function that
must touch the to-file locks up the work station until the copy command completes.
For instance, you should not use the following functions on a to-file that you are

copying:

WRKACTJOB
Option 11 (Work with Locks)
Option 5 (Work with Job Member Locks)
Option 8 (Work with Object Locks)
DSPDBR
DSPFD
DSPFFD
WRKJOB
Option 12 (Work with Locks, if active)
Option 5 (Work with Job Member Locks)
F10 (Display Open Files, if active)
WRKLIB
The library containing the to-file
DSPLIB
The library containing the to-file
WRKOBJLCK
WRKRCDLCK

If you want to display any information about a to-file, you must anticipate the

requirement and force the copy command to use block record-at-a-time operations
by specifying ERRLVL(1).

Chapter 4. Copying files 109

If you anticipate that problems may arise because of this, you can preallocate the
files and members using the Allocate Object (ALCOBJ) command. (See the CL
Programming book for information about preallocating objects.)

Preventing copy errors that result from constraint relationships

A constraint relationship is a mechanism to ensure data integrity between a
dependent file and a parent file. A constraint relationship exists between a
dependent file and a parent file when every non-null foreign key value in the foreign
key access path of the dependent file matches a parent key value in the parent key
access path of the parent file. A physical data file may be a parent or dependent
file. However, a source physical file may not be a parent or a dependent file.

The copy commands listed below allow the following relationships:

CPYF - from-file or to-file could be a parent or dependent file
CPYFRMQRYF - to-file could be a parent or dependent file
CPYFRMTAP - to-file could be a parent or dependent file
CPYTOTAP - from-file could be a parent or dependent file
CPYFRMDKT - to-file could be a parent or dependent file
CPYTODKT - from-file could be a parent or dependent file

See the following topics for more information about constraint relationships and
copying files:

Copying files not in check-pending status

110

If the parent or dependent file has an established constraint relationship that is not
in check-pending status, the following rules apply:

If the from-file has an established constraint relationship, then you can copy all of
the records from it whether it is a parent or dependent file.

If the to-file has an established or enabled constraint relationship, then the
following rules apply to keep the constraint relationship from entering
check-pending status:

— A parent file cannot have its member cleared of records.

— A parent file cannot have more than one parent key value in the parent key
access path of the same value (key must remain unique). That is, if the to-file
is a parent file in a constraint relationship, then the copy does not allow
duplicate key records to be copied into it.

— A dependent file’s foreign key values that are not null must always have a
corresponding parent key value. That is, if the to-file is a dependent file in a
constraint relationship, the copy operation does not allow non-null foreign key
records that do not have a corresponding parent key record to be copied into
the dependent file.

The copy operation ensures that the data in the parent or dependent to-file is not
damaged. Records may be copied to the to-file provided they do not cause the
constraint relationship to go into check-pending status. If a user attempts to copy
a record that does not meet the constraint relationship rules, the copy operation
will end unless the ERRLVL parameter has been specified (CPYF and
CPYFRMQRYF commands only) with a value greater than zero.

Data Management V4R4

Copying files in

To circumvent the above rules, you can disable the involved constraints before the
copy operation, perform the copy, and then re-enable the constraints. However, the
file is in check-pending status if constraint rules are still not met.

check pending status

If the parent or dependent file has an established constraint relationship that is in

check-pending status, the following rules apply:

» If the from-file has an established constraint relationship in check pending, data
access is restricted. If the from-file is a parent file, the command can read and
copy data to the to-file. If the from-file is a dependent file, the command cannot
read data to the to-file, and therefore cannot copy the data to the to-file.

* If the to-file has an established constraint relationship in check pending status,
data access is restricted. If the to-file is a parent file, you can add new records
(you can specify MBROPT(*ADD)). If the to-file is a parent file, you cannot clear
the file (you cannot specify MBROPT(*REPLACE)). If the to-file is a dependent
file, you cannot perform the copy regardless of which MBROPT parameter
keyword you use.

To circumvent the above rules, you can disable the involved constraints before the
copy operation, perform the copy, and then re-enable the constraints. However the
file will be in check pending status if constraint rules are still not met.

Preventing copy errors related to your authority to files

The following table summarizes the authority that is required for the from-file and
the to-file.

Table 12. Authority Required to Perform Copy Operation
| From-File

To-File

DDM file *OBJOPR *READ *OBJOPR?! *ADD
Device file? *OBJOPR *READ *OBJOPR *READ
Logical file *OBJOPR?® *READ Not allowed

Physical file *OBJOPR *READ *OBJOPR* *ADD

1 This is the authority required for MBROPT(*ADD). If MBROPT(*REPLACE) is

specified, *OBIJMGT and *DLT authority are also required. If MBROPT(*UPDADD)
is specified, *UPD authority is also required.

2 *OBJOPR and *READ authority is also required for any devices used for the file.

3 Also requires *READ authority to the based-on physical file members for the logical
file members copied.

If the to-file does not exist and CRTFILE(*YES) is specified so that the copy
command creates the to-file, then you must have operational authority to the
CRTPF command.

Improve copy performance

You can improve the performance of your copy operations by following these
guidelines:

Chapter 4. Copying files 111

In addition, the DB2 Multisystem feature provides support for distributed files (that
is, files that are spread across multiple AS/400 systems). When you copy distributed
files, you should be familiar with the various factors that affect the performance of
the copy command. You should be aware of restrictions that apply when you copy
to and from distributed files.

For information about copying distributed files, see the DB2 Multisystem for AS/400
book.

Avoid keyed sequence access paths

A copy that requires maintenance of a keyed sequence access path is slower than
a copy from or to an arrival sequence access path. You can improve copy
performance if you reorganize the from-file so that its arrival sequence is the same
as its keyed sequence access path. You can also improve copy performance if you
select records by using the FROMRCD or TORCD parameter so that the keyed
sequence access path is not used.

Create fewer logical access paths over the to-file. This improves copy performance
because the copy process does not need to update as many access paths.

The smaller the length of the records within the file, the faster the copy.

Specify fewer parameters

In general, you can improve copy performance if you specify fewer optional copy
parameters. The following parameters affect the performance of the copy operation:

* INCCHAR
* INCREL

* ERRLVL
* FMTOPT
* SRCOPT
* PRINT

Using the COMPRESS function does not significantly affect performance. You
should request COMPRESS(*NO) if you want deleted records in the to-file, for
example, when the relative record numbers need to be identical.

Year 2000 support: date, time, and timestamp considerations

112

The CPYF and CPYFRMQRYF commands support the PACKED (P), ZONED (S),
and CHARACTER (A) datatypes that have a DATFMT keyword specified in a logical
file.

The copy converts data from or to a format implied by the length of a ZONED or
PACKED field and the current job’s DATFMT specification. Copy already supports
ZONED fields with length 5,0 or 6,0 (depending on the current job DATFMT) from/to
DATE fields.

FMTOPT(*MAP) allows copying between DATE field types and PACKED, ZONED,
and CHARACTER field types in a logical or physical file provided the lengths,
formats, and values can be converted. FMTOPT(*MAP) is required in these cases
for conversion to the to-field type (and format and separator if it applies). There are

Data Management V4R4

rules as to what form and length these field types must be in (dependent on the
current job’s DATFMT) for successful conversions.

New conversion possibilities exist for when you are:

You also should know the system'’s restrictions on the conversions for Year 2000
support. See L icti " for more information.

The conversions involving CHARACTER fields from/to DATE fields do not
change from existing support except that the logical file CHARACTER fields having
a DATFMT specified are copied to a DATE field in a physical to-file. The system
correctly converts the data.

Copying FROM logical file ZONED, CHARACTER, or PACKED field
(with a DATFMT) TO a DATE field in a physical to-file

For these mappings, the format of the from-field is specified and is explicitly
converted to the to-file DATE fields. These copies are single directional only: FROM
the logical file ZONED, PACKED, or CHARACTER field TO a physical file DATE
field.

The system allows century digit (C) in some of the forms. When the (C) value is 0,
the system assumes the year is in the 1900s. When the (C) value is 1, the system

assumes the year to be in the 2000s.

FLD TYPE DATFMT SPECIFIED COPY DATATYPE |FORMAT
FIELD
LENGTH

ZONED (*MY) 4,0 — DATE (any)
ZONED (*YM) 4,0 —> DATE (any)
ZONED (*MYY) 6,0 — DATE (any)
ZONED (*YYM) 6,0 — DATE (any)
ZONED * (*JUL) 5,0 — DATE (any)
ZONED * (*MDY) 6,0 — DATE (any)
ZONED * (*DMY) 6,0 — DATE (any)
ZONED * (*YMD) 8,0 — DATE (any)
ZONED * (*1SO) 8,0 — DATE (any)
ZONED * (*EUR) 8,0 — DATE (any)
ZONED * (+JIS) 8,0 — DATE (any)
ZONED * (*USA) 8,0 — DATE (any)
ZONED (*LONGJUL) |7,0 — DATE (any)

, —_> any
ZONED (*CMDY) 7,0 DATE (any)

, —> any
ZONED *CDMY 7,0 DATE

, —> any,
ZONED (*CYMD) 7,0 DATE (any)

, —> any’
ZONED *MDYY 8,0 DATE

Chapter 4. Copying files

113

114

FLD TYPE |DATFMT SPECIFIED |COPY DATA TYPE |FORMAT
FIELD
LENGTH
ZONED (*DMYY) 8,0 —> DATE (any)
ZONED (*YYMD) 8,0 —> DATE (any)
CHAR (*MY) 4 —> DATE (any)
CHAR (*YM) 4 —> DATE (any)
CHAR (*MYY) 6 —> DATE (any)
CHAR (*YYM) 6 — DATE (any)
CHAR * (*JUL) 5 —> DATE (any)
CHAR* (*MDY) 6 —> DATE (any)
CHAR * (*DMY) 6 —> DATE (any)
CHAR ! (*YMD) 6 — DATE (any)
CHAR * (*1SO) 8 —> DATE (any)
CHAR (*EUR) 8 — DATE (any)
CHAR (*JIS) 8 —> DATE (any)
CHAR ! (*USA) 8 — DATE (any)
CHAR (*LONGJUL) |7 —> DATE (any)
CHAR (*CMDY) 7 —> DATE (any)
CHAR (*CDMY) 7 —> DATE (any)
CHAR (*CYMD) 7 —> DATE (any)
CHAR (*MDYY) 8 —> DATE (any)
CHAR (*DMYY) 8 —> DATE (any)
CHAR (*YYMD) 8 —> DATE (any)
PACKED (*MY) 4,05,0 —> DATE (any)
PACKED (*YM) 4,05,0 —> DATE (any)
PACKED (*YYM) 6,07,0 —> DATE (any)
PACKED (*MYY) 6,0 7,0 —> DATE (any)
PACKED * (*JUL) 5,0 —> DATE (any)
PACKED * (*MDY) 6,0 7,0 —> DATE (any)
PACKED * (*DMY) 6,07,0 —> DATE (any)
PACKED * (*YMD) 6,0 7,0 —> DATE (any)
PACKED * (*1SO) 8,0 9,0 —> DATE (any)
PACKED * (*EUR) 8,09,0 —> DATE (any)
PACKED * (*JIS) 8,0 9,0 —> DATE (any)
PACKED * (*USA) 8,0 9,0 —> DATE (any)
PACKED (*LONGJUL) |7,0 —> DATE (any)
PACKED (*CMDY) 7,0 — DATE (any)
PACKED (*CDMY) 7,0 —> DATE (any)
PACKED (*CYMD) 7,0 — DATE (any)
PACKED (*MDYY) 8,0 9,0 —> DATE (any)
PACKED (*DMYY) 8,0 9,0 —> DATE (any)

Data Management V4R4

1

The DATFMTs in the logical file for these fields may not have actually been
specified. If the DATEMT is not specified in the logical file, it will become the
DATFMT specified on the underlying physical file Date field's DATFMT. If the
DATFEMT specified in the logical file was *JOB, it will become the actual DATFMT

of the job.

FLD TYPE DATFMT SPECIFIED COPY DATATYPE |FORMAT
FIELD
LENGTH
PACKED (*YYMD) 8,09,0 —> DATE (any)
Notes:

Also note: in the FORMAT column, (any) means that any of the job formats or Systems
Application Architecture (SAA) formats may be specified.

Copying FROM or TO a ZONED or PACKED field (that has no DATFMT)
TO or FROM a DATE type field

FLD TYPE ASSUMED CURRENT NUMERIC COPY DATATYPE |FORMAT

FORM FOR |JOB DATFMT |FIELD

DATFMT & LENGTH

LENGTH *
ZONED (MMYY) *MDY, *DMY | 4,0 <> DATE (any)
ZONED (YYMM) *YMD 4,0 <> DATE (any)
ZONED 2 (YYDDD) *JUL 5,0 <> DATE (any)
ZONED 2 (MMDDYY) *MDY 6,0 <> DATE (any)
ZONED 2 (DDMMYY) *DMY 6,0 <> DATE (any)
ZONED 2 (YYMMDD) *YMD 6,0 <> DATE (any)
ZONED (CMMDDY) |*MDY 7,0 <> DATE (any)
ZONED * (CDDMMYY) |*DMY 7,0 <> DATE (any)
ZONED (CYYMMDD) | *YMD 7,0 <> DATE (any)
ZONED (YYYYDDD) |*JUL 7,0 <> DATE (any)
ZONED (MMDDYYYY) |*MDY 8,0 <> DATE (any)
ZONED (DDMMYYYY) |*DMY 8,0 <> DATE (any)
ZONED (YYYYMMDD) |*YMD 8,0 <> DATE (any)
PACKED (MMYY) *MDY, *DMY |4,0 5,0 <> DATE (any)
PACKED (YYMM) *YMD 4,05,0 <> DATE (any)
PACKED (YYDDD) *JUL 5,0 <> DATE (any)
PACKED (MMDDYY) *MDY 6,0 <> DATE (any)
PACKED (DDMMYY) *DMY 6,0 <> DATE (any)
PACKED (YYMMDD) *YMD 6,0 <> DATE (any)
PACKED (CMMDDYY) | *MDY 7,0 <> DATE (any)
PACKED (CDDMMYY |*DMY 7,0 <> DATE (any)
PACKED (CYYMMDD) | *YMD 7,0 <> DATE (any)
PACKED (YYYYDDD) |*JUL 7,0 <> DATE (any)
PACKED (MMDDYYYY) |*MDY 8,0 9,0 <> DATE (any)
PACKED (DDMMYYYY) |*DMY 8,0 9,0 <> DATE (any)
PACKED (YYYYMMDD) |*YMD 8,0 9,0 <> DATE (any)

Chapter 4. Copying files

115

FLD TYPE

ASSUMED CURRENT NUMERIC COPY DATA TYPE FORMAT
FORM FOR JOB DATFMT | FIELD

DATFMT & LENGTH

LENGTH *

Notes:

When copying from a PACKED or ZONED to a DATE, the assumed form is the form the copy will expect the
data to be in. When copying from DATE to a PACKED or ZONED field the assumed form is the form copy
will attempt to convert the data to.

These conversions are already supported.

When converting/copying a ZONED field (with no DATFMT) from/to a DATE field
(FMTOPT(*MAP) that is specified, the corresponding from and to-field names
matching the system assumes the ZONED field is to be in a form determined from
the current job DATFMT value and the ZONED field length (see table for specifics).

Similarly, when converting/copying a PACKED field (with no DATFMT) from/to DATE
field (FMTOPT(*MAP) specified and the corresponding from and to-field names
match, the system assumes the PACKED field is to be in a form determined from
the current job DATFMT value and the PACKED field length (again, see table for
specifics).

For the new DATFMTs that have a 'century guard digit’, the system allows the
values 0-9. 0 is for the year range 1900 through 1999, 1 is for 2000 through 2099,
2 is for 210 through 2199, and so forth, up to 9 for 2800 through 2899. The formats
allowing 'century guard digit’ are *CDMY, *CMDY, and *CYMD.

For the new DATFMTs that have no 'day’ portion, *MY, *YM, *MYY, and *YYM, the
day is assumed to be the first day of the month. For conversions to one of these
DATFMTs from a DATFMT that has a 'day’ portion, the 'day’ value is removed.

For conversions from the no 'day’ DATFMT to a DATFMT having a day portion, the
'day’ value becomes the first day of the month. For example, the *YYMD value
19971231’ becomes '199712’ when converted to *YYM. When converted back,
199712’ becomes '19971201".

Restrictions for Year 2000 support

Record selection (FRMKEY, TOKEY, INCCHAR, and INCREL parameters) for CPY
is not enhanced for the PACKED, ZONED, and CHARACTER data types having the
DATFMT keyword. They are treated as their actual field type indicates, and a
DATFMT specified on them is ignored for these parameters.

Likewise, when copying a logical file with PACKED, ZONED, or CHARACTER fields
having the DATFMT specified to a like type PACKED, ZONED, or CHARACTER
physical file field, the DATFMT on the from-field is ignored. No DATE conversions
take place in these instances.

For ZONED and PACKED fields, if the length is not valid for the current job’s
DATFMT and assumed form, copy file diagnostic messages CPF2960 and
CPF2963 is issued followed by a CPF2817 escape message.

116 Data Management V4R4

If the length of the field is valid for the current job’s DATFMT, the system attempts
to convert/copy it from or to the DATE field. The system sends a CPF2958
message and the to-field is set with its default value:

 If the field value is incorrect (such as 13 for the month portion of *MDY form) or

» If a mapping error occurred because the data is not in the assumed form for the
PACKED or ZONED field

The default value may be NULL, some user-defined value, or the default data-type
[value.

I
| Copying complex objects

[You can copy from and to files that contain user-defined functions (UDFs),
| user-defined types (UDTs), DataLinks (DLs), and large objects (LOBSs). This topic
[describes AS/400 data management support for these objects.

| Copying files that contain user-defined functions

| You can specify CRTFILE(*YES) on the CPYF and CPYFRMQRYF commands
[when you copy files that contain user-defined functions (UDFs). UDFs do not get
| created with the new to-file.

[You cannot copy DDM files that contain user-defined functions to AS/400 systems
| running at Version 4 Release 3 or earlier.

| Copying files that contain user-defined types

You can specify CRTFILE(*YES) on the CPYF and CPYFRMQRYF commands

when you copy files that contain user-defined types (UDTs). If the from-file is an
SQL table, view, or index that contains a UDT, these commands create an SQL
table.

You can copy UDTs to other UDTs using FMTOPT(*MAP), provided that you are
copying from and to the same (identical) UDT. You can also copy from a non-UDT
to a UDT, provided that the source type is compatible. Data mapping is not allowed
if you are copying between UDTs that are not identical. Also, data mapping is not
allowed if you are copying from a UDT to a non-UDT.

| You cannot copy DDM files that contain user-defined types to AS/400 systems
[running at Version 4 Release 3 or earlier.

| Copying files that contain DataLinks

[You can specify CRTFILE(*YES) on the CPYF and CPYFRMQRYF commands
| when you copy files that contain DataLinks (DLs). If the from-file is an SQL table,
[view, or index that contains a DL, these commands create an SQL table.

| You cannot copy DDM files that contain DatalLinks to AS/400 systems running at
| Version 4 Release 3 or earlier.

DLs can be mapped only to other DLs. Therefore, if you specify *NONE, *MAP, or
*DROP on the FMTOPT parameter, the from-file and to-file must have
corresponding DLs. Truncation is not allowed. Shorter DLs, however, can be
converted to longer DLs.

Chapter 4. Copying files 117

A file can be linked only once on a system. Therefore, a copy that will perform
mapping or that requires the formats to be identical (that is, *NONE, *MAP, or
*DROP is specified on the FMTOPT parameter) will not be successful if
corresponding from-file and to-file fields are both FILE LINK CONTROL. Copies that
are performed using the *NOCHK parameter option are not restricted, but errors will
occur if a DL that references a linked file is copied to a DL that is FILE LINK
CONTROL.

When you specify CRTFILE(*YES) on the CPYF or CPYFRMQRYF command, and

the from-file contains a FILE LINK CONTROL DL field, the following statements are

true, depending on how you specify the FMTOPT parameter:

* If you specify *NONE, *MAP, or *DROP on the FMTOPT parameter, the file is
created, but an error message is issued and no 1/O is performed.

* If you specify *NOCHK or *CVTSRC on the FMTOPT parameter, the file is
created and I/O is attempted. The 1/O will be unsuccessful for any records that
contain a valid LINK.

The following table shows LINK scenarios associated with the CPYF command
when different FMTOPT values are used.

LINK status for from-field to to-field when How linking is performed

FMTOPT parameter is *MAP or *NONE

FILE LINK CONTROL to FILE LINK Not allowed. Files can be linked only once.
CONTROL

NO LINK CONTROL to FILE LINK Linking is performed.

CONTROL (with no truncation)

FILE LINK CONTROL to NO LINK No linking is performed.

CONTROL (with no truncation)

NO LINK CONTROL to NO LINK CONTROL | No linking is performed.

(with no truncation)

Copying files that contain large objects

118

You can specify CRTFILE(*YES) on the CPYF and CPYFRMQRYF commands
when you copy files that contain large objects (LOBSs). If the from-file is an SQL
table, view, or index that contains a LOB, these commands create an SQL table.

AS/400 supports three large object data types: Binary Large OBjects (BLOBS),
single-byte or mixed Character Large OBjects (CLOBSs), and Double-Byte Character
Large OBjects (DBCLOBs). When you copy files that contain these objects using
the Copy File (CPYF) command, you should consider the following restrictions and
requirements:

» LOB data is not copied when you copy from and to device files, when you copy
to *PRINT, or when you specify values of *NOCHK or *CVTSRC on the FMTOPT
parameter. In these cases, only the default buffer value for the LOB field is
copied, including "*POINTER". This is true even when you copy a file that
contains a LOB field to an identical file. Valid LOB data is copied only when you
have specified *NONE, *MAP, or *DROP on the FMTOPT parameter.

» LOB data is not copied when you copy to a tape or diskette. In these cases, only
the buffer value (including "*POINTER") is written to the tape or diskette. In
addition, if you copy from the tape or diskette back to the same file, you will
receive errors; this is because the file contains only the "*POINTER"” value and
not a valid pointer to actual LOB data.

Data Management V4R4

When you specify *UPDADD on the MBROPT parameter of the CPYF command,
the to-file can contain a LOB field. LOB fields are also updated when duplicate
key errors are encountered.

When you specify *CVTFLOAT or *CVTNULLS on the FMTOPT parameter of the
CPYF command, the to-file cannot contain a LOB field.

If you want to print a file that contains LOB fields, specify *PRINT on the TOFILE
parameter of the CPYF command. "*POINTER"” will appear in the print listing in
place of the LOB field data, and other non-LOB field data will also appear in the
listing. If you have not specified *PRINT on the TOFILE parameter and you
specified *COPIED, *EXCLUDE, or *ERROR on the PRINT parameter, then you
must specify *NOCHK or *CVTSRC on the FMTOPT parameter for the copy to
be allowed.

You cannot specify LOB fields on the INCCHAR and INCREL parameters. You
can specify *RCD or *FLD on the INCCHAR parameter, but only the fixed buffer
length is compared, and not any actual LOB data.

You cannot copy DDM files that contain LOB fields to AS/400 systems running at
Version 4 Release 3 or earlier.

The following tables show how LOBs are mapped to other data types during copy
operations. The first table shows the mapping when both fields contain LOB field
types. In the tables, consider the following guidelines:

The mapping of LOBs from and to DATE or TIME types is not allowed.
These mappings are valid only for FMTOPT(*MAP) except where noted.

There are similar data restrictions for large objects as those for normal character
data (single-byte, mixed, and double-byte).

Table 13. From-file and to-file mapping when both fields are large objects

Field A type Field B type Allowed and Data CCSID or attributes CCSIDs Conversion
copy direction translation
Field A Field B performed
BLOB BLOB Y* <—> 65535 65535 Same No
CLOB CLOB Y* <—> Character Character Same No
CLOB CLOB Y* <—> Open Open Same No
DBCLOB DBCLOB Y* <—> Graphic Graphic Same No
DBCLOB DBCLOB Y* <—> UCS2 UCSs2 Same No
CLOB CLOB Y <—> Character Character Different Yes
CLOB CLOB Y <—> Open Open Different Yes
DBCLOB DBCLOB Y <—> Graphic Graphic Different Yes
DBCLOB DBCLOB Y <—> UCs2 UCS2 Different Yes
CLOB CLOB Y <—> Character Open Different Yes
CLOB DBCLOB N Character Graphic Different —
CLOB DBCLOB Y <—> Open Graphic Different Yes
CLOB DBCLOB Y <—> Character UCS2 Different Yes
CLOB DBCLOB Y <—> Open ucs2 Different Yes
DBCLOB DBCLOB Y <—> Graphic UCSs2 Different Yes
BLOB CLOB Y <—> 65535 Character Different No
BLOB CLOB Y <—> 65535 Open Different No
BLOB DBCLOB N 65535 Graphic Different —

Chapter 4. Copying files

119

Table 13. From-file and to-file mapping when both fields are large objects (continued)

Field A type Field B type Allowed and Data CCSID or attributes CCSIDs Conversion
copy direction - - translation
Field A Field B performed

BLOB DBCLOB N 65535 UCSs2 Different —

Note: * These mappings are valid for FMTOPT(*MAP), FMTOPT(*NONE), and FMTOPT(*DROP).

The second table shows the mapping between fixed-length data types and large

objects.

Table 14. From-file and to-file mapping between fixed-length data types and large objects

Field A type Field B type Allowed and Data CCSID or attributes CCSIDs Conversion
copy direction translation
Field A Field B performed
CHAR BLOB Y <—> Character 65535 Different No
Open BLOB Y <—> Open 65535 Different No
Either BLOB Y <—> Either 65535 Different No
Only BLOB Y <—> Only 65535 Different No
Graphic BLOB N Graphic 65535 Different —
ucs2 BLOB N ucs2 65535 Different —
Character CLOB Y <—> Character Character Same/Different No/Yes
Open CLOB Y <—> Open Character Different Yes
Either CLOB Y <—> Either Character Different Yes
Only CLOB Y <—> Only Character Different Yes
Graphic CLOB N Graphic Character Different —
ucs2 CLOB Y <—> uCs2 Character Different Yes
Character CLOB Y <—> Character Open Different Yes
Open CLOB Y <—> Open Open Same/Different No/Yes
Either CLOB Y <—> Either Open Different Yes
Only CLOB Y <—> Only Open Different Yes
Graphic CLOB Y <—> Graphic Open Different Yes
UCs2 CLOB Y <—> uUCs2 Open Different Yes
Character DBCLOB N Character Graphic Different -
Open DBCLOB Y <—> Open Graphic Different Yes
Either DBCLOB Y <—> Either Graphic Different Yes
Only DBCLOB Y <—> Only Graphic Different Yes
Graphic DBCLOB Y <—> Graphic Graphic Same/Different No/Yes
UCs2 DBCLOB Y <—> UCs2 Graphic Different Yes
Character DBCLOB Y <—> -65535 ucs2 Different Yes
Open DBCLOB Y <—> -65535 UCS2 Different Yes
Either DBCLOB Y <—> -65535 ucs2 Different Yes
Only DBCLOB Y <—> -65535 UCS2 Different Yes
Graphic DBCLOB Y <—> Graphic ucs2 Different Yes
UCs2 DBCLOB Y <—> UCS2 UCS2 Same/Different No/Yes
Character DBCLOB N 65535 uCs2 Different -
120 Data Management V4R4

Table 14. From-file and to-file mapping between fixed-length data types and large objects (continued)

Field A type Field B type Allowed and Data CCSID or attributes CCSIDs Conversion

copy direction - - translation

Field A Field B performed
Open DBCLOB N 65535 UCs2 Different -
Either DBCLOB N 65535 ucs2 Different -
Only DBCLOB N 65535 UCSs2 Different -

The second table shows the mapping variable-length data types and large object.

Table 15. From-file and to-file mapping between variable-length data types and large objects

Field A type Field B type Allowed and Data CCSID or attributes CCSIDs Conversion
copy direction translation
Field A Field B performed
VARCHAR BLOB Y <—> Character 65535 Different No
VAROPEN BLOB Y <—> Open 65535 Different No
VAREITH BLOB Y <—> Either 65535 Different No
VARONLY BLOB Y <—> Only 65535 Different No
VARGRPH BLOB N Graphic 65535 Different —
VARUCS2 BLOB N UCs2 65535 Different —
VARCHAR CLOB Y <—> Character Character Same/Different No/Yes
VAROPEN CLOB Y <—> Open Character Different Yes
VAREITH CLOB Y <—> Either Character Different Yes
VARONLY CLOB Y <—> Only Character Different Yes
VARGRPH CLOB N Graphic Character Different —
VARUCS2 CLOB Y <—> UCS2 Character Different Yes
VARCHAR CLOB Y <—> Character Open Different Yes
VAROPEN CLOB Y <—> Open Open Same/Different No/Yes
VAREITH CLOB Y <—> Either Open Different Yes
VARONLY CLOB Y <—> Only Open Different Yes
VARGRPH CLOB Y <—> Graphic Open Different Yes
VARUCS2 CLOB Y <—> UCs2 Open Different Yes
VARCHAR DBCLOB N Character Graphic Different -
VAROPEN DBCLOB Y <—> Open Graphic Different Yes
VAREITH DBCLOB Y <—> Either Graphic Different Yes
VARONLY DBCLOB Y <—> Only Graphic Different Yes
VARGRPH DBCLOB Y <—> Graphic Graphic Same/Different No/Yes
VARUCS2 DBCLOB Y <—> UCs2 Graphic Different Yes
VARCHAR DBCLOB Y <—> 65535 UcCs2 Different Yes
VAROPEN DBCLOB Y <—> -65535 UCs2 Different Yes
VAREITH DBCLOB Y <—> -65535 UcCs2 Different Yes
VARONLY DBCLOB Y <—> -65535 UCs2 Different Yes
VARGRPH DBCLOB Y <—> Graphic UCSs2 Different Yes
VARUCS2 DBCLOB Y <—> UCs2 ucs2 Same/Different No/Yes

Chapter 4. Cop

ying files

121

Table 15. From-file and to-file mapping between variable-length data types and large objects (continued)

Field A type Field B type Allowed and Data CCSID or attributes CCSIDs Conversion

copy direction - - translation

Field A Field B performed
VARCHAR DBCLOB N 65535 UCs2 Different -
VAROPEN DBCLOB N 65535 uCs2 Different -
VAREITH DBCLOB N 65535 UCSs2 Different -
VARONLY DBCLOB N 65535 uCs2 Different -

Copy between different systems

You can use the following commands to import (load) or export (unload) data to and

from AS/400:

e The Copy From Import File (CPYFRMIMPF) command
data from ("import”) an import file to the to-file.
For more information on the CPYFRMIMPF command, see FNates on thd
CPYERMIMPE command?i and [Restrictions on the CPYERMIMPE command” onl
hage 123. Depending on what type of file the import file is, there are different
steps to use when running CPYFRMIMPF. See the following topics for more
information on the appropriate steps:

maps or parses the

The CPYFRMIMPF command also supports a parallel data loader to copy
information from an import file to a to-file using multiple jobs during the copy. To
use multiple jobs, the system must have the Symmetric Multiprocessing Product
(SMP). See [Parallel data loader suppart ta use with the CPYERMIMPH
command” an page 129 for more information on Parallel Data Loader support.

* The Copy To Import File (CPYTOIMPF) command copies the data from the
from-file to an import file. You can then move the import file (or file to be
exported) to your platform by any method you choose. Your system then handles

the data from the import file in one of two ways. See FHandling data from thd
import file” on page 129 for more information.

The user can also specify a stream file, and the CPYTOIMPF will copy the data
to the stream file. For more information on the CPYTOIMPF command, see

Notes on the CPYFRMIMPF command

The authority needed to perform the copy is similar to the authority requirements for
all other copies.

The from-file can be any of the following:
* A stream file

* ADDM file

* Atape file

* A source physical file

122 Data Management V4R4

» A distributed physical file

* A program described physical file

* A single format logical file

* An externally described physical file with one field. The one field cannot be a
numeric data type.

The to-file can be any of these:

* A source file

« A DDM file

» A distributed physical file

* A program described physical file

* An externally described physical file

The field definition file can be any of these:

* A source physical file

 ADDM file

* A program described physical file

* An externally described physical file with one field

The error file can be any of the following:

* A source physical file

+ ADDM file

* A program described physical file

* An externally described physical file with one field

Note: The format of the error file and from-file must be the same.

Restrictions on the CPYFRMIMPF command

The following restrictions apply to the CPYFRMIMPF command:
* The data type of the from-file can be one of two types:
— A source physical file

— A physical file with one field with a data type of CHARACTER, IGC OPEN,
IGC EITHER, IGC ONLY, GRAPHIC, or variable length

* The copied records do not have the same relative record numbers in the to-file
as in the from-file.

» Create the to-file prior to copying.
* The command restricts the correct usage for delimiters.
* The to-file and from-file cannot be the same file.

— If a record from the from-file cannot be imported, the process continues based
on the Errors Allowed (ERRLVL) parameter.

— If the from-file is a stream file, a temporary database file is created in
QRECOVERY. The naming convention for these types of files is
QACPXXXXXX where the system fills in XXXXXX.

— If the from-file is a source file, the system does not copy the first 12 bytes of
the record (Sequence field and Date field). If the to-file is a source file, the
system sets the first 12 bytes of the to-file’s data (Sequence field and Date
field) to zeros.

Chapter 4. Copying files 123

You can use this command on files that contain user-defined types (UDTs) and
user-defined functions (UDFs). You cannot use this command on files that contain
large objects (LOBs) or DatalLinks (DLS).

(CPYFRMIMPF) Importing data to the AS/400 when the from-file is a
database file or DDM file

124

The from-file contains the data you want to import to AS/400. To import data for a
database file or DDM file, follow these steps:

1.

5.

Create an import file for the data that you can copy to a DB2 for AS/400
externally described file. The import file can be a database source file, an
externally described database file which has one field, or a program described
physical file. If the file has one field, the data type must be CHARACTER, IGC
OPEN, IGC EITHER, IGC ONLY, GRAPHIC, or variable length. The record
length of the import file should be long enough to contain the longest record of
the file being sent to the AS/400.

Send the data to the import file or from-file. Sending the data into the import file
causes the necessary ASCII to EBCDIC data conversions to occur. There are
several ways to import the data such as:

* TCP/IP file transfer (text transfer)
* CA/400 support (file transfer, ODBC)
* CPYFRMTAP command (copy from tape file)

Create a DB2 for AS/400 externally described database file, or DDM file, which
will contain the resultant data of the import file.

Use the CPYFRMIMPF command to copy (translate or parse the records) from
the import file to the to-file. For importing large files, you can choose to have the
import file split-up into multiple parts so that each part can be processed in

parallel on an N-way multi-processor system. See tParallel data loader support
to use with the CPYERMIMPE command” on page 125 for more information

about using multiple jobs during the copy.

You should also use the following tTips to imprave copy perfarmance’].

Tips to improve copy performance

Follow these steps to inprove the performance of the CPYFRMIMPF command:

1.
2.
3.

Delete any logical keyed files based on the TOFILE.
Remove all constraints and triggers of the TOFILE.

Ensure the FROMFILE records will be copied correctly by attempting to copy a
few of the records. Copy a few of the records using the FROMRCD and number
of records option.

Use the ERRLVL(*NOMAX) parameter after you know you can copy the data
correctly.

When the ERRLVL(*NOMAX) parameter is used, record blocking increases
performance. If an error in writing a record occurs during record blocking, the
number of records listed as being copied in the completion message, CPC2955,
may not be accurate.

Data Management V4R4

(CPYFRMIMPF) Importing data to AS/400 when the import file is a
stream file

If the import file is a stream file, use the following steps for importing data to the
AS/400:

1. Create a DB2 for AS/400 externally described database file, or DDM file, which
will contain the resultant data of the import file.

2. Use the CPYFRMIMPF command to copy (translate or parse the records) from
the import file to the to-file. For importing large files, you can have the import file
split-up into multiple parts. The multiple parts then process in parallel.

3. When the stream file (the import file) has records to copy to the externally
described database or DDM file (the to-file), a temporary file is created to
contain the job or jobs from that stream file. The temporary file, created by the
system, acts as an intermediate place for holding records, and then copying
them on to the to-file. The system then deletes the temporary file when the copy
function from the temporary file to the database or DDM files completes.

Parallel data loader support to use with the CPYFRMIMPF command

The Copy From Import File (CPYFRMIMPF) supports copying the data in parallel
from an import file to a to-file using multiple jobs during the copy. This allows you to
copy data files from other platforms into a to-file quickly and easily. This is
especially useful for those who use data warehousing. To use multiple jobs, your
system must have the Symmetric Multiprocessing Product (SMP).

The number of jobs you use during the copy is determined by the
DEGREE(*NBRTASKS) parameter of the Change Query Attributes (CHGQRYA)
command. If the from-file has less than 50,000 records, only one job will be used
regardless of the *NBRTASKS value.

The CPYFRMIMPF command (with the parallel data loader support) essentially
breaks the import file into smaller portions or blocks. Each of these smaller portions
is submitted in parallel, so the entire file processes at the same time. (This
eliminates the latency of sequential processing.)

To maintain the same relative record numbers of the from-file in the to-file, use only
one job for the copy. Specify DEGREE(*NONE).

Handling data from the import file

The Copy From Import File (CPYFRMIMPF) reads data from an import file and
copies the data to a to-file. The data of the import file can be formatted by
delimiters or in a fixed format.

A tDelimited Import File” on page 126 has a series of characters (delimiters) that

define where fields begin and end. The parameters of the command define which
characters are used for delimiters.

A LEixed Earmatted Impart File” an page 128 requires the user to define a Field
Definition File that defines the format of the import file. The Field Definition File
defines where fields begin, end, and are null.

Chapter 4. Copying files 125

Delimited Import File

The following characters and data types interpret the import file's data for a
delimited import file:

Blanks

Blanks are treated in the following ways:

All leading and trailing blanks are discarded for character fields unless
enclosed by string delimiters.

A field of all blanks is interpreted as a null field for character data.
You cannot embed blanks within numeric fields.
You cannot select a blank as a delimiter.

Null Fields
A null field is defined as:

Two adjacent field delimiters (no data in between).

A field delimiter followed by a record delimiter (no data in between), an
empty string.
A field of all blanks

If the field is null, the following is true:

Delimiters

If the record’s output field is not nullable and the import is a null field, the
record is not to be copied, and an error is signaled.

A delimiter cannot be a blank

A string delimiter cannot be the same as a field delimiter, record
delimiter, date separator, or time separator.

A string delimiter can enclose all non-numeric fields (character, date,
time, and so forth). The string delimiter character should not be contained
within the character string.

A field delimiter and a record delimiter can be the same character.
The defaults for delimiters are as follows:

String is: " Double quote.

Field is: , Comma.

Decimal point is: . Period.

Record is *EOR End of record.

If the data type of the from is CHARACTER, OPEN, EITHER, or ONLY,
all double byte data must be contained within string delimiters or shift
characters (for OPEN, EITHER, ONLY data type).

Numeric Field

Numeric fields can be imported in decimal or exponential form.

Data to the right of the decimal point may be truncated depending on the
output data format.

Decimal points are either a period or a comma (command option).
Signed numeric fields are supported, + or -.

Character or Varcharacter Fields

126 Data Management V4R4

Fields too large to fit in the output fields are truncated (right). The system
sends a diagnostic message.

* An empty string is defined as two string delimiters with no data between
them.

» For the system to recognize a character as a starting string delimiter, it
must be the first non-blank character in the field. For example, 'abc’ with
" as the delimiter is the same as abc.

» Data after an ending string delimiter and before a field or record delimiter
is discarded.

IGC or VarlGC Fields

* The system copies data from the from-file to the to-file. If any of the data
is not valid, the system generates a mapping error.

» Data located between the Shift Out and Shift In characters is treated as
double-byte data. This data is also not parsed for delimiters. The Shift
characters in this case become "string delimiters”.

Graphic, VarGraphic Fields
The system copies the data from the from-file to the to-file.

CCSIDs

* The data from the from-file is read into a buffer by the CCSID of the
from-file. The data in the buffer is checked and written to the to-file. The
CCsSID of the open to-file is set to the value of the from-file, unless a
to-file CCSID is used. If a to-file CCSID is used, the data is converted to
that CCSID. If the from-file is a tape file, and the FROMCCSID(*FILE) is
specified, the following limits apply:

— The job CCSID is used or
— The from-file CCSID is requested by the user

* The character data (delimiters) passed on the command are converted to
the CCSID of the from file. This allows the character data of the from-file
and command parameters to be compatible.

Date Field

» All date formats supported by AS/400 can be imported (*ISO, *USA,
*EUR, *JIS, *MDY, *DMY, *YMD, *JUL, and *YYMD).

* You can copy a date field to a timestamp field.

Time Field

» All time formats supported by AS/400 can be imported (*ISO, *USA,
*EUR, *JIS, *HMS).

* You can copy a time field to a timestamp field.

Date and Time Separators
The system supports all valid separators for date and time fields.

Timestamp Field
Timestamp import fields must be 26 bytes. The import ensures that periods
exist in the time portion, and a dash exists between the date and time
portions of the timestamp.

Number of Fields Mismatch
If the from-file or to-file do not have the same number of fields, the data is
either truncated to the smaller to-file size, or the extra to-file fields will
receive a null value. If the fields cannot contain null values, the system
issues an error message.

Multiple Jobs
The number of jobs that are used to copy the data depends on the

Chapter 4. Copying files 127

DEGREE(*NBRTASKS) parameter of the CHGQRYA command. When
multiple jobs are used, the system uses batch jobs to copy the data. The
user can change, hold or end these batch jobs. The copy does not
complete until all the started batch jobs complete.

The relative record numbers can be maintained only if a single job is used
and the import file does not contain any deleted records. If the from-file is a
distributed physical file or logical file, the system performs the copy in a
single process.

Files with less than 50,000 records use only one job.

Fixed Formatted Import File

Below is an example of a Field Definition File that describes the fixed formatted file:

_***/

Field Definition File */

-***/
- Description: This Field Definition File

—kkk*k

- defines the import's file */
- (FROMFILE) field start and end positions. */
_***/
- (FROMFILE) field start and end positions. x/
-FILE MYLIB/MYFILE */
fieldl 1 12 13

field2 14 24 0

field3 25 55 56

fieldd 78 89 90

field5 100 109 0

field6 110 119 120

field7 121 221 0

*END

The following is a brief explanation of the
Field Definition File format:

Comment Tine

*END End of definition, this must be included
Field Starting Ending Null
Name Position Position Character Position
fieldl 1 12 13
field2 14 24 None
field3 25 55 56
fieldd 78 89 90
fields 100 109 None
field6 110 119 120
field7 121 221 None
Field Name
This name is the name of the to-file field name.
Starting Position

This is the starting position for the field in the import file of each record.

This is the byte position.

Ending Position
This is the ending position for the field in the import file of each record. This

128 Data Management V4R4

is the byte

position.

Null Character Position
This is the position for the NULL value for the field in the import file of each
record. The value zero specifies that NULL does not have a value. The
value in the import file can be 'Y’ or 'N’.

"Y' means the field is NULL. 'N' means the field is not NULL.

Each column must be separated by a blank character.
Notes on the CPYTOIMPF command

The Copy To Import File (CPYTOIMPF) command reads data from a user from-file
and copies it into an import file. The number of jobs used for copy is one. The data
of the import file can be formatted by delimiters or it can be in a fixed format. A

' imited i i 1 has a series of
characters (delimiters) that are used to define where fields begin and end. See
[Restrictions for the CPYTQIMPE cammand” an page 13d for more information.

The parameters of the command define which characters are used for delimiters. A

fixed format import file uses a fixed format. For more information on this, see
‘Copving i ile | I P QIMP ”

The data in the from-file is read from the formatted database file and written to the
import file with the parameters from the command.

The from-file can be any of these:

* A source physical file

* A program described physical file

» A distributed physical file

* Asingle format logical file

* An externally described physical file

The to-file can be any of these:

* a stream file

* a source physical file

» a program described physical file

» a distributed physical file with one non-numeric field

* an externally described physical file with one non-numeric field

Notes on the delimited import file (CPYTOIMPF command)

Null Fields
If a field is null, the field contains two adjacent field delimiters (no data in
between).
Delimiters
* A delimiter cannot be a blank.
* A period cannot be a character string delimiter.
* A string delimiter cannot be the same as a field or record delimiter.
« Afield and record delimiter can be the same character.
* The defaults for delimiters are as follows:
— String is: " Double quote.

Chapter 4. Copying files 129

— Field is: , Comma.
— Decimal point is: . Period.
— Record is: *EOR End of record.

Numeric Fields
Decimal points are either a period or a comma (command option).

Graphic Fields
The string delimiter is placed around all graphic data. If graphic data is
contained in the file and the string delimiter is the *NONE value, an error is
signaled.

All Fields
The CAST function in SQL copies the data from the from-file to the to-file.
All data is copied and the relative record numbers of the from-file and to-file
are the same, unless the from-file contains deleted records. Deleted records
are not copied.

CCSIDs
The data from the from-file is read into the to-file’s CCSID.

Date Fields
All date formats supported by AS/400 can be exported (*ISO, *USA, *EUR,
*JIS, *MDY, *DMY, *YMD, *JUL, *YYMD).

Time Fields
All time formats supported by AS/400 can be exported (*ISO, *USA, *EUR,
*JIS, *HMS).

Date and Time Separators
All valid separators are supported for date and time fields.

Timestamp Fields
Timestamp export fields must be 26 bytes.

Restrictions for the CPYTOIMPF command

The following restrictions apply to the CPYTOIMPF command:
* The command restricts the correct usage for delimiters.
* The data type of a database file for the to-file can be any of the following:

— CHARACTER, IGC OPEN, IGC EITHER, IGC ONLY, GRAPHIC, or variable
length. Its length must be capable of containing the data of the from-file,
separators, and any data conversions.

— The to-file and from-file cannot be the same file.
— The from-file cannot be a multi-formatted logical file.
 If the to-file’s record length is not long enough, an error is signaled.

You can use this command on files that contain user-defined types (UDTs) and

user-defined functions (UDFs). You cannot use this command on files that contain
large objects (LOBs) or DataLinks (DLS).

130 Data Management V4R4

Copying data to the import file in a fixed format (CPYTOIMPF
command)

When you copy data to the import file in a fixed format (DTAFMT(*FIXED)), each
field of the file is copied. A null indicator on the command NULLS(*YES) places

either a 'Y’ or "N’ following the field data in the to-file indicating if the field is null or
not.

Chapter 4. Copying files 131

132 Data Management V4R4

Chapter 5. Working with spooled files

Spooling functions help system users to manage input and output operations more

efficiently. The system supports two types of spooling:

« FOutput spoolingl sends job output to disk storage, rather than directly to a
printer or diskette output device. Output spooling allows the job that produces the
output to continue processing without consideration for the speed or availability of
output devices.

« Hnput spooling” on page 143 accepts job input, stores the input data in disk

storage, and allows the input device to be used independently of when the job is
actually processed.

Output spooling may be used for both printer and diskette devices; input spooling
applies to diskette and database file input.

This chapter discusses both output and input spooling, including advanced output
spooling support, such as using multiple output queues and redirecting files. For
more information about spooling support for printer and diskette devices, see the
Printer Device Programming book and the Tape and Diskette Device Programming
book, respectively.

Output spooling

Output spooling allows the system to produce output on multiple output devices,
such as printer and diskette devices, in an efficient manner. It does this by sending
the output of a job destined for a printer or diskette to disk storage. This process
breaks a potential job limitation imposed by the availability or speed of the output
devices.

Spooling is especially important in a multiple-user environment where the number of
jobs running often exceeds the number of available output devices. Using output
spooling, the output can be easily redirected from one device to another.

The main elements of output spooling are:

Device description
A description of the printer or diskette device

Spooled file
A file containing spooled output records that are to be processed on an
output device

Output queue
An ordered list of spooled files

Writer A program that sends files from an output queue to a device

Application program
A high-level language program that creates a spooled file using a device file
with the spooling attribute specified as SPOOL(*YES)

Device file
A description of the format of the output, and a list of attributes that
describe how the system should process the spooled file

© Copyright IBM Corp. 1997, 1999 133

Eigure 14 shows the relationship of these spooling elements.

Program

De_/ice —> Writer
File

Device

Spooled (Printer Device
File or Description
Diskette)

Spooled
File

Spooled
File Output

RSLH164-1

Figure 14. Relationship of Output Spooling Elements

Output spooling functions are performed by the system without requiring any special
operations by the program that produces the output. When a device file is opened
by a program, the operating system determines whether the output is to be spooled.
When a printer or diskette device file specifying spooling is opened, the spooled file
containing the output of the program is placed on the appropriate output queue in
the system.

A spooled file can be made available for printing when the printer file is opened,
when the printer file is closed, or at the end of the job. A printer writer is started in
the spooling subsystem to send the records to the printer. The spooled file is
selected from an output queue. The same general description applies for spooled
diskette files.

Device Descriptions

Device descriptions must be created for each printer and diskette device to define
that device to the system. Printer device descriptions are created using the Create
Device Description for Printer (CRTDEVPRT) command; diskette device
descriptions are created using the Create Device Description for Diskette
(CRTDEVDKT) command. See the Local Device Configuration book for more
information about specifying device descriptions.

134 Data Management V4R4

Summary of Spooled File Commands

The following commands may be used to work with spooled files. For detailed
descriptions of the commands, see the CL Reference (Abridged).

CHGSPLFA
Change Spooled File Attributes: Allows you to change some attributes of a
spooled file, such as the output queue name or the number of copies
requested, while the spooled file is on an output queue.

CPYSPLF
Copy Spooled File: Copies a spooled file to a specified database file. The
database file may then be used for other applications, such as those using
microfiche or data communications.

DLTSPLF
Delete Spooled File: Deletes a spooled file from an output queue.

DSPSPLF
Display Spooled File: Allows you to display data records of a spooled file.

HLDSPLF
Hold Spooled File: Stops the processing of a spooled file by a spooling
writer. The next spooled file in line will be processed.

RLSSPLF
Release Spooled File: Releases a previously held spooled file for
processing by a spooling writer.

SNDNETSPLF
Send Network Spooled File: Sends a spooled file to another system user on
the Systems Network Architecture distribution services (SNADS) network.

SNDTCPSPLF
Send TCP/IP Spooled File: Sends a spooled file to another system user
using TCP/IP.

WRKSPLF
Work with Spooled Files: Allows you to display or print a list of spooled files
on the system.

WRKSPLFA
Work with Spooled File Attributes: Shows the current attributes of a spooled
file.

Locating Your Spooled Files

File Redirection

The Work with Spooled Files (WRKSPLF) command can be used to display or print
all the spooled files that you have created. This is the easiest way to find your
spooled files if you do not know the name of the output queue where they have
been placed. To find all spooled files created by your current job, use the Work with
Job (WRKJOB) command and choose Option 4 to work with the spooled files.

File redirection occurs when a spooled file is sent to an output device other than the
one for which it was originally intended. File redirection may involve devices that
process different media (such as printer output sent to a diskette device) or devices
that process the same type of media but are of different device types (such as 5219
Printer output sent to a 4224 Printer).

Chapter 5. Working with spooled files 135

Depending on the new output device for the spooled file, the file may be processed
just as it would have been on the originally specified device. However, differences
in devices often cause the output to be formatted differently. In these cases, the
system sends an inquiry message to the writer's message queue to inform you of
the situation and allow you to specify whether you want printing to continue. For
more information about print file redirection, see the Printer Device Programming
book.

Output Queues

Batch and interactive job processing may result in spooled output records that are
to be processed on an output device, such as a printer or diskette drive. These
output records are stored in spooled files until they can be processed. There may
be many spooled files for a single job.

When a spooled file is created, the file is placed on an output queue. Each output
queue contains an ordered list of spooled files. A job can have spooled files on one
or more output queues. All spooled files on a particular output queue should have a
common set of output attributes, such as device, form type, and lines per inch.
Using common attributes on an output queue reduces the amount of intervention
required and increases the device throughput.

The following lists the parameters on the Create Output Queue (CRTOUTQ)
command and what they specify:

* MAXPAGES: Specifies the maximum spooled file size in pages that is allowed to
be printed between a starting and ending time of day.

* AUTOSTRWTR: Specifies the number of writers that are started automatically to
this output queue.

« DSPDTA: Whether users without any special authority but who do have *USE
authority to the output queue can display, copy, or send the contents of spooled
files other than their own. By specifying *OWNER for DSPDTA, only the owner of
the file or user with *SPLCTL can display, copy, or send a file.

* JOBSEP: How many, if any, job separator pages are to be printed between the
output of each job when the output is printed.

« DTAQ: The data queue associated with this output queue. If specified, an entry is
sent to the data queue whenever a spooled file goes to Ready Status on the
queue.

* OPRCTL: Whether a user having job control authority can control the output
queue (for example, if the user can hold the output queue).

* SEQ: Controls the order in which spooled files will be sorted on the output
gueue. See L i - for more
information.

* AUTCHK: Specifies what type of authority to the output queue will enable a user
to control the spooled files on the output queue (for example, enable the user to
hold the spooled files on the output queue).

* AUT: Public authority. Specifies what control users have over the output queue
itself.

e TEXT: Text description. Up to 50 characters of text that describes the output
queue.

For a complete list of parameters for the CRTOUTQ command, see the CL
Reference (Abridged).

136 Data Management V4R4

Summary of Output Queue Commands

The following commands may be used to create and control output queues. For
detailed descriptions of the commands, see the CL Reference (Abridged).

CHGOUTQ
Change Output Queue: Allows you to change certain attributes of an output
gueue, such as the sequence of the spooled files on the output queue.

CLROUTQ
Clear Output Queue: Removes all spooled files from an output queue.

CRTOUTQ
Create Output Queue: Allows you to create a new output queue.

DLTOUTQ
Delete Output Queue: Deletes an output queue from the system.

HLDOUTQ
Hold Output Queue: Prevents all spooled files on a particular output queue
from being processed by a spooling writer.

RLSOUTQ
Release Output Queue: Releases a previously held output queue for
processing by a spooling writer.

WRKOUTQ
Work with Output Queue: Shows the overall status of all output queues, or
the detailed status of a specific output queue and its spooled files.

WRKOUTQD
Work with Output Queue Description: Shows descriptive information for an
output queue.

Default Printer Output Queues

When a printer is configured to the system, the system automatically creates the
printer’s default output queue in library QUSRSYS. The output queue is given a text
description of 'Default output queue for printer Xxxxxxxxxxx', Where xXXXXXXXXX
is the name of the printer.

The AUT parameter for the output queue is assigned the same value as that
specified by the AUT parameter for the printer device description. All other
parameters are assigned their default values. Use the Change Command Default
(CHGCMDDFT) command to change the default values used when creating output
queues with the CRTOUTQ command.

The default output queue for a printer is owned by the user who created the printer

device description. In the case of automatic configuration, both the printer and the
output queue are owned by the system profile QPGMR.

Default System Output Queues
The system is shipped with the defaults on commands to use the default output
queue for the system printer as the default output queue for all spooled output. The
system printer is defined by the QPRTDEV system value.

When a spooled file is created by opening a device file and the output queue
specified for the file cannot be found, the system will attempt to place the spooled

Chapter 5. Working with spooled files 137

file on output queue QPRINT in library QGPL. If for any reason the spooled file
cannot be placed on output queue QPRINT, an error message will be sent and the
output will not be spooled.

The following output queues are supplied with the system:

QDKT Default diskette output queue

QPRINT
Default printer output queue

QPRINTS
Printer output queue for special forms

QPRINT2
Printer output queue for 2-part paper

Creating Your Own Output Queues

You can create output queues for each user of the system. For example:

CRTOUTQ OUTQ(QGPL/JONES) +
TEXT('Output queue for Mike Jones')

Order of Spooled Files on an Output Queue

138

The order of spooled files on an output queue is mainly determined by the status of
the spooled file. A spooled file that is being processed by a writer may have one of
the following statuses:

Status Description

PRT Printing

WTR Writer

PND Pending to be printed
SND Sending to another system

Spooled files with these statuses are placed at the top of the output queue. A
spooled file being processed by the writer may have a held (HLD) status if a user
has held the spooled file, but the writer is not yet finished processing the file. All
other files with a status of RDY are listed on the output queue after the file being
processed by a writer, followed by files with statuses other than RDY.

Within each type of spooled file (RDY and non-RDY files) the following information
causes a further ordering of the files. The items are listed in sequence based on the
amount of importance they have on the ordering of spooled files, with the first item
having the most importance.

1. The output priority of the spooled file.
2. A date and time field (time stamp).

For output queues with SEQ(*JOBNBR) specified, the date and time that the job
which created the spooled file entered the system are the date and time field. (A
sequential job number is also assigned to the job when it enters the system.)

For output queues with SEQ(*FIFO) specified, the date and time field is set to
the current system date and time when any of the following occur:

* A spooled file is created by opening a device file.
* The output priority of the job which created the spooled file is changed.

Data Management V4R4

* The status of the spooled file changes from RDY to HLD, SAV, OPN, or CLO;
or the status changes from HLD, SAV, OPN, or CLO to RDY.

* A spooled file is moved to another output queue which has SEQ(*FIFO)
specified.
3. The SCHEDULE parameter value of the spooled file.

Files with SCHEDULE(*JOBEND) specified are grouped together and placed
after other spooled files of the same job that have SCHEDULE(*IMMED) or
SCHEDULE(*FILEEND) specified.

4. The spool number of the file.

Because of the automatic sorting of spooled files, different results occur when
SEQ(*JOBNBR) is specified for an output queue than when SEQ(*FIFO) is
specified. For example, when a spooled file is held and then immediately released
on an output queue with SEQ(*JOBNBR) specified, the file will end up where it
started; but if the same file were held and then immediately released on an output
queue with SEQ(*FIFO) specified, the file would be placed at the end of the
spooled files which have the same priority and a status of RDY.

Using Multiple Output Queues

You may want to create multiple output queues for:
* Special forms printing

* Output to be printed after normal working hours
* QOutput that is not printed

An output queue can be created to handle spooled files that need only to be
displayed or copied to a database file. Care should be taken to remove
unneeded spooled files.

* Special uses
For example, each programmer could be given a separate output queue.

* Output of special IBM files
You may want to consider separate queues for the following IBM-supplied files:
— QPJOBLOG: You may want all job logs sent to a separate queue.

— QPPGMDMP: You may want all program dumps sent to a separate queue so
you can review and print them if needed or clear them daily.

— QPSRVDMP: You may want all service dumps sent to a separate queue so
the service representative can review them if needed.

Output Queue Recovery

If a job that has produced spooled files is running when the job or system stops
abnormally, the files remain on the output queue. Some number of records written
by active programs may still be in main storage when the job ends and will be lost.
You should check these spooled files to ensure that they are complete before you
decide to continue using the files.

You can use the SPLFILE parameter on the End Job (ENDJOB) command to
specify if all spooled files (except QPJOBLOG) created by the job are to be kept for
normal processing by the writer, or if these files are to be deleted.

If an abnormal end occurs, the spooled file QPJOBLOG will be written at the next
IPL of the system.

Chapter 5. Working with spooled files 139

If a writer fails while a spooled file is being printed, the spooled file remains on the
output queue intact.

If an output queue becomes damaged such that it cannot be used, you will be
notified by a message sent to the system operator message queue. The message
will come from a system function when a writer or a job tries to put or take spooled
files from the damaged queue.

A damaged output queue can be deleted using the Delete Output Queue
(DLTOUTQ) command, or it will be deleted by the system during the next IPL. After
a damaged output queue is deleted, all spooled files on the damaged output queue
are moved to output queue QSPRCLOUTAQ in library QRCL. This is done by the
QSPLMAINT system job, which issues completion message CPC3308 to the
QSYSOPR message queue when all spooled files have been moved to the
QSPRCLOUTQ output queue.

After the damaged output queue is deleted, it can be created again by entering the
Create Output Queue (CRTOUTQ) command. Spooled files on output queue
QSPRCLOUTQ can be moved back to the newly created output queue using the
Change Spooled File Attributes (CHGSPLFA) command.

Note: If the output queue that was damaged was the default output associated with
a printer, the system will automatically re-create the output queue when it is
deleted. This system-created output queue will have the same public
authority as specified for the device and default values for the other
parameters. After the system re-creates the output queue, you should verify
its attributes are correct and change them as needed. The output queue can
be changed using the Change Output Queue (CHGOUTQ) command. When
a damaged output queue associated with a printer is deleted and created
again, all spooled files on the damaged queue will be moved to the
re-created output queue. This is done by the QSPLMAINT system job, which
issues completion message CPC3308 to the QSYSOPR message queue
when all spooled files have been moved.

Spooling Writers

140

A writer is an OS/400 program that takes spooled files from an output queue and
produces them on an output device. The spooled files that have been placed on a
particular output queue will remain stored in the system until a writer is started to
the output queue.

The writer takes spooled files one at a time from the output queue, based on their
priority. The writer processes a spooled file only if its entry on the output queue
indicates that it has a ready (RDY) status. You can display the status of a particular
spooled file using the Work with Output Queue (WRKOUTQ) command.

If the spooled file has a ready status, the writer takes the entry from the output
queue and prints the specified job and/or file separators, followed by the output
data in the file. If the spooled file does not have a ready status, the writer leaves
the entry on the output queue and goes on to the next entry. In most cases the
writer will continue to process spooled files (preceded by job and file separators)
until all files with a ready status have been taken from the output queue.

Data Management V4R4

The AUTOEND parameter on the start writer commands determines whether the
writer continues to wait for new spooled files to become available to be written, end
after processing one file, or end after all spooled files with ready status have been
taken from the output queue.

Summary of Spooling Writer Commands

The following commands may be used to control spooling writers. For detailed
descriptions of the commands, see the CL Reference (Abridged).

STRDKTWTR
Start Diskette Writer: Starts a spooling writer to a specified diskette device
to process spooled files on that device.

STRPRTWTR
Start Printer Writer: Starts a spooling writer to a specified printer device to
process spooled files on that device.

STRRMTWTR
Start Remote Writer: Starts a spooling writer that sends spooled files from
an output queue to a remote system.

CHGWTR
Change Writer: Allows you to change some writer attributes, such as form
type, number of file separator pages, or output queue attributes.

HLDWTR
Hold Writer: Stops a writer at the end of a record, at the end of a spooled
file, or at the end of a page.

RLSWTR
Release Writer: Releases a previously held writer for additional processing.

ENDWTR
End Writer: Ends a spooling writer and makes the associated output device
available to the system.

Spooled File Security

Spooled file security is primarily controlled through the output queue which contains
the spooled file. In general, there are four ways that a user can become authorized
to control a spooled file (for example, hold or release the spooled file):

» User is assigned spool control authority (SPCAUT(*SPLCTL)) in the user’s user
profile.

» User is assigned job control authority (SPCAUT(*JOBCTL)) in the user’s user
profile and the output queue is operator controllable (OPRCTL(*YES)).

* User has the required object authority for the output queue. The required object
authority is specified by the AUTCHK keyword on the CRTOUTQ command. A
value of *OWNER indicates that only the owner of the output queue is authorized
via the object authority for the output queue. A value of *DTAAUT indicates that
users with *CHANGE authority to the output queue are authorized to control the
output queue.

Note: The specific authority required for *DTAAUT are *READ, *ADD, and *DLT
data authorities.

* A user is always allowed to control the spooled files created by that user.

Chapter 5. Working with spooled files 141

For the Copy Spooled File (CPYSPLF), Display Spooled File (DSPSPLF), and Send
Network Spooled File (SNDNETSPLF) commands, in addition to the four ways
already listed, there is an additional way a user can be authorized. If
DSPDTA(*YES) was specified when the output queue was created, any user with
*USE authority to the output queue will be allowed to run these commands. The
specific authority required is *READ data authority. Copying, displaying, sending,
and moving a file to another output queue by changing the spooled file can be
limited by specifying DSPDTA(*OWNER). Then only the owner of the spooled file or
user with *SPLCTL can perform these operations on the spooled file.

See the CL Reference (Abridged) for details about the authority requirements for
individual commands.

To place a spooled file on an output queue, one of the following authorities is
required:

» User is assigned spool control authority (SPCAUT(*SPLCTL)) in the user’s user
profile.

» User is assigned job control authority (SPCAUT(*JOBCTL)) in the user’s user
profile and the output queue is operator controllable (OPRCTL(*YES)).

* User has *READ authority to the output queue. This authority can be given to the
public by specifying (AUT(*USE)) on the CRTOUTQ command.

Controlling the Number of Spooled Files in Your System

The number of spooled files in your system should be limited. When a job is
completed, spooled files and internal job control information are kept until the
spooled files are printed or canceled. The number of jobs on the system and the
number of spooled files known to the system increase the amount of time needed
to perform IPL and internal searches, and increases the amount of temporary
storage required.

The number of jobs known to the system can be displayed using the Work with
System Status (WRKSYSSTS) command.

You can use the Work with Spooled Files (WRKSPLF) command to identify spooled
files that are no longer needed. By periodically entering the command:

WRKSPLF SELECT (*ALL)

you can determine which spooled files are older than 2 or 3 days, then delete the
spooled files or contact the users who created them.

For detailed information on minimizing the number of job logs (for example, by
using LOG(4 0 *NOLIST)), see the CL Programming book. For information
regarding the use of system values to control the amount of storage associated with
jobs and spooled files, refer to the Work Management book. To control the storage

used on your system see 'Spaoling Library” an page 151,

Command Examples for Additional Spooling Support

You can define some functions to provide additional spooling support. Example
source and documentation for the commands, files, and programs for these
functions are part of library QUSRTOOL, which is an optionally installed part of the
0OS/400 program.

142 Data Management V4R4

Input spooling

Input spooling takes the information from the input device, prepares the job for
scheduling, and places an entry in a job queue. Using input spooling, you can
usually shorten job run time, increase the number of jobs that can be run
sequentially, and improve device throughput.

The main elements of input spooling are:

Job queue
An ordered list of batch jobs submitted to the system for running and from
which batch jobs are selected to run.

Reader
A function that takes jobs from an input device or a database file and
places them on a job queue.

When a batch job is read from an input source by a reader, the commands in the
input stream are stored in the system as requests for the job, the inline data is
spooled as inline data files, and an entry for the job is placed on a job queue. The
job information remains stored in the system where it was placed by the reader until
the job entry is selected from the job queue for processing by a subsystem.
m shows this relationship.

Input ———» | Reader Job Queue

ﬂ

Disk Storage
(job input)

Subsystem
Processing

RSLH145-0

Figure 15. Relationship of Input Spooling Elements

You can use the reader functions to read an input stream from diskette or database

files. Eigure 16 on page 144 shows the typical organization of an input stream:

Chapter 5. Working with spooled files 143

//BCHJOB - BCHJOB Command

CMDS

)/DATA
. Batch

One or more Job

INLINE DATA Input
. FILES (Optional)
DATARECORDS
/

Input
: Stream
)/ENDBCHJOB—OptionaIENDBCHJOBCommand ~
//BCHJOB
//ENDBCHJOB
J

RSLH116-2

Figure 16. Typical Organization of an Input Stream

The job queue on which the job is placed is specified on the JOBQ parameter on
the BCHJOB command, on the start reader command, or in the job description. If
the JOBQ parameter on the BCHJOB command is:

* *RDR: The job queue is selected from the JOBQ parameter on the start reader
command.

» *JOBD: The job queue is selected from the JOBQ parameter in the job
description.
» A specific job queue: The specified queue is used.

For jobs with small input streams, you may improve system performance by not
using input spooling. The submit job commands (SBMDBJOB and SBMDKTJOB)
read the input stream and place the job on the job queue in the appropriate
subsystem, bypassing the spooling subsystem and reader operations.

If your job requires a large input stream to be read, you should use input spooling
(STRDKTRDR or STRDBRDR command) to allow the job to be input independent
of when the job is actually processed.

Summary of Job Input Commands

The following commands may be used when submitting jobs to the system. The
start reader commands may be used for spooling job input; the submit job
commands do not use spooling. For detailed descriptions of these commands, see
the CL Reference (Abridged).

BCHJOB
Batch Job: Marks the start of a job in a batch input stream and defines the
operating characteristics of the job.

DATA Data: Marks the start of an inline data file.

ENDBCHJOB
End Batch Job: Marks the end of a job in a batch input stream.

144 Data Management V4R4

Job Queues

ENDINP
End Input: Marks the end of the batch input stream.

SBMDBJOB
Submit Database Jobs: Reads an input stream from a database file and
places the jobs in the input stream on the appropriate job queues.

SBMDKTJOB
Submit Diskette Jobs: Reads an input stream from diskette and places the
jobs in the input stream on the appropriate job queues.

STRDBRDR
Start Database Reader: Starts a reader to read an input stream from a
database file and places the job in the input stream on the appropriate job
queue.

STRDKTRDR
Start Diskette Reader: Starts a reader to read an input stream from diskette
and places the job in the input stream on the appropriate job queue.

A job queue is an ordered list of jobs waiting to be processed by a particular
subsystem. Jobs will not be selected from a job queue by a subsystem unless the
subsystem is active and the job queue is not held. You can use job queues to
control the order in which jobs are run.

A base set of job queues is provided with your system. In addition, you may create
additional job queues that you need.

IBM-Supplied Job Queues

Several job queues are provided by IBM when your system is shipped. IBM
supplies job queues for each IBM-supplied subsystem.

QCTL Controlling subsystem queue

QBASE
QBASE subsystem job queue

QBATCH
Batch subsystem queue

QINTER
Interactive subsystem queue

QPGMR
Programmer subsystem queue

QSPL Spooling subsystem queue

QSYSSBSD
QSYSSBSD subsystem job queue

QS36MRT
QS36MRT job queue

QS36EVOKE
QS36EVOKE job queue

QFNC Finance subsystem job queue

Chapter 5. Working with spooled files 145

146

QSNADS

QSNADS subsystem job queue

Using Multiple Job Queues

In many cases, using QBATCH as the only job queue with the default of one active
job will be adequate for your needs. If this is not adequate, you may want to have
multiple job queues so that some job queues are active during normal working
hours, some are for special purposes, and some are active after normal working
hours. For example, you could designate different job queues for:

Long-running jobs so you can control how many jobs are active at the same
time.

You may also want these jobs to use a lower priority than the other batch jobs.
Overnight jobs that are inconvenient to run during normal working hours.

For example, to run a Reorganize Physical File Member (RGZPFM) command on
a large database file requires an exclusive lock on the file. This means that other
users cannot access the file while this operation is taking place. Additionally, this
operation could take a long time. It would be more efficient to place this job on a
job queue for jobs which run during off-shift hours.

High-priority jobs.
You may want to have a job queue to which all high-priority work is sent. You

could then ensure that this work is completed rapidly and is not delayed by
lower-priority jobs.

Jobs that are directed to particular resource requirement such as diskette or
tape.

Such a job queue would need a MAXACT parameter of 1 in the job queue entry
of the subsystem description so that only one job at a time uses the resource.

For example, if a tape is used for several jobs, all jobs using tape would be
placed on a single job queue. One job at a time would then be selected from the
job queue. This would ensure that no two jobs compete for the same device at
the same time. If this happened, it would cause one of the jobs to end with an
allocation error.

Note: Tape output cannot be spooled.
Programmer work.

You may want to have a job queue to handle programmer work or types of work
that could be held while production work is being run.

Sequential running of a series of jobs.

You may have an application in which one job is dependent on the completion of
another job. If you place these jobs on a job queue that selects and runs one job
at a time, this would ensure the running sequence of these jobs.

If a job requires exclusive control of a file, you may want to place it on a job
gueue when the queue is the only one active on the system, such as during the
night or on a weekend.

If you use multiple job queues, you will find that control of the various job queues is
a main consideration. You will usually want to control:

How many job queues exist.
How many job queues are active in a particular subsystem at the same time.

How many active jobs can be selected from a particular job queue at a particular
time.

How many jobs can be active in a subsystem at a particular time.

Data Management V4R4

Creating Your Own Job Queues

There are numerous reasons why you may decide that you need job queues in
addition to the ones supplied by IBM. Additional job queues can be created by
using the Create Job Queue (CRTJOBQ) command:

CRTJOBQ QGPL/QNIGHT TEXT('Job queue for +
night-time jobs')

The following lists the parameters on the Create Job Queue (CRTJOBQ) command
and what they specify:

* OPRCTL: Specifies whether a user having job control authority can control the
job queue (for example, if the user can hold the job queue).

* AUTCHK: Specifies what type of authority to the job queue will enable a user to
control the jobs on the job queue (for example, enable the user to hold the jobs
on the job queue).

* AUT: Specifies what control users have over the job queue itself.
* TEXT: Up to 50 characters of text that describe the job queue.

Multiple Job Queues for a Subsystem

If the priority and sequence of the next job queue to be used is important, you may
want to assign and control multiple job queues for each subsystem. One use of
multiple job queues is to establish a high-priority and a normal-priority job queue
within a subsystem, allowing only one active job on each queue at any time.

Another example: If your production batch jobs need to be completed before a
special after-hours job queue can be made active, you could have the last job in the
normal batch job queue release the after-hours job queue.

Refer to the SEQNBR parameter in the Add Job Queue Entry (ADDJOBQE)
command in the CL Reference (Abridged) to determine how to set priorities for jobs
on job queues. For more information, refer to the Work Management book.

Using the WRKJOBQ Command

Jobs already on the job queue can be controlled using the Work with Job Queue
(WRKJOBQ) command.

The WRKJOBQ command lists either:
» All the job queues on the system
» All the jobs on a specific job queue

The ability to list all the job queues is important when you are not sure what job
queue was used for a job. From the list of all job queues, you can look at each job
queue to find the job. The display of a specific job queue provides a list of all the
jobs on the queue in the order in which they will become active.

Transferring Jobs

If a job is on a job queue and is not yet active, you can change the job to a
different job queue using the JOBQ parameter on the Change Job (CHGJOB)
command.

Chapter 5. Working with spooled files 147

148

If a job becomes active, it is possible to place it back on a job queue. See the Work
Management book for a discussion of the Transfer Job (TFRJOB) and Transfer
Batch Job (TFRBCHJOB) commands.

Job Queue Security

You can maintain a level of security with your job queue by authorizing only certain

persons (user profiles) to that job queue. In general, there are three ways that a

user can become authorized to control a job queue (for example, hold or release

the job queue):

» User is assigned spool control authority (SPCAUT(*SPLCTL)) in the user’s user
profile.

* User is assigned job control authority (SPCAUT(*JOBCTL)) in the user’s user
profile and the job queue can be controlled by the operator (OPRCTL(*YES)).

» User has the required object authority to the job queue. The required object
authority is specified by the AUTCHK parameter on the CRTJOBQ command. A
value of *OWNER indicates that only the owner of the job queue is authorized
via the object authority for the job queue. A value of *DTAAUT indicates that
users with *CHANGE authority for the job queue are authorized to control the job
queue.

Note: The specific authority required for *DTAAUT are *READ, *ADD, and *DLT
data authority.

See the CL Reference (Abridged) for more information about authority requirements
for individual commands.

These three methods of authorization apply only to the job queue, not to the jobs
on the job queue. The normal authority rules for controlling jobs apply whether the
job is on a job queue or whether it is currently running. See the Work Management
book for details on the authority rules for jobs.

Job Queue Recovery

If a command fails or the system stops abnormally while a reader or a submit jobs
command is running and a partial job (not all the input stream has been read) is
placed on the queue, the entire job must be resubmitted to the job queue.

If a job is on a job queue when the system stops abnormally without damaging that
job queue, the job remains intact on the job queue and is ready to run when the
system becomes active again.

If the system stops abnormally while a job is running, the job is lost and must be
resubmitted to the job queue.

If a job queue becomes damaged such that it cannot be used, you will be notified
by a message sent to the system operator message queue. The message will come
from a system function when a reader, Submit Jobs command, or a job tries to put
or take jobs from the damaged queue.

A damaged job queue can be deleted using the Delete Job Queue (DLTJOBQ)
command, or it will be deleted by the system during the next IPL. After a damaged
job queue is deleted, all job files on the damaged job queue will be moved to output
queue QSPRCLJOBQ in library QRCL. This is done by the QSPLMAINT system
job, which issues completion message CPC3308 to the QSYSOPR message queue
when all jobs have been moved to the QSPRCLJOBQ output queue.

Data Management V4R4

After the damaged job queue is deleted, it can be created again by entering the
Create Job Queue (CRTJOBQ) command. Jobs on the job queue QSPRCLOUTQ
can be moved back to the newly created output queue using the Change Job
(CHGJOB) command.

Using an Inline Data File

An inline data file is a data file that is included as part of a batch job when the job

is read by a reader or a submit jobs command. An inline data file is delimited in the
job by a //DATA command at the start of the file and by an end-of-data delimiter at

the end of the file. The end-of-data delimiter can be a user-defined character string
or the default of //.

The // must appear in positions 1 and 2. If your data contains a // in positions 1 and
2, you should use a unique set of characters such as:

// **% END OF DATA

To specify this as a unique end-of-data delimiter, the ENDCHAR parameter on the
/IDATA command should be coded as:

ENDCHAR('// *** END OF DATA')

Note: Inline data files can be accessed only during the first routing step of a batch
job. If a batch job contains a Transfer Job (TFRJOB), a Reroute Job
(RRTJOB), or a Transfer Batch Job (TFRBCHJOB) command, the inline data
files cannot be accessed in the new routing step.

An inline data file can be either named or unnamed. For an unnamed inline data
file, either QINLINE is specified as the file name in the //DATA command or no
name is specified. For a named inline data file, a file name is specified.

A named inline data file has the following characteristics:

* It has a unique name in a job; no other inline data file can have the same name.
* It can be used more than once in a job.

* Each time it is opened, it is positioned to the first record.

To use a named inline data file, you must either specify the file name in the
program or use an override command to change the file name specified in the
program to the name of the inline data file. The file must be opened for input only.

An unnamed inline data file has the following characteristics:

* Its name is QINLINE. (In a batch job, all unnamed inline data files are given the
same name.)

* It can only be used once in a job.

* When more than one unnamed inline data file is included in a job, the files must
be in the input stream in the same order as when the files are opened.

To use an unnamed inline data file, do one of the following:
» Specify QINLINE in the program.

» Use an override file command to change the file name specified in the program
to QINLINE.

If your high-level language requires unique file names within one program, you can
use QINLINE as a file name only once. If you need to use more than one unnamed

Chapter 5. Working with spooled files 149

inline data file, you can use an override file command in the program to specify
QINLINE for additional unnamed inline data files.

Note: If you run commands conditionally and process more than one unnamed
inline data file, the results cannot be predicted if the wrong unnamed inline
data file is used.

Open Considerations for Inline Data Files

The following considerations apply to opening inline data files:

* Record length specifies the length of the input records. (Record length is
optional.) When the record length exceeds the length of the data, a message is
sent to your program. The data is padded with blanks. When the record length is
less than the data length, the records are truncated.

* When a file is specified in a program, the system searches for the file as a
named inline data file before it searches for the file in a library. Therefore, if a
named inline data file has the same name as a file that is not an inline data file,
the inline data file is always used, even if the file name is qualified by a library
name.

* Named inline data files can be shared between programs in the same job by
specifying SHARE(*YES) on a create file or override file command.

For example, if an override file command specifying a file named INPUT and
SHARE(*YES) is in a batch job with an inline data file named INPUT, any
programs running in the job that specify the file name INPUT will share the same
named inline data file.

Unnamed inline data files cannot be shared between programs in the same job.

* When you use inline data files, you should make sure the correct file type is
specified on the //DATA command. For example, if the file is to be used as a
source file, the file type on the //DATA command must be source.

* Inline data files must be opened for input only.

Spooling Subsystem

150

The spooling subsystem, QSPL, is used for processing the spooling readers and
writers. The subsystem needs to be active when readers or writers are active. The
spooling subsystem and the individual readers and writers can be controlled from
jobs that run in other subsystems.

The start reader and start writer commands submit jobs to the job queue of the
spooling subsystem.

Requests for reader or writer jobs are placed on the QSPL job queue, and the next

entry on the QSPL job queue is selected to run if:

* The number of active jobs is less than the QSPL subsystem attribute of
MAXJOBS.

* The number of active jobs from the QSPL job queue is less than the MAXACT
attribute for the job queue.

Work management associated with the QSPL subsystem is similar to that for other
subsystems as described in the Work Management book. To control the storage

used on your system see ['Spaaling | ihrary” on page 151,

Data Management V4R4

Spooling Library

The spooling library (QSPL) contains database files that are used to store data for
inline data files and spooled files. Each file in library QSPL can have several
members. Each member contains all the data for an inline data file or spooled file.

When the spooled file is printed or deleted, its associated database member in the
spooling library is cleared of records, but not removed, so that it can be used for
another inline data file or spooled file. If no database members are available in
library QSPL, then a member is automatically created.

Printing a spooled file or clearing an output queue does not reduce the number of
associated database members. If an excessive number of associated database
members were created on your system (for example, if a program went into a loop
and created thousands of spooled files), the spool database members use storage
on the system even if you clear the output queue.

Because the system keeps the date and time whenever a database member
becomes available (for example, clearing of records after the spooled file has been
printed or deleted), you can remove these spooled database members in the
following ways:

* QRCLSPLSTG system value

When this system value is set, the system removes spool database members
that have been available for more than the number of days specified by the
system value. The default value is 8 days. Values that can be set for this system
value are:

— 1-366: Valid range of day values that can be set. When an available member
is older than the set number of days, it is removed by the system.

— *NOMAX: Available spool database members are never automatically
removed. The user must use the Reclaim Spool Storage (RCLSPLSTG)
command to remove these members.

— *NONE: The database member is removed as soon as the spooled file is
printed or deleted.

Note: If *NONE is specified, you will never have available database members
in QSPL. If there are no available members when subsequent inline
data files or spooled files are created, the system creates members
and allocates storage to be used. This slows down the jobs that are
creating inline data files or spooled files. It is highly recommended that
the system value never be set to *NONE.

¢ RCLSPLSTG command

Removes available database members that have been cleared of records for
more than the number of days specified on the command. The command will run
until it completes in the user’s process.

The procedures previously described are the only allowable ways to remove
spooled files from the QSPL library. Any other way can cause severe problems. It is
best to keep the QSPL library small by periodically deleting old spooled files with
the DLTSPLF or CLROUTQ commands. This procedure allows database members
to be used again, rather than having to increase the size of the spooling library to
accommodate new database members.

Displaying the data in the QSPL library may also prevent the data from being
cleared, wasting storage space. Any command or program used to look at a

Chapter 5. Working with spooled files 151

152

database file in the QSPL library must allocate the database file and member; if a
writer tries to remove an allocated member after printing is completed, it will not be
able to clear the member. Because the member is not cleared, it cannot be used for
another inline data file or spooled file and it will not be removed by setting the
QRCLSPLSTG system value or running the RCLSPLSTG command.

Saving a database file in the QSPL library can cause more problems than
displaying the data in one member of the file because all members will be allocated
a much longer time when a database file is saved. Because restoring these files
destroys present and future spooled file data, there is no reason to save one of
these files.

The QSPL library type and authority should not be changed. The authority to the
files within QSPL should also not be changed. The QSPL library and the files in it
are created in a particular way so that system spooling functions can access them.
Changing the library or files could cause some system spooling functions to work
incorrectly.

Data Management V4R4

Appendix A. Feedback Area Layouts

Tables in this section describe the open and 1/0O feedback areas associated with
any opened file. The following information is presented for each item in these
feedback areas:

» Offset, which is the number of bytes from the start of the feedback area to the
location of each item.

» Data Type.

* Length, which is given in number of bytes.

» Contents, which is the description of the item and the valid values for it.
* File type, which is an indication of what file types each item is valid for.

The support provided by the high-level language you are using determines how to
access this information and how the data types are represented. See your
high-level language information for more information.

Open Feedback Area

The open feedback area is the part of the open data path (ODP) that contains
general information about the file after it has been opened. It also contains
file-specific information, depending on the file type, plus information about each
device or communications session defined for the file. This information is set during
open processing and may be updated as other operations are performed.

Table 16. Open Feedback Area

Offset
0

12
22

32

42

44
46
48

58
62

Data Type
Character

Character

Character
Character

Character

Binary

Binary
Binary
Character

Binary
Binary

Length Contents File Type
2 Open data path (ODP) type: All
DS Display, tape, ICF, save, printer file not being spooled, or diskette file not

being spooled.

DB Database member.
SP Printer or diskette file being spooled or inline data file.
10 Name of the file being opened. If the ODP type is DS, this is the name of the All

device file or save file. If the ODP type is SP, this is the name of the device file or
the inline data file. If the ODP type is DB, this is the name of the database file that
the member belongs to.

10 Name of the library containing the file. For an inline data file, the value is *N. All
10 Name of the spooled file. The name of a database file containing the spooled input Printer or
or output records. diskette being
spooled or
inline data
10 Name of the library in which the spooled file is located. Printer or
diskette being
spooled or
inline data
2 Spooled file number. Printer or
diskette being
spooled
2 Maximum record length. All
2 Maximum key length. Database
10 Member name: Database,
. . L printer,
» If ODP type DB, the member name in the file named at offset 2. If file is diskette, and
overridden to MBR(*ALL), the member name that supplied the last record. inline data
» If ODP type SP, the member name in the file named at offset 22.
Reserved.
Reserved.

© Copyright IBM Corp. 1997, 1999 153

Table 16. Open Feedback Area (continued)

Offset Data Type Length Contents File Type
66 Binary 2 File type: All
1 Display
2 Printer
4 Diskette
5 Tape
9 Save
10 DDM
11 ICF
20 Inline data
21 Database
68 Character 3 Reserved.
71 Binary 2 Number of lines on a display screen or number of lines on a printed page. Display,
printer
Length of the null field byte map. Database
73 Binary 2 Number of positions on a display screen or number of characters on a printed line. Display,
printer
Length of the null key field byte map. Database
75 Binary 4 Number of records in the member at open time. For a join logical file, the number of Database,
records in the primary. Supplied only if the file is being opened for input. inline data
79 Character 2 Access type: Database
AR Arrival sequence.
KC Keyed with duplicate keys allowed. Duplicate keys are accessed in
first-changed-first-out (FCFO) order.
KF Keyed with duplicate keys allowed. Duplicate keys are accessed in
first-in-first-out (FIFO) order.
KL Keyed with duplicate keys allowed. Duplicate keys are accessed in
last-in-first-out (LIFO) order.
KN Keyed with duplicate keys allowed. The order in which duplicate keys
are accessed can be one of the following:
* First-in-first-out (FIFO)
* Last-in-first-out (LIFO)
* First-changed-first-out (FCFO)
KU Keyed, unique.
81 Character 1 Duplicate key indication. Set only if the access path is KC, KF, KL, KN, or KU: Database
D Duplicate keys allowed if the access path is KF or KL.
u Duplicate keys are not allowed; all keys are unique and the access path
is KU.
82 Character 1 Source file indication. Database,
L . tape, diskette,
Y File is a source file. and inline
N File is not a source file. data
83 Character 10 Reserved.
93 Character 10 Reserved.
103 Binary 2 Offset to volume label fields of open feedback area. Diskette, tape
105 Binary 2 Maximum number of records that can be read or written in a block when using All
blocked record I/0.
107 Binary 2 Overflow line number. Printer
109 Binary 2 Blocked record I/O record increment. Number of bytes that must be added to the All
start of each record in a block to address the next record in the block.
111 Binary 4 Reserved.
154 Data Management V4R4

Table 16. Open Feedback Area (continued)

Offset

115

116

126

128
130

132

Data Type

Character

Character

Binary

Binary
Binary

Character

Length

1

10

Contents

Miscellaneous flags.

Bit 1:

Bit 2:

Bit 3:

Bit 4:

Bit 5:

Bit 6:

Bit 7:

Bit 8:

Reserved.

File shareable
0 File was not opened shareable.

1 File was opened shareable (SHARE(*YES)).

Commitment control
0 File is not under commitment control.

1 File is under commitment control.

Commitment lock level
0 Only changed records are locked (LCKLVL (*CHG)).

If this bit is zero and bit 8 of the character at offset 132 is
one, then all records accessed are locked, but the locks are
released when the current position in the file changes
(LCKLVL (*CS)).

1 All records accessed are locked (LCKLVL (*ALL)).
Member type

0 Member is a physical file member.

1 Member is a logical file member.

Field-level descriptions
0 File does not contain field-level descriptions.

1 File contains field-level descriptions.

DBCS or graphic-capable file
0 File does not contain DBCS or graphic-capable fields.

1 File does contain DBCS or graphic-capable fields.

End-of-file delay
0 End-of-file delay processing is not being done.

1 End-of-file delay processing is being done.

Name of the requester device. For display files, this is the name of the display
device description that is the requester device. For ICF files, this is the program
device name associated with the remote location of *FREQUESTER.

This field is supplied only when either a device or remote location name of
*REQUESTER is being attached to the file by an open or acquire operation.
Otherwise, this field contains *N.

File open count. If the file has not been opened shareable, this field contains a 1. If

the file has been opened shareable, this field contains the number of programs
currently attached to this file.

Reserved.

Number of based-on physical members opened. For logical members, this is the
number of physical members over which the logical member was opened. For
physical members, this field is always set to 1.

Miscellaneous flags.

File Type

All

Database

Database

Database

All, except
database

Database,
display,
printer, tape,
diskette, and
ICF

Database

Display, ICF

All

Database

Appendix A. Feedback Area Layouts 155

Table 16. Open Feedback Area (continued)

Offset Data Type Length Contents File Type
. .) Database
Bit 1: Multiple member processing
0 Only the member specified will be processed.
1 All members will be processed.
. . . . Database
Bit 2: Join logical file
0 File is not a join logical file.
1 File is a join logical file.
.) Database
Bit 3: Local or remote data (DDM files)
0 Data is stored on local system.
1 Data is stored on remote system.
. . . . Database
Bit 4: Remote System/38 or AS/400 data (DDM files). Applicable only if the
value of Bit 3 is 1.
0 Data is on a remote System/38 or AS/400 system.
1 Data is not on a remote System/38 or AS/400 system.
. o Printer,
Bit 5: Separate indicator area display, and
0 Indicators are in the I/O buffer of the program. ICF
1 Indicators are not in the I/O buffer of the program. The DDS
keyword, INDARA, was used when the file was created.
. All
Bit 6: User buffers
0 System creates 1/O buffers for the program.
1 User program supplies 1/O buffers.
Bit 7: Reserved.
: . i o - N Database
Bit 8: Additional commitment lock level indicator. This is only valid if bit 3 of
the character at offset 115 is one.
If bit 4 of the character at offset 115 is zero:
0 Only changed records are locked (LCKLVL(*CHG)).
1 All records accessed are locked, but the locks are released
when the current position in the file changes (LCKLVL(*CS)).
If bit 4 of the character at offset 115 is one:
0 All records accessed are locked (LCKLVL(*ALL)).
1 Reserved.

133 Character 2 Open identifier. This value is unique for a full open operation (SHARE(*NO)) or the All
first open of a file that is opened with SHARE(*YES). This is used for display and
ICF files, but is set up for all file types. It allows you to match this file to an entry on
the associated data queue.

135 Binary 2 The field value is the maximum record format length, including both data and Printer,
file-specific information such as: first-character forms control, option indicators, diskette, tape,
response indicators, source sequence numbers, and program-to-system data. If the and ICF
value is zero, then use the field at offset 44.

137 Binary 2 Coded character set identifier (CCSID) of the character data in the buffer. Database

156 Data Management V4R4

Table 16. Open Feedback Area (continued)

Offset Data Type Length Contents File Type
139 Character 1 Miscellaneous flags. Database
Bit 1: Null-capable field file.
0 File does not contain null-capable fields.
1 File contains null-capable fields.
. .) . Database
Bit 2: Variable length fields file.
0 File does not contain any variable length fields.
1 File contains variable length fields.
. .) Database
Bit 3: Variable length record processing
0 Variable length record processing will not be done.
1 Variable length record processing will be done.
. o Database,
Bit 4: CCSID character substitution Display
0 No substitution characters will be used during CCSID data
conversion.
1 Substitution characters may be used during CCSID data
conversion.
. . All
Bit 5: Job Level Open Indicator
0 This ODP is not scoped to the job level.
1 This ODP is scoped to the job level.

Bits 6-8: Reserved.

140 Character 6 Reserved.

146 Binary 2 Number of devices defined for this ODP. For displays, this is determined by the All
number of devices defined on the DEV parameter of the Create Display File
(CRTDSPF) command. For ICF, this is determined by the number of program
devices defined or acquired with the Add ICF Device Entry (ADDICFDEVE) or the
Override ICF Device Entry (OVRICFDEVE) command. For all other files, it has the

value of 1.
148 Character Device name definition list. See for a description of this All
array.

Device Definition List

The device definition list part of the open feedback area is an array structure. Each
entry in the array contains information about each device or communications
session attached to the file. The number of entries in this array is determined by the
number at offset 146 of the open feedback area. The device definition list begins at
offset 148 of the open feedback area. The offsets shown for it are from the start of
the device definition list rather than the start of the open feedback area.

Table 17. Device Definition List
Offset Data Type Length Contents File Type
0 Character 10 Program device name. For database files, the value is All, except inline
DATABASE. For printer or diskette files being spooled, the data
value is *N. For save files, the value is *NONE. For ICF files,
the value is the name of the program device from the
ADDICFDEVE or OVRICFDEVE command. For all other
files, the value is the name of the device description.

10 Character 50 Reserved.

Appendix A. Feedback Area Layouts 157

Table 17. Device Definition List (continued)

Offset Data Type Length Contents

60 Character 10 Device description name. For printer or diskette files being

spooled, the value is *N. For save files, the value is *NONE.

For all other files, the value is the name of the device

description.

70 Character 1 Device class.
hex 01 Display
hex 02 Printer
hex 04 Diskette
hex 05 Tape
hex 09 Save
hex OB ICF

71 Character 1 Device type.
hex 02 5256 Printer
hex 07 5251 Display Station
hex 08 Spooled
hex 0A BSCEL
hex OB 5291 Display Station
hex 0C 5224/5225 printers
hex OD 5292 Display Station
hex OE APPC
hex OF 5219 Printer
hex 10 5583 Printer (DBCS)
hex 11 5553 Printer
hex 12 5555-B01 Display Station
hex 13 3270 Display Station
hex 14 3270 Printer
hex 15 Graphic-capable device
hex 16 Financial Display Station
hex 17 3180 Display Station
hex 18 Save file
hex 19 3277 DHCF Device
hex 1A 9347 Tape Unit
hex 1B 9348 Tape Unit
hex 1C 9331-1 Diskette Unit
hex 1D 9331-2 Diskette Unit
hex 1E Intrasystem communications support
hex 1F Asynchronous communications support

File Type

All, except
database and inline
data

All, except
database and inline
data

158 Data Management V4R4

Table 17. Device Definition List (continued)

Offset Data Type Length Contents
hex 20
hex 21
hex 22
hex 23
hex 24
hex 25
hex 26
hex 27
hex 28
hex 29
hex 2A
hex 2B
hex 2C
hex 2D
hex 2E

hex 30
hex 31
hex 32
hex 33
hex 34
hex 35
hex 36
hex 37
hex 38
hex 39
hex 3A
hex 3B
hex 3C
hex 3D
hex 3E
hex 3F

File Type
SNUF
4234 (SCS) Printer
3812 (SCS) Printer
4214 Printer
4224 (IPDS) Printer
4245 Printer
3179-2 Display Station
3196-A Display Station
3196-B Display Station
5262 Printer
6346 Tape Unit
2440 Tape Unit
9346 Tape Unit
6331 Diskette Unit
6332 Diskette Unit

3812 (IPDS) Printer
4234 (IPDS) Printer
IPDS printer, model unknown
3197-C1 Display Station
3197-C2 Display Station
3197-D1 Display Station
3197-D2 Display Station
3197-W1 Display Station
3197-W2 Display Station
5555-E01 Display Station
3430 Tape Unit

3422 Tape Unit

3480 Tape Unit

3490 Tape Unit

3476-EA Display Station
3477-FG Display Station

Appendix A. Feedback Area Layouts

159

Table 17. Device Definition List (continued)

Offset Data Type Length Contents File Type
hex 40 3278 DHCF device
hex 41 3279 DHCF device
hex 42 ICF finance device
hex 43 Retail communications device
hex 44 3477-FA Display Station
hex 45 3477-FC Display Station
hex 46 3477-FD Display Station
hex 47 3477-FW Display Station
hex 48 3477-FE Display Station
hex 49 6367 Tape Unit
hex 4A 6347 Tape Unit
hex 4D Network Virtual Terminal Display Station
hex 4E 6341 Tape Unit
hex 4F 6342 Tape Unit
hex 50 6133 Diskette Unit
hex 51 5555-C01 Display Station
hex 52 5555-F01 Display Station
hex 53 6366 Tape Unit
hex 54 7208 Tape Unit
hex 55 6252 (SCS) Printer
hex 56 3476-EC Display Station
hex 57 4230 (IPDS) Printer
hex 58 5555-G01 Display Station
hex 59 5555-G02 Display Station
hex 5A 6343 Tape Unit
hex 5B 6348 Tape Unit
hex 5C 6368 Tape Unit
hex 5D 3486-BA Display Station
hex 5F 3487-HA Display Station
160 Data Management V4R4

Table 17. Device Definition List (continued)

Offset Data Type Length Contents File Type
hex 60 3487-HG Display Station
hex 61 3487-HW Display Station
hex 62 3487-HC Display Station
hex 63 3935 (IPDS) Printer
hex 64 6344 Tape Unit
hex 65 6349 Tape Unit
hex 66 6369 Tape Unit
hex 67 6380 Tape Unit
hex 68 6378 Tape Unit
hex 69 6390 Tape Unit
hex 70 6379 Tape Unit
hex 71 9331-11 Diskette Unit
hex 72~ 9331-12 Diskette Unit
hex 73 3570 Tape Unit
hex 74 3590 Tape Unit
hex 75 6335 Tape Unit
72 Binary 2 Number of lines on the display screen. Display
74 Binary 2 Number of positions in each line of the display screen. Display
76 Character 2 Bit flags. Display
Bit 1: Blinking capability.
0 Display is not capable of blinking.
1 Display is capable of blinking.
Bit 2: Device location. Display
0 Local device.
1 Remote device.
Bit 3: Acquire status. This bit is set even if the device is Display, ICF
implicitly acquired at open time.
0 Device is not acquired.
1 Device is acquired.
Bit 4: Invite status. Display, ICF
0 Device is not invited.
1 Device is invited.
Bit 5: Data available status (only if device is invited). Display, ICF
0 Data is not available.
1 Data is available.

Appendix A. Feedback Area Layouts

161

Table 17. Device Definition List (continued)

Offset Data Type Length Contents File Type
)) ICF
Bit 6: Transaction status.
0 Transaction is not started. An evoke
request has not been sent, a detach
request has been sent or received, or the
transaction has completed.

1 Transaction is started. The transaction is
active. An evoke request has been sent
or received and the transaction has not

ended.
.) Display, ICF
Bit 7: Requester device.
0 Not a requester device.
1 A requester device.
.) Display
Bit 8: DBCS device.
0 Device is not capable of processing
double-byte data.
1 Device is capable of processing
double-byte data.
Bits 9-10:
Reserved.
Displa
Bit 11: DBCS keyboard. pay
0 Keyboard is not capable of entering
double-byte data.
1 Keyboard is capable of entering
double-byte data.
Bits 12-16:
Reserved.
78 Character 1 Synchronization level. ICF
hex 00 The transaction was built with SYNLVL(*NONE).
Confirm processing is not allowed.
hex 01 The transaction was built with
SYNLVL(*CONFIRM). Confirm processing is
allowed.
hex 02 The transaction was built with SYNLVL(*COMMIT).
79 Character 1 Conversation type. ICF

hex DO Basic conversation (CNVTYPE(*USER)).
hex D1 Mapped conversation (CNVTYPE(*SYS)).

80 Character 50 Reserved.

162 Data Management V4R4

Volume Label Fields

Table 18. Volume Label Fields

Offset Data Type Length Contents File Type

0 Character 128 Volume label of current volume. Diskette, tape
128 Character 128 Header label 1 of the opened file. Diskette, tape
256 Character 128 Header label 2 of the opened file. Tape

I/O Feedback Area

AS/400 uses OS/400 messages and I/O feedback information to communicate the
results of 1/0 operations to the program. The system updates the 1/0 feedback area
for every successful 1/0 operation unless your program uses blocked record I/O. In
that case, the system updates the feedback area only when it reads or writes a
block of records. Some of the information reflects the last record in the block. Other
information, such as the count of 1/0O operations, reflects the number of operations
on blocks of records and not the number of records. See your high-level language
information to determine if your program uses blocked record 1/O.

The 1/0 feedback area consists of two parts: a common area and a file-dependent
area. The file-dependent area varies by the file type.

Common 1I/O Feedback Area

Table 19. Common I/O Feedback Area

Offset Data Type Length Contents
0 Binary 2 Offset to file-dependent feedback area.
2 Binary 4 Write operation count. Updated only when a write operation

completes successfully. For blocked record 1/0O operations,
this count is the number of blocks, not the number of
records.

6 Binary 4 Read operation count. Updated only when a read operation
completes successfully. For blocked record 1/O operations,
this count is the number of blocks, not the number of

records.

10 Binary 4 Write-read operation count. Updated only when a write-read
operation completes successfully.

14 Binary 4 Other operation count. Number of successful operations

other than write, read, or write-read. Updated only when
the operation completes successfully. This count includes
update, delete, force-end-of-data, force-end-of-volume,
change-end-of-data, release record lock, and
acquire/release device operations.

18 Character 1 Reserved.

Appendix A. Feedback Area Layouts 163

Table 19. Common I/O Feedback Area (continued)
Offset Data Type Length Contents
19 Character 1 Current operation.

hex 01 Read or read block or read from invited devices
hex 02 Read direct

hex 03 Read by key

hex 05 Write or write block
hex 06 Write-read

hex 07 Update

hex 08 Delete

hex 09 Force-end-of-data
hex OA Force-end-of-volume
hex OD Release record lock
hex OE Change end-of-data
hex OF Put deleted record
hex 11 Release device

hex 12 Acquire device

20 Character 10 Name of the record format just processed, which is either:

» Specified on the 1/O request, or
» Determined by default or format selection processing

For display files, the default name is either the name of the
only record format in the file or the previous record format
name for the record written to the display that contains
input-capable fields. Because a display file may have
multiple formats on the display at the same time, this
format may not represent the format where the last cursor
position was typed.

For ICF files, the format name is determined by the system,
based on the format selection option used. Refer to the ICF
Programming book for more information.

30 Character 2 Device class:

Byte 1:

hex 00 Database
hex 01 Display
hex 02 Printer

hex 04 Diskette

hex 05 Tape
hex 09 Save
hex 0B ICF

164 Data Management V4R4

Table 19. Common I/O Feedback Area (continued)

Offset Data Type Length Contents

Byte 2 (if byte 1 contains hex 00):

hex 00
hex 01

Byte 2 (if byte 1 does not contain hex 00):

hex 02
hex 07
hex 08
hex 0A
hex OB
hex 0C
hex 0D
hex OE
hex OF
hex 10
hex 11
hex 12
hex 13
hex 14
hex 15
hex 16
hex 17
hex 18
hex 19
hex 1A
hex 1B
hex 1C
hex 1D
hex 1E
hex 1F

Nonkeyed file
Keyed file

5256 Printer

5251 Display Station
Spooled

BSCEL

5291 Display Station
5224/5225 printers
5292 Display Station
APPC

5219 Printer

5583 Printer (DBCS)
5553 Printer

5555-B01 Display Station
3270 Display Station
3270 Printer
Graphic-capable device
Financial Display Station
3180 Display Station
Save file

3277 DHCF device
9347 Tape Unit

9348 Tape Unit

9331-1 Diskette Unit
9331-2 Diskette Unit

Intrasystem communications support

Asynchronous communications support

Appendix A. Feedback Area Layouts

165

Table 19. Common I/O Feedback Area (continued)

Offset Data Type Length Contents
hex 20 SNUF
hex 21 4234 (SCS) Printer
hex 22 3812 (SCS) Printer
hex 23 4214 Printer
hex 24 4224 (IPDS) Printer
hex 25 4245 Printer
hex 26 3179-2 Display Station
hex 27 3196-A Display Station
hex 28 3196-B Display Station
hex 29 5262 Printer
hex 2A 6346 Tape Unit
hex 2B 2440 Tape Unit
hex 2C 9346 Tape Unit
hex 2D 6331 Diskette Unit
hex 2E 6332 Diskette Unit

hex 30 3812 (IPDS) Printer

hex 31 4234 (IPDS) Printer

hex 32 IPDS printer, model unknown
hex 33 3197-C1 Display Station
hex 34 3197-C2 Display Station
hex 35 3197-D1 Display Station
hex 36 3197-D2 Display Station
hex 37 3197-W1 Display Station
hex 38 3197-W2 Display Station
hex 39 5555-E01 Display Station
hex 3A 3430 Tape Unit

hex 3B 3422 Tape Unit

hex 3C 3480 Tape Unit

hex 3D 3490 Tape Unit

hex 3E 3476-EA Display Station
hex 3F 3477-FG Display Station

166 Data Management V4R4

Table 19. Common I/O Feedback Area (continued)

Offset Data Type Length Contents
hex 40
hex 41
hex 42
hex 43
hex 44
hex 45
hex 46
hex 47
hex 48
hex 49
hex 4A
hex 4D
hex 4E
hex 4F

hex 50
hex 51
hex 52
hex 53
hex 54
hex 55
hex 56
hex 57
hex 58
hex 59
hex 5A
hex 5B
hex 5C
hex 5D
hex 5F

3278 DHCF device

3279 DHCF device

ICF finance device
Retail communications device
3477-FA Display Station
3477-FC Display Station
3477-FD Display Station
3477-FW Display Station
3477-FE Display Station
6367 Tape Unit

6347 Tape Unit

Network Virtual Terminal Display Station

6341 Tape Unit
6342 Tape Unit

6133 Diskette Unit
5555-C01 Display Station
5555-F01 Display Station
6366 Tape Unit

7208 Tape Unit

6252 (SCS) Printer
3476-EC Display Station
4230 (IPDS) Printer
5555-G01 Display Station
5555-G02 Display Station
6343 Tape Unit

6348 Tape Unit

6368 Tape Unit

3486-BA Display Station
3487-HA Display Station

Appendix A. Feedback Area Layouts

167

Table 19. Common I/O Feedback Area (continued)

Offset Data Type Length Contents

hex 60 3487-HG Display Station
hex 61 3487-HW Display Station
hex 62 3487-HC Display Station
hex 63 3935 (IPDS) Printer

hex 64 6344 Tape Unit

hex 65 6349 Tape Unit

hex 66 6369 Tape Unit

hex 67 6380 Tape Unit

hex 68 6378 Tape Unit

hex 69 6390 Tape Unit

hex 70 6379 Tape Unit
hex 71 9331-11 Diskette Unit
hex 72 9331-12 Diskette Unit
hex 73 3570 Tape Unit
hex 74 3590 Tape Unit
hex 75 6335 Tape Unit

32 Character 10 Device name. The name of the device for which the
operation just completed. Supplied only for display, printer,
tape, diskette, and ICF files. For printer or diskette files
being spooled, the value is *N. For ICF files, the value is
the program device name. For other files, the value is the
device description name.

42 Binary 4 Length of the record processed by the last I/O operation
(supplied only for an ICF, display, tape, or database file).
On ICF write operations, this is the record length of the
data. On ICF read operations, it is the record length of the
record associated with the last read operation.

46 Character 80 Reserved.

126 Binary 2 Number of records retrieved on a read request for blocked
records or sent on a write or force-end-of-data or
force-end-of-volume request for blocked records. Supplied
only for database, diskette, and tape files.

128 Binary 2 For output, the field value is the record format length,
including first-character forms control, option indicators,
source sequence numbers, and program-to-system data. If
the value is zero, use the field at offset 42.

For input, the field value is the record format length,
including response indicators and source sequence
numbers. If the value is zero, use the field at offset 42.

130 Character 2 Reserved.

132 Binary 4 Current block count. The number of blocks of the tape data
file already written or read. For tape files only.

136 Character 8 Reserved.

168 Data Management V4R4

I/O Feedback Area for ICF and Display Files

Table 20. I/O Feedback Area for ICF and Display Files

Offset Data Type Length Contents

0 Character 2 Flag bits.

Bit 1:

Bit 2:

Bit 3:

Bits 4-16:

File Type

Cancel-read indicator.

0

1

The cancel-read operation did
not cancel the read request.

The cancel-read operation
canceled the read request.

Data-returned indicator.

0

The cancel-read operation did
not change the contents of the
input buffer.

The cancel-read operation
placed the data from the
read-with-no-wait operation into
the input buffer.

Command key indicator.

0

Conditions for setting this
indicator did not occur.

The Print, Help, Home, Roll
Up, Roll Down, or Clear key
was pressed. The key is
enabled with a DDS keyword,
but without a response
indicator specified.

Reserved.

Display

Appendix A. Feedback Area Layouts

169

Table 20. I/0 Feedback Area for ICF and Display Files (continued)

Offset Data Type Length Contents File Type
2 Character 1 Attention indicator byte (AID). This field

identifies which function key was pressed.

For ICF files, this field will always contain the value

hex F1 to imitate the Enter key being pressed on a

display device.

For display files, this field will contain the 1-byte

hexadecimal value returned from the device.

Hex Codes

Function Keys

hex31 1

hex 32 2

hex 33 3

hex 34 4

hex35 5

hex 36 6

hex 37 7

hex 38 8

hex39 9

hex 3A 10

hex 3B 11

hex 3C 12

hex B1 13

hex B2 14

hex B3 15

hex B4 16

hex B5 17

hex B6 18 Display, ICF

hex B7 19

hex B8 20

hex B9 21

hex BA 22

hex BB 23

hex BC 24

hex BD Clear

hex F1 Enter/Rec Adv

hex F3 Help (not in operator-error mode)

hex F4 Roll Down

hex F5 Roll Up

hex F6 Print

hex F8 Record Backspace

hex 3F Auto Enter (for Selector Light Pen)
170 Data Management V4R4

Table 20. I/0 Feedback Area for ICF and Display Files (continued)

Offset
3

11

13

15

17

Data Type
Character

Binary

Binary

Binary

Binary

Character

Character

Length
2

17

Contents

Cursor location (line and position). Updated on
input operations that are not subfile operations
that return data to the program. For example,
hex 0102 means line 1, position 2. Line 10,
position 33 would be hex 0A21.

Actual data length. For an ICF file, see the ICF
Programming book for additional information. For a

display file, this is the length of the record format
processed by the I/O operation.

Relative record number of a subfile record.
Updated for a subfile record operation. For
input operations, updated only if data is
returned to the program. If multiple subfiles are
on the display, this offset will contain the
relative record number for the last subfile
updated.

Indicates the lowest subfile relative record
number currently displayed in the uppermost
subfile display area if the last write operation
was done to the subfile control record with
SFLDSP specified. Updated for roll up and roll
down operations. Reset to 0 on a write
operation to another record. Not set for
message subfiles.

Total number of records in a subfile. Updated
on a put-relative operation to any subfile
record. The number is set to zero on a write or
write-read operation to any subfile control
record with the SFLINZ keyword optioned on. If
records are put to multiple subfiles on the
display, this offset will contain the total number
of records for all subfiles assuming that no
write or write-read operations were performed
to any subfile control record with the SFLINZ
keyword optioned on.

Cursor location (line and position) within active
window. Updated on input operations that are
not subfile operations that return data to the
program. For example, hex 0203 means line 2,
position 3 relative to the upper-left corner of
the active window.

Reserved.

File Type
Display

Display, ICF

Display

Display

Display

Display

Appendix A. Feedback Area Layouts

171

Table 20. I/0 Feedback Area for ICF and Display Files (continued)

Offset Data Type Length Contents File Type
34 Character 2 Major return code. Display, ICF
00 Operation completed successfully.
02 Input operation completed successfully,
but job is being canceled (controlled).
03 Input operation completed successfully,
but no data received.
04 Output exception.
08 Device already acquired.
11 Read from invited devices was not
successful.
34 Input exception.
80 Permanent system or file error.
81 Permanent session or device error.
82 Acquire or open operation failed.
83 Recoverable session or device error.
36 Character 2 Minor return code. For the values for a display Display, ICF

file, see the Application Display Programming
book. For the values for an ICF file, see the ICF
Programming book and the appropriate
communications-type programmer’s guide.

38 Character 8 Systems Network Architecture (SNA) sense ICF
return code. For some return codes, this field
may contain more detailed information about
the reason for the error. For a description of
the SNA sense codes, see the appropriate SNA

book.
46 Character 1 Safe indicator: ICF
0 An end-of-text (ETX) control character
has not been received.
1 An ETX control character has been
received.
47 Character 1 Reserved.
48 Character 1 Request Write (RQSWRT) command from ICF
remote system/application.
0 RQSWRT not received
1 RQSWRT received
49 Character 10 Record format name received from the remote ICF
system.
59 Character 4 Reserved.
63 Character 8 Mode name. ICF
71 Character 9 Reserved.

172 Data Management V4R4

/O Feedback Area for Printer Files

Table 21. I/O Feedback Area for Printer Files

Offset Data Type Length
0 Binary 2

2 Binary 4

6 Character 1

7 Character 27

34 Character 2

36 Character 2

Contents
Current line number in a page.
Current page count.
Bit 1: Spooled file has been deleted:

1 The spooled file has been deleted.

0 The spooled file has not been deleted.
Bits 2 - 8: Reserved.

Reserved.

Major return code.

00 Operation completed successfully.
80 Permanent system or file error.

81 Permanent device error.

82 Open operation failed.

83 Recoverable device error occurred.

Minor return code. For the values for a printer
file, refer to the Printer Device Programming.

I/O Feedback Area for Database Files

Table 22. I/0O Feedback Area for Database Files

Offset Data Type Length
0 Binary 4
4 Character 4
8 Binary 2
10 Binary 2
12 Binary 2
14 Binary 4
18 Character 1

Contents

Size of the database feedback area, including the
key and the null key field byte map.

Bits 1-32:
Each bit represents a join logical file in
JFILE keyword.

0 JDFTVAL not supplied for file
1 JDFTVAL supplied for file

Offset from the beginning of the 1/O feedback
area for database files to the null key field byte
map which follows the key value (which begins at
offset 34 in this area).

Number of locked records.

Maximum number of fields.

Offset to the field-mapping error-bit map.

Current file position indication.

Bit 1: Current file position is valid for
get-next-key equal operation.
0 File position is not valid.
1 File position is valid.
Bits 2-8:
Reserved.

Appendix A. Feedback Area Layouts 173

Table 22. I/0 Feedback Area for Database Files (continued)

Offset Data Type Length Contents
19 Character 1 Current record deleted indication:
Bits 1-2:
Reserved.
Bit 3: Next message indicator.
0 Next message not end of file.
1 Next message may be end of
file.
Bit 4: Deleted record indicator.
0 Current file position is at an

active record.

1 Current file position is at a
deleted record.

Bit 5: Write operation key feedback indicator.

0 Key feedback is not provided
by last write operation.

1 Key feedback is provided by
last write operation.

Bit 6: File position changed indicator. Set only
for read and positioning I/O operations.
Not set for write, update, and delete 1/0
operations.

0 File position did not change.
1 File position did change.

Bit 7: Pending exception indicator. Valid for
files open for input only and
SEQONLY(*YES N) where N is greater

than 1.

0 Pending retrieval error does
not exist.

1 Pending retrieval error does
exist.

Bit 8: Duplicate key indicator.

0 The key of the last read or
write operation was not a
duplicate key.

1 The key of the last read or
write operation was a
duplicate key.

20 Binary 2 Number of key fields. Use this offset for binary
operations. Use the next offset (offset 21) for
character operations. These offsets overlap and
provide the same value (there can be no more
than 32 key fields, and only the low-order byte of
offset 20 is used).

21 Character 1 Number of key fields.

22 Character 4 Reserved.

26 Binary 2 Key length.

28 Binary 2 Data member number.

30 Binary 4 Relative record number in data member.
34 Character * Key value.

174 Data Management V4R4

Table 22. I/0 Feedback Area for Database Files (continued)

Offset Data Type Length Contents
* Character * Null key field byte map.
Get Attributes

Performing the get attributes operation allows you to obtain certain information
about a specific display device or ICF session.

Table 23. Get Attributes

Offset Data Type
0 Character
10 Character
20 Character
30 Character
31 Character

Length
10
10

10
1

Contents
Program device name.

Device description name. Name of the device description

associated with this entry.

User ID.

Device class:

D Display

| ICF

u Unknown

Device type:

3179 3179 Display Station

317902 3179-2 Display Station
3180 3180 Display Station
3196A 3196-A1/A2 Display Station
3196B 3196-B1/B2 Display Station
3197C1 3197-C1 Display Station
3197C2 3197-C2 Display Station
3197D1 3197-D1 Display Station
3197D2 3197-D2 Display Station
3197W1 3197-W1 Display Station
3197W2 3197-W2 Display Station

3270 3270 Display Station

3476EA 3476-EA Display Station

3476EC 3476-EC Display Station
3477FA 3477-FA Display Station
3477FC 3477-FC Display Station
3477FD 3477-FD Display Station
3477FE 3477-FE Display Station
3477FG 3477-FG Display Station
3477FW 3477-FW Display Station
525111 5251 Display Station
5291 5291 Display Station
5292 5292 Display Station

529202 5292-2 Display Station

File Type
Display, ICF
Display, ICF

Display, ICF
Display, ICF

Appendix A. Feedback Area Layouts

175

Table 23. Get Attributes (continued)

Offset

37

38

39

Data Type

Character

Character

Character

Length Contents
5555B1
5555C1
5555E1
5555F1
5555G1
5555G2
DHCF77

DHCF78

DHCF79

3486BA
3487HA
3487HC
3487HG
3487HW

APPC

ASYNC
BSC
BSCEL
FINANC
INTRA
LU1
RETAIL
SNUF

1 Requester device. This flag indicates whether this entry is

5555-B01 Display Station
5555-C01 Display Station
5555-E01 Display Station
5555-F01 Display Station
5555-G01 Display Station
5555-G02 Display Station

3277 DHCF device

3278 DHCF device

3279 DHCF device

3486-BA Display Station
3487-HA Display Station
3487-HC Display Station
3487-HG Display Station

3487-HW Display Station

Advance program-to-program communications

device

Asynchronous communications device
Bisynchronous communications device
BSCEL communications device

ICF Finance communications device

Intrasystem communications device

LU1 communications device

RETAIL communications device

SNA upline facility communications device

defining a *REQUESTER device.

N

Not a *REQUESTER device (communications

source device).

A *REQUESTER device (communications target

device).

File Type
Display, ICF

Display, ICF

Display, ICF

1 Acquire status. Set even if device is implicitly acquired at open Display, ICF

time.
N
Y

Device is not acquired.

Device is acquired.

1 Invite status.

Y
N

Device is invited.

Device is not invited.

Display, ICF

176

Data Management V4R4

Table 23. Get Attributes (continued)

Offset Data Type Length Contents File Type
40 Character 1 Data available. Display, ICF
Y Invited data is available.
N Invited data is not available.
41 Binary 2 Number of rows on display. Display
43 Binary 2 Number of columns on display. Display
45 Character 1 Display allow blink. Display
Y Display is capable of blinking.
N Display is not capable of blinking.
46 Character 1 Online/offline status. Display
(0] Display is online.
F Display is offline.
47 Character 1 Display location. Display
L Local display.
R Remote display.
48 Character 1 Display type. Display
A Alphanumeric or Katakana.
| DBCS.
G Graphic DBCS.
49 Character 1 Keyboard type of display. Display
A Alphanumeric or Katakana keyboard.

| DBCS keyboard.

50 Character 1 Transaction status. All communication types. ICF

N Transaction is not started. An evoke request has not
been sent, a detach request has been sent or
received, or the transaction has completed.

Y Transaction is started. The transaction is active. An
evoke request has been sent or received and the
transaction has not ended.

51 Character 1 Synchronization level. APPC and INTRA. ICF
0 Synchronization level 0 (SYNLVL(*NONE)).
1 Synchronization level 1 (SYNLVL(*CONFIRM)).
2 Synchronization level 2 (SYNLVL(*COMMIT)).
52 Character 1 Conversation being used. APPC only. ICF
M Mapped conversation.
B Basic conversation.
53 Character 8 Remote location name. All communication types. ICF
61 Character 8 Local LU name. APPC only. ICF
69 Character 8 Local network ID. APPC only. ICF
77 Character 8 Remote LU name. APPC only. ICF
85 Character 8 Remote network ID. APPC only. ICF
93 Character 8 Mode. APPC only. ICF

Appendix A. Feedback Area Layouts

177

Table 23. Get Attributes (continued)

Offset Data Type Length Contents File Type
101 Character 1 Controller information. Display
N Display is not attached to a controller that supports
an enhanced interface for nonprogrammable work
stations.
1 Display is attached to a controller (type 1) that

supports an enhanced interface for
nonprogrammable work stations. See note.

2 Display is attached to a controller (type 2) that
supports an enhanced interface for
nonprogrammable work stations. See note.

3 Display is attached to a controller (type 3) that
supports an enhanced interface for
nonprogrammable work stations. See note.

102 Character 1 Color capability of display. Display
Y Color display
N Monochrome display

103 Character 1 Grid line support by display. Display
Y Display supports grid lines
N Display does not support grid lines

104 Character 1 ICF

hex 00 Reset state

hex 01 Send state

hex 02 Defer received state

hex 03 Defer deallocate state

hex 04 Receive state

hex 05 Confirm state

hex 06 Confirm send state

hex 07 Confirm deallocate state

hex 08 Commit state

hex 09 Commit send state

hex OA Commit deallocate state

hex OB Deallocate state

hex OC Rollback required state
105 Character 8 LU.6 Conversation Correlator ICF
113 Character 31 Reserved Display, ICF

Note: The following information is provided only for an Integrated Service Digital Network (ISDN) used in the ICF or remote display
session. Also, not all of the information will be available if the area to receive it is too small.
144 Binary 2 ISDN remote number length in bytes. Consists of the total of Display, ICF

the lengths of the next three fields: ISDN remote numbering

type, ISDN remote numbering plan, and the ISDN remote

number. If the ISDN remote number has been padded on the

right with blanks, the length of that padding is not included in

this total. :p If ISDN is not used, this field contains 0.

178 Data Management V4R4

Table 23. Get Attributes (continued)

Offset Data Type Length
146 Character 2
148 Character 2
150 Character 40
190 Character 4
194 Binary 2
196 Character 2
198 Character 40
238 Character 1
239 Character 1
240 Binary 2
242 Character 32
274 Character 4

Contents
ISDN remote numbering type (decimal).

00 Unknown.

01 International.

02 National.

03 Network-specific.
04 Subscriber.

06 Abbreviated.

ISDN remote numbering plan (decimal).

00 Unknown.

01 ISDN/Telephony.
03 Data.

04 Telex**.

08 National Standard.
09 Private.

The ISDN remote number in EBCDIC, padded on the right
with blanks if necessary to fill the field.

Reserved.

ISDN remote subaddress length in bytes. Consists of the total
of the lengths of the next two fields: ISDN remote subaddress
type and the ISDN remote subaddress. If the ISDN remote
subaddress has been padded on the right with blanks, the
length of that padding is not included in this total. :p If ISDN is
not used, this field contains 0.

ISDN remote subaddress type (decimal).

00 NSAP.

01 User-specified.

ISDN remote subaddress (EBCDIC representation of the
original hexadecimal value, padded on the right with zeros).

Reserved.
ISDN connection (decimal).

0 Incoming ISDN call.
1 Outgoing ISDN call.
Other Non-ISDN connection.

ISDN remote network address length in bytes. If the ISDN
remote network address has been padded on the right with
blanks, the length of that padding is not included.

If ISDN is not used, this field contains 0.

The ISDN remote network address in EBCDIC, padded on the
right with blanks, if necessary, to fill the field.
Reserved.

File Type
Display, ICF

Display, ICF

Display, ICF

Display, ICF
Display, ICF

Display, ICF

Display, ICF

Display, ICF
Display, ICF

Display, ICF

Display, ICF

Display, ICF

Appendix A. Feedback Area Layouts

179

Table 23. Get Attributes (continued)

Offset Data Type Length Contents File Type
278 Character 2 ISDN remote address extension length in bytes. Consists of Display, ICF
the total of the lengths of the next two fields: ISDN remote
address extension type and the ISDN remote address
extension. If the ISDN remote address extension has been
padded on the right with zeros, the length of that padding is
not included.

If ISDN is not used or there is no ISDN remote address
extension, this field contains 0.

280 Character 1 ISDN remote address extension type (decimal). Display, ICF
0 Address assigned according to 1ISO 8348/AD2
2 Address not assigned according to ISO 8348/AD2

Other Reserved.

281 Character 40 ISDN remote address extension (EBCDIC representation of Display, ICF
the original hexadecimal value, padded on the right with
zeros).
321 Character 4 Reserved. Display, ICF
325 Character 1 X.25 call type (decimal). Display, ICF

0 Incoming Switched Virtual Circuit (SVC)
1 Qutgoing SVC

2 Not X.25 SVC

Other Reserved.

Note: The following information is available only for when your program was started as a result of a received program start request.
Also, not all of the information will be available if the area to receive it is too small.

326 Character 64 Transaction program name. Name of the program specified to ICF
be started as a result of the received program start request,
even if a routing list caused a different program to be started.

390 Binary 1 Length of the protected LUWID field. The valid values are 0 ICF
through 26.

391 Binary 1 Length of the qualified LU-NAME. The valid values are 0 ICF
through 17.

392 Character 17 Network qualified protected LU-NAME in the form: ICF

netid.luname. This field is blank if there is no network qualified
protected LU-NAME.
409 Character 6 Protected LUWID instance number. ICF
415 Binary 2 Protected LUWID sequence number. ICF

Note: The following information is available only when a protected conversation is started on the remote system. That is, when a
conversation is started with a SYNCLVL of *COMMIT. Also, not all of the information will be available if the area to receive it is too
small.

417 Binary 1 Length of the unprotected LUWID field. The valid values are 0 ICF
through 26.

418 Binary 1 Length of the qualified LU-NAME. The valid values are 0 ICF
through 17.

419 Character 17 Network qualified unprotected LU-NAME in the form: ICF

netid.luname. This field is blank if there is no network qualified
unprotected LU-NAME.
436 Character 6 Unprotected LUWID instance number. ICF
442 Binary 2 Unprotected LUWID sequence number. ICF

180 Data Management V4R4

Table 23. Get Attributes (continued)

Offset Data Type Length Contents
Note:

Type 1 Controllers available at V2R2 which support such things as windows and continued cursor progression.

File Type

Controllers available at V2R3. These support all of the V2R2 functions as well as menu bars, continued-entry fields, edit
masks, and simple hotspots.

Controllers available at V3R1. These support all of the V2R2 and V2R3 functions. They also support text in the bottom
border of windows.

Type 2

Type 3

Appendix A. Feedback Area Layouts 181

182 Data Management V4R4

Appendix B. Double-Byte Character Set Support

This appendix contains information that you need if you use double-byte characters.
This includes the following topics:

* Double-byte character set (DBCS) fundamentals

* Processing double-byte characters

» Deuvice file support

» Display support

» Copying files that contain double-byte characters

» Writing application programs that process double-byte characters
» DBCS font tables

* DBCS sort tables

» DBCS conversion dictionaries

* Using DBCS conversion

DBCS printer and spooling support information can be found in the Printer Device
Programming book.

Double-Byte Character Set Fundamentals

Some languages, such as Chinese, Japanese, and Korean, have a writing scheme
that uses many different characters that cannot be represented with single-byte
codes. To create coded character sets for such languages, the system uses two
bytes to represent each character. Characters that are encoded in two-byte code
are called double-byte characters.

Eigure 17 on page 184 shows alphanumeric characters coded in a single-byte code
scheme and double-byte characters coded in a double-byte code scheme.

You can use double-byte characters as well as single-byte characters in one
application. For instance, you may want to store double-byte data and single-byte
data in your database, create your display screens with double-byte text and fields,
or print reports with double-byte characters.

© Copyright IBM Corp. 1997, 1999 183

1-Byte Code
(SBCS)
A —XCY1
B X'C2
1 XFr
2 X'F2’

2-Byte Code

(DBCS)
A —— X'42C1’
B — X42C2
1 — X42F1
2 X42F2’

f) —— X'4481’ (Japanese)

%— X'457D" (Japanese)

7} —— X'8877" (Korean)

& —— X'4589' (Japanese)

B —— X'4F99’ (Simplified Chinese)
#—— X'5B70’ (Traditional Chinese)

X’hhhh' indicates that the code has the hexadecimal value, "hhhh".

1-Byte Codes:

256 characters

2-Byte Codes:

256 X 256 characters

RV3HO013-0

Figure 17. Single-byte and Double-byte Code Schemes

DBCS Code Scheme

IBM supports two DBCS code schemes: one for the host systems, the other for
personal computers. The IBM-host code scheme has the following code-range
characteristics:

First byte
hex 41 to hex FE

Second byte
hex 41 to hex FE

Double-byte blank
hex 4040

In the following figure, using the first byte as the vertical axis and the second byte
as the horizontal axis, 256 x 256 intersections or code points are expressed. The
lower-right code area is designated as the valid double-byte code area and x is
assigned to the double-byte blank.

184 Data Management V4R4

2nd byte ———»

1st 0 4|4 FIF
byte 0 0|1 E|F

00

40 X

41

D
FE
FF

D: double-byte code area
x: double-byte blank RSLH712-4

Figure 18. IBM-Host Code Scheme

By assigning the values hex 41 to hex FE in the first and second bytes as the
DBCS codes, the codes can be grouped in wards with 192 code points in each
ward. For example, the code group with the first byte starting with hex 42 is called
ward 42. Ward 42 has the same alphanumeric characters as those in a
corresponding single-byte EBCDIC code page, but with double-byte codes. For
example, the character A is represented in single-byte EBCDIC code as hex C1
and in IBM-host code as hex 42C1.

The AS/400 system supports the following double-byte character sets:
* |IBM Japanese Character Set

* IBM Korean Character Set

* IBM Simplified Chinese Character Set

» |IBM Traditional Chinese Character Set

The following tables show the code ranges for each character set and the number
of characters supported in each character set.

Table 24. IBM Japanese Character Set

Number of
Wards Content Characters
40 Space in 4040 1
41 to 44 Non-Kanji characters 549
* Greek, Russian, Roman numeric (Ward
41)
» Alphanumeric and related symbols
(Ward 42)
» Katakana, Hiragana, and special
symbols (Ward 43-44)
45 to 55 Basic Kaniji characters 3226
56 to 68 Extended Kanji characters 3487

Appendix B. Double-Byte Character Set Support 185

Table 24. IBM Japanese Character Set (continued)

Number of
Wards Content Characters
69 to 7F User-defined characters Up to 4370
80 to FE Reserved
. Total number of IBM-defined characters: 7263
Table 25. IBM Korean Character Set
Number of
Wards Content Characters
40 Space in 4040 1
41 to 46 Non-Hangeul/Hanja characters (Latin alphabet, 939
Greek, Roman, Japanese Kana, numeric, special
symbols)
47 to 4F Reserved
50 to 6C Hanja characters 5265
6D to 83 Reserved
84 to D3 Hangeul characters (Jamo included) 2672
D4 to DD User-defined characters Up to 1880
DE to FE Reserved
. Total number of IBM-defined characters: 8877
Table 26. IBM Simplified Chinese Character Set
Wards Content Number of Characters
40 Space in 4040 1
41 to 47 Non-Chinese characters (Latin 712
alphabet, Greek, Russian, Japanese
Kana, numeric, special symbols)
48 to 6F Chinese characters: Level 1 and Level 3755 and 3008
2
70 to 75 Reserved
76 to 7F User-defined characters Up to 1880
80 to FE Reserved
. Total number of IBM-defined characters: 7476
Table 27. IBM Traditional Chinese Character Set
Wards Content Number of Characters
40 Space in 4040 1

186 Data Management V4R4

Table 27. IBM Traditional Chinese Character Set (continued)

Wards Content Number of Characters

41 to 49 Non-Chinese characters (Latin alphabet, 1003
Greek, Roman, Japanese Kana, numeric,
special symbols)

4A to 4B Reserved

4C to 68 Primary Chinese characters 5402

69 to 91 Secondary Chinese characters 7654

92 to C1 Reserved

C2to E2 User-defined characters Up to 6204
E3 to FE Reserved

. Total number of IBM-defined characters: 14060

This code scheme applies to the AS/400 system, System/36, System/38, as well as
the System/370 system. A different DBCS code scheme, called the IBM Personal
Computer DBCS code scheme, is used on the Personal System/55. For details of
the IBM Personal Computer DBCS code scheme, refer to IBM PS/55 publications.

Shift-Control Characters

When the IBM-host code scheme is used, the system uses shift-control characters
to identify the beginning and end of a string of double-byte characters. The shift-out
(SO) character, hex OE, indicates the beginning of a double-byte character string.
The shift-in (SlI) character, hex OF, indicates the end of a double-byte character

string.
1-Byte Data 1-Byte Data
2-Byte Data
1-Byte Data SO | 2-Byte Data Sl 1-Byte Data

Control

Character
RSLH713-1

Each shift-control character occupies the same amount of space as one
alphanumeric character. By contrast, double-byte characters occupy the same
amount of space as two alphanumeric characters.

When double-byte characters are stored in a graphic field or a variable of graphic

data type, there is no need to use shift control characters to surround the
double-byte characters.

Appendix B. Double-Byte Character Set Support 187

Invalid Double-Byte Code and Undefined Double-Byte Code

Invalid double-byte code has a double-byte code value that is not in the valid

double-byte code range. Eigure 18 on page 183 shows valid double-byte code
ranges. This is in contrast to undefined double-byte code where the double-byte

code is valid, but no graphic symbol has been defined for the code.

Using Double-Byte Data

This section tells you where you can use double-byte data and discusses the
limitations to its use.

Where You Can Use

You can use double-byte data in the following ways:
* As data in files:
— Data in database files.
— Data entered in input-capable and data displayed in output-capable fields of
display files.
— Data printed in output-capable fields in printer files.
— Data used as literals in display files and printer files.
* As the text of messages.
* As the text of object descriptions.

* As literals and constants, and as data to be processed by high-level language
programs.

Double-byte data can be displayed only at DBCS display stations and printed only
on DBCS printers. Double-byte data can be written onto diskette, tape, disk, and
optical storage.

Where You Cannot Use

You cannot use double-byte data in the following ways:
* As AS/400 object names.

* As command names or variable names in control language (CL) and other
high-level languages.

» As displayed or printed output on alphanumeric work stations.

Double-Byte Character Size

188

When displayed or printed, double-byte characters usually are twice as wide as
single-byte characters.

Consider the width of double-byte characters when you calculate the length of a
double-byte data field because field lengths are usually identified as the number of
single-byte character positions used. For more information on calculating the length
of fields containing double-byte data, refer to the DDS Reference.

Data Management V4R4

Processing Double-Byte Characters

Due to the large number of double-byte characters, the system needs more
information to identify each double-byte character than is needed to identify each
alphanumeric character.

There are two types of double-byte characters: basic and extended. These
characters are usually processed by the device on which the characters are
displayed or printed.

Basic Characters

Basic characters are frequently used double-byte characters that reside in the
hardware of a DBCS-capable device. The number of double-byte characters stored
in the device varies with the language supported and the storage size of the device.
A DBCS-capable device can display or print basic characters without using the
extended character processing function of the operating system.

Extended Characters

When processing extended characters, the device requires the assistance of the
system. The system must tell the device what the character looks like before the
device can display or print the character. Extended characters are stored in a
DBCS font table, not in the DBCS-capable device. When displaying or printing
extended characters, the device receives them from the DBCS font table under
control of the operating system.

Extended character processing is a function of the operating system that is required
to make characters stored in a DBCS font table available to a DBCS-capable
device.

To request extended character processing, specify the double-byte extended
character parameter, IGCEXNCHR(*YES), on the file creation command when you
create a display (CRTDSPF command) or printer file (CRTPRTF command) that
processes double-byte data. Because IGCEXNCHR(*YES) is the default value, the
system automatically processes extended characters unless you instruct it
otherwise. You can change this file attribute by using a change file (CHGDSPF or
CHGPRTF) or override file (OVRDSPF or OVRPRTF) command. For example, to
override the display fle DBCSDSPF so that extended characters are processed,
enter:

OVRDSPF DSPF(DBCSDSPF) IGCEXNCHR(*YES)

Notes:
1. The system ignores the IGCEXNCHR parameter when processing alphanumeric
files.

2. When you use the Japanese 5583 Printer to print extended characters, you
must use the Kanji print function of the Advanced DBCS Printer Support for
AS/400 licensed program. Refer to the Kanji Print Function User’s Guide and
Reference for how to use this utility.

What Happens When Extended Characters Are Not Processed

When extended characters are not processed, the following happens:
» Basic double-byte characters are displayed and printed.

Appendix B. Double-Byte Character Set Support 189

* On displays, the system displays the undefined character where it would
otherwise display extended characters.

* On printed output, the system prints the undefined character where it would
otherwise print extended characters.

* The extended characters, though not displayed or printed, are stored correctly in
the system.

Device File Support

The following sections describe DBCS-capable device files and special
considerations for working with DBCS-capable device files. Data description
specifications (DDS), a language used to describe files, can be used with
DBCS-capable device files. For information about using DDS, refer to the DDS
Reference .

What a DBCS File Is

A DBCS file is a file that contains double-byte data or is used to process
double-byte data. Other files are called alphanumeric files .

The following types of device files can be DBCS files:
» Display

* Printer

* Tape

» Diskette

* ICF

When to Indicate a DBCS File

How to Indicate

You should indicate that a file is DBCS in one or more of the following situations:

* The file receives input, or displays or prints output, which has double-byte
characters.

* The file contains double-byte literals.

* The file has double-byte literals in the DDS that are used in the file at processing
time (such as constant fields and error messages).

* The DDS of the file includes DBCS keywords. See the DDS Reference for
information on these keywords.

* The file stores double-byte data (database files).
a DBCS File

You must indicate that a device file is a DBCS file in order for the system to
process double-byte data properly. You can do this in one of the following ways:

e Through DDS
— DDS provides fields of the following data types.

- DBCS-only fields: display and accept only double-byte characters.
Double-byte characters in a DBCS-only field are enclosed in shift-out and
shift-in characters that have to be paired.

190 Data Management V4R4

- DBCS-open fields: display and accept both single-byte and d