
IBM Tape Device Drivers

Programming Reference

GA32-0566-07

���

IBM Tape Device Drivers

Programming Reference

GA32-0566-07

���

Note!
Before using this information and the product that it supports, be sure to read the general information under “Notices” on
page 363.

Seventh Edition (December 2012)

This edition replaces and makes obsolete GC35-0483-06, GC35-0346-10, GA32-0566-00, GA32-0566-01, GA32-0566-02,
GA32-0566-03, GA32-0566-04, GA32-0566-05, and . GA32-0566-06. Changes or additions are indicated by a vertical
line in the left margin.

© Copyright IBM Corporation 1999, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . vii
Special Printing Instructions. vii
Related Information . vii

AIX. viii
HP-UX . viii
Linux . viii
Solaris . viii
Microsoft Windows . viii
Additional Information . viii

Chapter 1. Common Extended Features . 1
Tape Drive Functions and Device Driver ioctls . 1

Media Partitioning . 1
Data Safe (Append-Only) Mode . 3
Read Position Long/Extended Form and Locate(16) Commands 3
Logical Block Protection . 4
Programmable Early Warning (PEW) . 4
Log Sense Page and Subpage . 5
Mode Sense Page and Subpage . 5
Verify Tape . 5

Chapter 2. AIX Tape and Medium Changer Device Driver 7
Software Interface for Tape Devices . 7
Software Interface for Medium Changer Devices . 7
Special Files . 8

Special Files for Tape Devices. 8
Special Files for Medium Changer Device . 9
Opening the Special File for I/O. 9
Using the Extended Open Operation . 10
Writing to the Special File . 11
Reading from the Special File . 12
Reading with the TAPE_SHORT_READ Extended Parameter 12
Reading with the TAPE_READ_REVERSE Extended Parameter 12
Closing the Special File . 13

Device and Volume Information Logging . 13
Log File . 14

Persistent Reservation Support and IOCTL Operations . 15
ODM Attributes and Configuring Persistent Reserve Support. 15
Default Device Driver Host Reservation Key . 15
Preempting and Clearing Another Host Reservation . 16
Openx() Extended Parameters . 16
AIX Tape Persistent Reserve IOCTLS . 17
Atape Persistent Reserve IOCTLS . 20

General IOCTL Operations . 24
Overview . 24

Tape IOCTL Operations . 40
Overview . 40

Medium Changer IOCTL Operations . 76
Overview . 76

Return Codes. 87
Codes for All Operations . 87
Open Error Codes . 87
Write Error Codes . 88
Read Error Codes . 88
Close Error Codes . 89

© Copyright IBM Corp. 1999, 2012 iii

||
||
||
||

IOCTL Error Codes . 89

Chapter 3. HP-UX Tape and Medium Changer Device Driver 91
HP-UX Programming Interface . 91

open. 91
close. 92
read . 93
write . 93
ioctl . 94

IOCTL Operations . 94
General SCSI IOCTL Operations . 94
SCSI Medium Changer IOCTL Operations. 101
SCSI Tape Drive IOCTL Operations . 111
Base Operating System Tape Drive IOCTL Operations . 143
Service Aid IOCTL Operations . 144

Chapter 4. Linux Tape and Medium Changer Device Driver 151
Software Interface . 151

Entry Points . 151
Medium Changer Devices . 153

General IOCTL Operations . 154
Overview. 154

Tape Drive IOCTL Operations . 163
Overview. 163

Tape Drive Compatibility IOCTL Operations . 194
MTIOCTOP . 194
MTIOCGET . 194
MTIOCPOS . 194

Medium Changer IOCTL Operations . 194
SCSI IOCTL Commands . 195

Return Codes . 202
General Error Codes . 203
Open Error Codes . 203
Close Error Codes . 203
Read Error Codes . 204
Write Error Codes . 205
IOCTL Error Codes . 205

Chapter 5. Solaris Tape and Medium Changer Device Driver 207
IOCTL Operations . 207

General SCSI IOCTL Operations . 207
SCSI Medium Changer IOCTL Operations. 217
SCSI Tape Drive IOCTL Operations . 228
Base Operating System Tape Drive IOCTL Operations . 266
Downward Compatibility Tape Drive IOCTL Operations 269
Service Aid IOCTL Operations . 275

Return Codes . 279
General Error Codes . 280
Open Error Codes . 280
Close Error Codes . 281
Read Error Codes . 281
Write Error Codes . 281
IOCTL Error Codes . 283
Opening a Special File . 283
Writing to a Special File . 284
Reading from a Special File. 284
Closing a Special File . 285
Issuing IOCTL Operations to a Special File . 287

Chapter 6. Windows Tape Device Drivers . 289

iv IBM Tape Device Drivers: Programming Reference

Windows Programming Interface . 289
User Callable Entry Points . 289
Tape Media Changer Driver Entry Points . 289
Medium Changer IOCTLs . 296
Vendor Specific (IBM) Device IOCTLs for DeviceIoControl 298
Variable and Fixed Block Read Write Processing . 313

Event Log . 315

Chapter 7. 3494 Enterprise Tape Library Driver 321
AIX 3494 Enterprise Tape Library Driver . 321

Opening the Special File for I/O . 321
Header Definitions and Structure . 321
Parameters . 321
Reading and Writing the Special File . 321
Closing the Special File . 321

HP-UX 3494 Enterprise Tape Library Driver . 322
Opening the Library Device . 322
Closing the Library Device . 322
Issuing the Library Commands . 322
Building and Linking Applications with the Library Subroutines 323

Linux 3494 Enterprise Tape Library Driver . 323
Opening the Library Device . 324
Closing the Library Device . 324
Issuing the Library Commands . 324
Building and Linking Applications with the Library Subroutines 325

SGI IRIX 3494 Enterprise Tape Library . 325
Solaris 3494 Enterprise Tape Library . 326

Opening the Library Device . 326
Closing the Library Device . 326
Issuing the Library Commands . 327
Building and Linking Applications with the Library Subroutines 328

Windows 3494 Enterprise Tape Library Service . 328
Opening the Library Device . 328
Closing the Library Device . 329
Issuing Library Commands. 329
Building and Linking Applications with the Library Subroutines 330

3494 Enterprise Tape Library System Calls. 331
Library Device Number . 332
MTIOCLM (Library Mount) . 332
MTIOCLDM (Library Demount) . 335
MTIOCLQ (Library Query) . 336
MTIOCLSVC (Library Set Volume Category) . 342
MTIOCLQMID (Library Query Message ID) . 343
MTIOCLA (Library Audit) . 344
MTIOCLC (Library Cancel). 345
MTIOCLSDC (Library Set Device Category) . 346
MTIOCLRC (Library Release Category). 349
MTIOCLRSC (Library Reserve Category) . 350
MTIOCLSCA (Library Set Category Attribute) . 351
MTIOCLDEVINFO (Device List) . 351
MTIOCLDEVLIST (Expanded Device List). 352
MTIOCLADDR (Library Address Information) . 354
MTIOCLEW (Library Event Wait) . 355
Error Description for the Library I/O Control Requests 358

Notices . 363
Trademarks . 363

Index . 365

Contents v

vi IBM Tape Device Drivers: Programming Reference

Preface

This publication provides programming reference information for IBM® Ultrium™,
TotalStorage™, and System Storage® tape drives, medium changers, and library
device drivers.

Special Printing Instructions
This Device Driver Manual contains different sections for each type of operating
platform; for example, AIX®, HP-UX, Linux, Oracle Solaris, Windows, and a
separate section on these operating systems for the 3494 Enterprise Tape Library.

Note: When selecting the page range for the section you wish to print, note that
the print page range is based on the page controls for Adobe Acrobat, not
the page printed on the actual document. Enter the Adobe page numbers to
print.

If you wish to print one or more separate sections of the manual, follow these
steps:
1. Navigate to the beginning of the section and note the page number.
2. Navigate to the last page in the section and note that page number.
3. Select File > Print, then choose "Pages" and enter the page range for the section.

Only the page range entered will print.
4. Repeat these steps to print additional sections.

Important printer note

This area indicates the
pages that will actually
print in your specified
range of pages.

Ignore the page number
appearing on the page itself
when entering page ranges
for your printer.

Attention: There is only one Table of Contents and one Index for this entire book.
If you wish to print those items, you must repeat the process above, entering the
page range of the Table of Contents and the Index page range, respectively.

Related Information
Reference material, including the Adobe pdf version of this publication, is available
at:

http://www-01.ibm.com/support/docview.wss?uid=ssg1S7003032.

© Copyright IBM Corp. 1999, 2012 vii

|

A companion publication covering installation and user aspects for the device
drivers is:

IBM Tape Device Drivers: Installation and Users Guide, GC27-2130-00, located at:

http://www-01.ibm.com/support/docview.wss?uid=ssg1S7002972

AIX
The following URL points to information about IBM System p® (also known
asERserver pSeries®) servers:

http://www-1.ibm.com/servers/eserver/pseries

HP-UX
The following URL relates to HP HP-UX systems:

http://www.hp.com

Linux
The following URLs relate to Linux distributions:

http://www.redhat.com

http://www.suse.com

Solaris
The following URL relates to Oracle Solaris systems:

http://www.oracle.com/us/sun/index.htm

Microsoft Windows
The following URL relates to Microsoft Windows systems:

http://www.microsoft.com

Additional Information
The following publication contains additional information related to the IBM tape
drive, medium changer, and library device drivers:
v American National Standards Institute Small Computer System Interface

X3T9.2/86-109 X3.180, X3B5/91-173C, X3B5/91-305, X3.131-199X Revision 10H,
and X3T9.9/91-11 Revision 1

viii IBM Tape Device Drivers: Programming Reference

|

|

http://www-1.ibm.com/servers/eserver/pseries
http://www.hp.com
http://www.redhat.com/
http://www.suse.com
http://www.oracle.com/us/sun/index.htm
http://www.microsoft.com

Chapter 1. Common Extended Features

Tape Drive Functions and Device Driver ioctls
Beginning with the TS1140 (JAG 4), TS2250, and TS2350 (LTO-5) generation of tape
drives, additional functions are supported that previous generations of LTO and
JAG tape drives do not support. The device drivers provide ioctls that applications
can use for these functions. Refer to the appropriate platform section for the
specific ioctls and data structures that are not included in this section.
v Media Partitioning

Supported Tape Drives: LTO-5 and JAG 4 and later models
v Data Safe (Append-Only) Mode

Supported Tape Drives: LTO-5 and JAG 4 and later models
v Read Position SCSI Command for Long and Extended forms

Supported Tape Drives: LTO-5 and JAG 4 and later models
v Locate(16) SCSI Command

Supported Tape Drives: LTO-5 and JAG 4 and later models
v Logical Block Protection

Supported Tape Drives: LTO-5 and JAG 2/3/4 and later models
v Programmable Early Warning (PEW)

Supported Tape Drives: LTO-5 and JAG 2 and later models
v Log Sense Page and Subpage

Supported Tape Drives: LTO-5 and JAG 3 and later models
v Mode Sense Page and Subpage

Supported Tape Drives: LTO-4 and JAG 2 and later models
v Verify Tape

Supported Tape Drives: LTO5 and JAG 2 and later models

Media Partitioning
There are two types of partitioning: Wrap-wise partitioning (used on TS2250,
TS2260, TS2350, TS2360 and TS1140) and Longitudinal partitioning (maximum 2
partitions) used only on TS1140.

Partition 0

Partition 1

Partition 2

Partition 3

Guard wraps

a
2
5
0
0
2
8
3

Figure 1. Wrap-wise Partitioning

© Copyright IBM Corp. 1999, 2012 1

|

|

|

|

|

|

|

|

|
|

In Wrap-wise partitioning media can be partitioned into 1 or 2 partitions (LTO5
and later) or 1 to 4 partitions (TS1140). The data partition (the default) for a single
partition will always exist as partition 0. An additional partition 1 could exist in
LTO or up to 4 partitions (partition 1, 2, 3) in TS1140. WORM media can not be
partitioned.

The ioctls the device drivers provide for tape partitioning are:
v Query Partition

The Query Partition ioctl returns the partition information for the current media in
the tape drive along with the current active partition the tape drive is using for the
media.

Note: If the Create Partition ioctl fails then the Query Partition ioctl will not return
the correct partition information. To get the correct information the
application must unload and reload the tape again.

v Create Partition

The Create Partition ioctl is used to format the current media in the tape driver to
either 1 or 2 partitions. When creating 2 partitions the FDP, SDP, or IDP partition
type is specified by the application. The tape must be positioned at the beginning
of tape (partition 0 logical block id 0) before using this ioctl or the ioctl will fail.

If the number_of_partitions field to create in the ioctl structure is 1 partition, all
other fields are ignored and not used. The tape drive formats the media using it's
default partitioning type and size for a single partition.

When the type field in the ioctl structure is set to either FDP or SDP, the size_unit
and size fields in the ioctl structure are not used. When the type field in the ioctl
structure is set to IDP, the size_unit and size fields are used to specify the size for
each partition. One of the 2 partition sizes for either partition 0 or 1 must be
specified as 0xFFFF to use the remaining capacity and the other partition will be
created using the size_unit and size field for the partition.
v Set Active Partition

The Set Active Partition ioctl is used to position the tape drive to a specific
partition which will become the current active partition for subsequent commands
and a specific logical bock id in the partition. To position to the beginning of the
partition the logical_block_id field in the ioctl structure should be set to 0.

Partition 1Partition 0

a
2
5
0
0
2
8
4

Guard gap

Figure 2. Longitudinal Partitioning

2 IBM Tape Device Drivers: Programming Reference

|
|

Data Safe (Append-Only) Mode
Data safe (Append-Only) mode will set the drive into a logical WORM mode so
any non-WORM tape when loaded will be handled similar to a WORM tape. After
data or filemarks have been written to the tape, it can not normally be over
written. New data or filemarks can only be appended at the end of previously
written data. Data safe mode only applies to drive operation so when a
non-WORM tape is unloaded it does not change and is still a non-WORM tape.

There are conditions when the drive is in data safe mode an application may want
to explicitly overwrite previously written data by issuing a write, write filemark, or
erase command. These commands are referred to as write type commands. An
application may also want to explicitly partition the tape with the Create Partition
ioctl that issues a format command. The drive supports a new Allow Data
Overwrite SCSI command for this purpose.

The ioctls the device drivers provide for data safe mode are:
v Querying and Setting Data Safe Mode

All platform device drivers except Windows added a new data safe mode
parameter to the existing ioctls that are used to query or set tape drive parameters.
The Windows device driver has added 2 new ioctls to query or set data safe mode.

A query ioctl returns the current drive mode, either data safe mode off (normal
mode) or data safe mode on. A set ioctl sets the drive to either data safe mode off
(normal mode) or data safe mode on. Data safe mode can be set whether a tape is
currently loaded in the drive or not. Data safe mode can only be set back to
normal mode when a tape is not currently loaded in the drive.
v Allow Data Overwrite

The Allow Data Overwrite ioctl is used to allow previously written data on the
tape to be overwritten when data safe mode is enabled on the drive for a
subsequent write type command or to allow a format command using the Create
Partition ioctl.

To allow a subsequent write type command the tape position where the overwrite
should occur must be in the desired partition and logical block id within the
partition before this ioctl is used and the partition_number and logical_block_id
fields in the ioctl structure must be set to that partition and logical block id. The
allow_format_overwrite field in the ioctl structure must be set to 0.

To allow a subsequent Create Partition ioctl to format the tape the
allow_format_overwrite field in the ioctl structure must be set to 1. The
partition_number and logical_block_id fields are not used but the tape must be at
the beginning of tape (partition 0 logical block id 0) prior to issuing the Create
Partition ioctl.

Read Position Long/Extended Form and Locate(16)
Commands

Because of the increased tape media capacity and depending on the block sizes
and number of files an application could write on tape, the 4 byte fields such as
the logical block id the current Read Position command (referred to as the short
form) that returns 20 bytes could overflow. The same applies to the Locate(10)
command for the logical block id.

Chapter 1. Common Extended Features 3

LTO-5 and later will support new forms of the existing Read Position command in
addition to the current short form that will continue to return 4 byte fields in 20
bytes of return data. The long form will return 8 byte fields in 32 bytes of return
data with the current position information for the logical block id and logical
filemark. The extended form will return 8 byte fields in 32 bytes of return data
with the current position information for the logical block id and buffer status. The
format of return data in the Read Position command is specified using a service
action field in the Read Position SCSI CDB.

LTO-5 and later will also support the Locate(16) command that uses 8 byte fields.
This command can either position the tape to a logical block id or a logical
filemark by setting the dest_type field in the Locate(16) SCSI CDB. After the locate
command completes, the tape will be positioned at the BOP side of the tape.

The ioctls the device drivers provide are:
v Read Tape Position

The Read Tape Position ioctl will return the Read Position command data in either
the short, long, or extended form. The form to be returned is specified by setting
the data_format field in the ioctl structure.
v Set Tape Position

The Set Tape Position ioctl will issues a Locate(16) command to position the tape in
the current active partition to either a logical block id or logical filemark. The
logical_id_type field in the ioctl structure specifies either a logical block or logical
filemark.

Logical Block Protection
The ioctls the device drivers provide are:
v Query Logical Block Protection

This ioctl queries whether the drive is capable of supporting this feature, what
lbp method is used, and where the protection information is included.
The lbp_capable field indicates the drive has the logical block protection (LBP)
capability or not. The lbp_method field displays if LBP is enabled and what the
protection method is. The LBP information length is shown in the
lbp_info_length field. The fields of lbp_w, lbp_r and rbdp present that the
protection information is included in write, read or recover buffer data. The
rbdp field isn't supported for the LTO drive.

v Set Logical Block Protection

This ioctl enables or disables Logical Block Protection, sets up what method is
used, and where the protection information is included.
The lbp_capable field is ignored in this ioctl by the tape driver. If the
lbp_method field is 0 (LBP_DISABLE), all other fields are ignored and not used.
When the lbp_method field is set to a valid non-zero method, all other fields are
used to specify the setup for LBP.

Programmable Early Warning (PEW)
Using the tape parameter, the application is allowed to request the tape drive to
create a zone called the programmable early warning zone (PEWZ) in the front of
Early Warning (EW), see the figure below:

4 IBM Tape Device Drivers: Programming Reference

|

|

|

|
|
|

BOP EW EOP
PEWZ

a
2
5
0
0
2
9
1

This parameter establishes the programmable early warning zone size. It is a
two-byte numerical value specifying how many MB before the standard
end-of-medium early warning zone to place the programmable early warning
indicator. If this value is set to a positive integer, a user application will be warned
that the tape is running out of space when the tape head reaches the PEW location.
If pew is set to 0, then there will be no early warning zone and the user will only
be notified at the standard early warning location.

Log Sense Page and Subpage
This ioctl of the SIOC_LOG_SENSE10_PAGE issues a Log Sense(10) command and
returns log sense data for a specific page and subpage. This ioctl command is
enhanced to add a subpage variable from the log sense page. It returns a log sense
page or subpage from the device. The desired page is selected by specifying the
page_code or subpage_code in the structure. Optionally, a specific parm pointer,
also known as a parm code, and the number of parameter bytes can be specified
with the command.

Mode Sense Page and Subpage
This ioctl of the SIOC_MODE_SENSE issues a Mode Sense(10) or (6) command and
returns the whole mode sense data including header, block descriptor, and page
code for a specific page or subpage from the device.

Verify Tape
The ioctl of VERIFY_DATA_TAPE issues the VERIFY command to cause data to be
read from the tape and passed through the drive’s error detection and correction
hardware to determine whether it can be recovered from the tape, or whether the
protection information is present and validates correctly on logical block on the
medium. The driver returns a failure or success signal if the VERIFY SCSI
command is completed in a Good SCSI status. The Verify command is supported
on all LTO libraries. Verify to EOD (ETD) or verify by filemark (VBF) is supported
on drives that support Logical Block Protection (LBP).

Chapter 1. Common Extended Features 5

|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|

6 IBM Tape Device Drivers: Programming Reference

Chapter 2. AIX Tape and Medium Changer Device Driver

This chapter provides an introduction to the IBM AIX Enhanced Tape and Medium
Changer Device Driver (Atape) programming interface to IBM TotalStorage
(formally Magstar®) and System Storage tape and medium changer devices.

Software Interface for Tape Devices
The AIX tape and Medium Changer device driver provides the following entry
points for tape devices:

Open This entry point is driven by open, openx, and creat subroutines.

Write This entry point is driven by write, writev, writex, and writevx subroutines.

Read This entry point is driven by read, readv, readx, and readvx subroutines.

Close This entry point is driven explicitly by the close subroutine and implicitly
by the operating system at program termination.

ioctl This entry point provides a set of tape and SCSI specific functions. It
allows AIX applications to access and control the features and attributes of
the tape device programmatically. For the Medium Changer devices, it also
provides a set of Medium Changer functions that is accessed through the
tape device special files or independently through an additional special file
for the Medium Changer only.

Dump This entry point allows the use of the AIX dump facility with the driver.

The standard set of AIX device management commands is available. The chdev,
rmdev, mkdev, and lsdev commands are used to bring the device online or change
the attributes that determine the status of the tape device.

Software Interface for Medium Changer Devices
The AIX tape and Medium Changer device driver provides the following AIX
entry points for the Medium Changer devices:
v Open

This entry point is driven by open and openx subroutines.
v Close

This entry point is driven explicitly by the close subroutine and implicitly by the
operating system at program termination.

v IOCTL
This entry point provides a set of Medium Changer and SCSI specific functions.
It allows AIX applications to access and control the features and attributes of the
tape system robotic device programmatically.

The standard set of AIX device management commands is available. The chdev,
rmdev, mkdev, and lsdev commands are used to bring the device online or change
the attributes that determine the status of the tape system robotic device.

© Copyright IBM Corp. 1999, 2012 7

Special Files
After the driver is installed and a tape device is configured and made available for
use, access is provided through the special files. These special files, which consist
of the standard AIX special files for tape devices (with other files unique to the
Atape driver), are in the /dev directory.

Special Files for Tape Devices
Each tape device has a set of special files that provides access to the same physical
drive but to different types of functions. As shown in Table 1, in addition to the
tape special files, a special file is provided to tape devices that allows access to the
Medium Changer as a separate device. The asterisk (*) represents a number
assigned to a particular device (such as rmt0).

Table 1. Special Files for Tape Devices

Special File
Name

Rewind on
Close1

Retension on
Open2 Bytes per Inch3 Trailer Label Unload on Close

/dev/rmt* Yes No N/A No No

/dev/rmt*.1 No No N/A No No

/dev/rmt*.2 Yes Yes N/A No No

/dev/rmt*.3 No Yes N/A No No

/dev/rmt*.4 Yes No N/A No No

/dev/rmt*.5 No No N/A No No

/dev/rmt*.6 Yes Yes N/A No No

/dev/rmt*.7 No Yes N/A No No

/dev/rmt*.104 No No N/A No No

/dev/rmt*.20 Yes No N/A No Yes

/dev/rmt*.40 Yes No N/A Yes No

/dev/rmt*.41 No No N/A Yes No

/dev/rmt*.60 Yes No N/A Yes Yes

/dev/rmt*.null5 Yes No N/A No No

/dev/rmt*.smc6 N/A N/A N/A N/A N/A

Notes:

1. The Rewind on Close special files for the Ultrium Tape Drives writes filemarks
under certain conditions before rewinding. See “Opening the Special File for
I/O” on page 9.

2. The Retension on Open special files rewind the tape on open only. Retensioning
is not performed because these tape products perform the retension operation
automatically when needed.

3. The Bytes per Inch options are ignored for the tape devices that this driver
supports. The density selection is automatic.

4. The rmt*.10 file bypasses normal close processing , and the tape is left at the
current position.

5. The rmt*.null file is a pseudo device similar to the /dev/null AIX special file. The
ioctl calls can be issued to this file without a real device attached to it, and the
device driver returns a successful completion. Read and write system calls
return the requested number of bytes. This file can be used for application
development or debugging problems.

AIX Device Driver (Atape)

8 IBM Tape Device Drivers: Programming Reference

6. The rmt*.smc file can be opened independently of the other tape special files.

For tape drives with attached SCSI Medium Changer devices, the rmt*.smc special
file provides a separate path for issuing commands to the Medium Changer. When
this special file is opened, the application can view the Medium Changer as a
separate SCSI device.

This special file and the rmt* special file can be opened at the same time. The file
descriptor that results from opening the rmt*.smc special file does not support the
following operations:
v Read
v Write
v Open in diagnostic mode
v Commands designed for a tape device

If a tape drive has a SCSI Medium Changer device attached, all operations
(including the Medium Changer operations) are supported through the interface to
the rmt* special file.

Special Files for Medium Changer Device
After the driver is installed and a Medium Changer device is configured and made
available for use, access to the robotic device is provided through the smc* special
file in the /dev directory.

Table 2 shows the attributes of the special file. The asterisk (*) represents a number
assigned to a particular device (such as smc0). The term smc is used for a SCSI
Medium Changer device. The smc* special file provides a path for issuing
commands to control the Medium Changer robotic device.

Table 2. Special Files

Special File Name Description

/dev/smc* Access to the Medium Changer robotic device

/dev/smc*.null Pseudo Medium Changer device

Note: The smc*.null file is a pseudo device similar to the /dev/null AIX special file.
The commands can be issued to this file without a real device attached to it,
and the device driver returns a successful completion. This file can be used
for application development or debugging problems.

The file descriptor that results from opening the smc special file does not support
the following operations:
v Read
v Write
v Commands designed for a tape device

Opening the Special File for I/O
Several options are available when a file is opened for access. These options,
known as O_FLAGS, affect the characteristics of the opened tape device or the
result of the open operation. The Open command is:
tapefd=open("/dev/rmt0",O_FLAGS);
smcfd=open("/dev/smc0",O_FLAGS);

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 9

The O_FLAGS parameter has the following flags:
v O_RDONLY

This flag only allows operations that do not change the content of the tape. The
flag is ignored if it is used to open the smc special files.

v O_RDWR
This flag allows complete access to the tape. The flag is ignored if it is used to
open the smc special files.

v O_WRONLY
This flag does not allow the tape to be read. All other operations are allowed.
The flag is ignored if it is used to open the smc special files.

v O_NDELAY or O_NONBLOCK
These two flags perform the same function. The driver does not wait until the
device is ready before opening and allowing commands to be sent. If the device
is not ready, subsequent commands (which require that the device is ready or a
physical tape is loaded) fail with ENOTREADY. Other commands, such as
gather the inquiry data, complete successfully.

v O_APPEND
When the tape drive is opened with this flag, the driver will rewind the tape,
seek to the first two consecutive filemarks and place the intial tape position
between them. This status is the same if the tape was previously opened with a
No Rewind on Close special file. This process can take several minutes for a full
tape. The flag is ignored if it is used to open the smc special files.
This flag must be used in conjunction with the O_WRONLY flag to append data
to the end of the current data on the tape. The O_RDONLY or O_RDWR flag is
illegal in combination with the O_APPEND flag.

Note: This flag cannot be used with the Retension on Open special files, such as
rmx.2.

If the open system call fails, the errno value contains the error code. See “Return
Codes” on page 87 for a description of the errno values.

Using the Extended Open Operation
An extended open operation is also supported on the device. This operation allows
special types of processing during the opening and subsequent closing of the tape
device. The Extended Open command is:
tapefd=openx("/dev/rmt0",O_FLAGS,NULL,E_FLAGS);
smcfd=openx("/dev/smc0",O_FLAGS,NULL,E_FLAGS);

The O_FLAGS parameter provides the same options described in “Opening the
Special File for I/O” on page 9. The third parameter is always NULL. The
E_FLAGS parameter provides the extended options. The E_FLAGS values can be
combined during an open operation or they can be used with an OR operation.

The E_FLAGS parameter has the following flags:
v SC_RETAIN_RESERVATION

This flag prevents the SCSI Release command from being sent during a close
operation.

v SC_FORCED_OPEN
The flag forces the release of any current reservation on the device by an
initiator. The reservation could either be a SCSI Reserve or SCSI Persistent
Reserve.

AIX Device Driver (Atape)

10 IBM Tape Device Drivers: Programming Reference

v SC_KILL_OPEN
This flag will kill all currently open processes and then exit the open with errno
EINPROGRESS returned.

v SC_PR_SHARED_REGISTER
This flag overrides the configuration reservation type attribute whether it was
set to reserve_6 or persistent and sets the device driver to use Persistent Reserve
while the device is open until closed. The configuration reservation type
attribute is not changed and the next open without using this flag will use the
configuration reservation type. The device driver also registers the host
reservation key on the device. This flag can be used in conjunction with the
other extended flags.

v SC_DIAGNOSTIC
The device is opened in diagnostic mode, and no SCSI commands are sent to the
device during an open operation or a close operation. All operations (such as
reserve and mode select) must be processed by the application.

v SC_NO_RESERVE
This flag prevents the SCSI Reserve command from being sent during an open
operation.

v SC_PASSTHRU
No SCSI commands are sent to the device during an open operation or a close
operation. All operations (such as reserve the device, release the device, and set
the tape parameters) must be processed explicitly by the application. This flag is
the same as the SC_DIAGNOSTIC flag with the exception that a SCSI Test Unit
Unit Ready command is issued to the device during an open operation to clear
any unit attentions.

v SC_FEL
This flag turns the forced error logging on in the tape device for read and write
operations.

v SC_NO_ERRORLOG
This flag turns off the AIX error logging for all read, write, or ioctl operations.

v SC_TMCP
This flag allows up to 8 processes to concurrently open a device when the device
is already open by another process. There is no restriction for medium changer
ioctl commands that can be issued when this flag is used but for tape devices
only a limited set of ioctl commands can be issued. If an ioctl command cannot
be used with this flag then errno EINVAL will be returned.
If another process already has the device open with this flag, the open fails, and
the errno is set to EAGAIN.

If the open system call fails, the errno value contains the error code. See “Return
Codes” on page 87 for a description of the errno values.

Writing to the Special File
Several subroutines allow writing data to a tape. The basic write command is:
count=write(tapefd, buffer, numbytes);

The write operation returns the number of bytes written during the operation. It
can be less than the value in numbytes. If the block size is fixed (block_size≠0), the
numbytes value must be a multiple of the block size. If the block size is variable,
the value specified in numbytes is written. If the count is less than zero, the errno
value contains the error code returned from the driver.

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 11

See “Return Codes” on page 87 for a description of the errno values.

The writev, writex, and writevx subroutines are also supported. Any values passed
in the ext field using the extended write operation are ignored.

Reading from the Special File
Several subroutines allow reading data from a tape. The basic read command is:
count=read(tapefd, buffer, numbytes);

The read operation returns the number of bytes read during the operation. It can be
less than the value in numbytes. If the block size is fixed (block_size≠0), the
numbytes value must be a multiple of the block size. If the count is less than zero,
the errno value contains the error code returned from the driver.

See “Return Codes” on page 87 for a description of the errno values.

If the block size is variable, then the value specified in numbytes is read. If the
blocks read are smaller than requested, the block is returned up to the maximum
size of one block. If the blocks read are greater than requested, an error occurs
with the error set to ENOMEM.

Reading a filemark returns a value of zero and positions the tape after the
filemark. Continuous reading (after EOM is reached) results in a value of zero and
no further change in the tape position.

The readv subroutine is also supported.

Reading with the TAPE_SHORT_READ Extended Parameter
For normal read operations, if the block size is set to variable (0) and the amount
of data in a block on the tape is more than the number of bytes requested in the
call, an ENOMEM error is returned. An application can read fewer bytes without
an error using the readx or readvx subroutine and specifying the
TAPE_SHORT_READ extended parameter:
count=readx(tapefd, buffer, numbytes, TAPE_SHORT_READ);

The TAPE_SHORT_READ parameter is defined in the /usr/include/sys/tape.h header
file.

Reading with the TAPE_READ_REVERSE Extended Parameter
The TAPE_READ_REVERSE extended read parameter reads data from the tape in
the reverse direction. The order of the data returned in the buffer for each block
read from the tape is the same as if it were read in the forward direction, but the
last block written is the first block in the buffer. This parameter can be used with
both fixed and variable block sizes. The TAPE_SHORT_READ extended parameter
can be used in conjunction with this parameter, if the block size is set to variable
(0).

Use this parameter with the readx or readvx subroutine specifying the
TAPE_READ_REVERSE extended parameter:
count=readx(tapefd, buffer, numbytes, TAPE_READ_REVERSE);

The TAPE_READ_REVERSE parameter is defined in the /usr/include/sys/Atape.h
header file.

AIX Device Driver (Atape)

12 IBM Tape Device Drivers: Programming Reference

Closing the Special File
Closing a special file is a simple process. The file descriptor that is returned by the
Open command is used to close the command:
rc=close(tapefd);
rc=close(smcfd);

The return code from the close operation should be checked by the application. If
the return code is not zero, the errno value is set during a close operation to
indicate a problem occurred while closing the special file. The close subroutine tries
to perform as many operations as possible even if there are failures during
portions of the close operation. If the device driver cannot terminate the file
correctly with filemarks, it tries to close the connection. If the close operation fails,
consider the device closed and try another open operation to continue processing
the tape. After a close failure, assume either the data or the tape is inconsistent.

For the tape drives, the result of a close operation depends on the special file that
was used during the open operation and the tape operation that was performed
while it was opened. The SCSI commands are issued according to the following
logic:
If the last tape operation was a WRITE command

Write 2 filemarks on tape
If special file is Rewind on Close (Example: /dev/rmt0)
Rewind tape
If special file is a No-Rewind on Close (Example: /dev/rmt0.1)
Backward space 1 filemark (tape is positioned to append next file)

If the last tape operation was a WRITE FILEMARK command
Write 1 filemark on tape
If special file is Rewind on Close (Example: /dev/rmt0)
Rewind tape
If special file is a No-Rewind on Close (Example: /dev/rmt0.1)
Backward space 1 filemark (tape is positioned to append next file)

If the last tape operation was a READ command
If special file is Rewind on Close (Example: /dev/rmt0)
Rewind tape
If special file is a No-Rewind on Close (Example: /dev/rmt0.1)
Forward space to next filemark (tape is positioned to read or append next file)

If the last tape operation was NOT a READ, WRITE, or WRITE FILEMARK command
If special file is Rewind on Close (Example: /dev/rmt0)
Rewind tape
If special file is a No-Rewind on Close (Example: /dev/rmt0.1)
No commands are issued, tape remains at the current position

Device and Volume Information Logging
The device driver provides a logging facility that saves information about the
device and the media. The information is extensive for some devices and limited
for other devices. If this feature is set to On, either by configuration or the
STIOCSETP ioctl, the device driver logging facility gathers all available information
through the SCSI Log Sense command.

This process is separate from error logging. Error logging is routed to the system
error log. Device information logging is sent to a separate file.

The following parameters control this utility:
v Logging
v Maximum size of the log file

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 13

v Volume ID for logging

See the IBM TotalStorage and System Storage Tape Device Drivers: Installation and
User’s Guide for a description of these parameters.

Each time an Unload command or the STIOC_LOG_SENSE ioctl command is
issued, the log sense data is collected and an entry is added to the log. Each time a
new cartridge is loaded, the log sense data in the tape device is reset so that the
log data is gathered on a per-volume basis.

Log File
The data is logged in the /usr/adm/ras directory. The file name is dependent on each
device so each device has a separate log. An example of the rmt1 device file is:
/usr/adm/ras/Atape.rmt1.log

The files are in binary format. Each entry has a header followed by the raw Log
Sense pages as defined for a particular device.

The first log page is always page 0x00. This page, as defined in the SCSI-2 ANSI
specification, contains all the pages supported by the device. Page 0x00 is followed
by all the pages specified in page 0x00. The format of each following page is
defined in the SCSI specification and the device manual.

The format of the file is defined by the data structure. The logfile_header is followed
by max_log_size (or a fewer number of entries for each file). The log_record_header is
followed by a log entry.

The data structure for log recording is:
struct logfile_header

{
char owner[16]; /* module that created the file */
time_t when; /* time when file created */
unsigned long count; /* number of entries in file */
unsigned long first; /* first entry number in wrap queue */
unsigned long max; /* maximum entries allowed before wrap */
unsigned long size; /* size of entry (bytes), entry size is fixed */
};

struct log_record_header
{
time_t when; /* time when log entry made */
ushort type; /* log entry type */

#define LOGDEMOUNT 1 /* demount log entry */
#define LOGSENSE 2 /* log sense ioctl entry */
#define LOGOVERFLOW 3 /* log overflow entry */

char device_type[8]; /* device type that made entry */
char volid[16]; /* volume ID of entry */
char serial[12]; /* serial number of device */
reserved[12];
};

The format of the log file is:

logfile_header

log_record_header

log_record_entry

v

v

AIX Device Driver (Atape)

14 IBM Tape Device Drivers: Programming Reference

v

v

log_record_header

log_record_entry

Each log_record_entry contains multiple log sense pages. The log pages are placed
in order one after another. Each log page contains a header followed by the page
contents.

The data structure for the header of the log page is:
struct log_page_header

{
char code; /* page code */
char res; /* reserved */
unsigned short len; /* length of data in page after header */
};

Persistent Reservation Support and IOCTL Operations

ODM Attributes and Configuring Persistent Reserve Support
Two new ODM attributes are added for PR (Persistent Reservation) support:
v reserve_type.
v reserve_key

The reserve type attribute determines the type of reservation that the device driver
uses for the device. The values can be reserve_6 which is the default for the device
driver or persistent. This attribute can be set by either using the AIX SMIT menu
to “Change/Show Characteristics of a Tape Drive” or from a command line with
the AIX command:
chdev –l rmtx –a reserve_type=persistent or –a reserve_type=reserve_6

The reserve_key attribute is used to optionally set a user defined host reservation
key for the device when the reserve_type is set to persistent. The default for this
attribute is blank (NULL). The default will use a device driver unique host
reservation key generated for the device. This attribute can be set by either using
the AIX SMIT menu to “Change/Show Characteristics of a Tape Drive” or from a
command line with the AIX command:
chdev –l rmtx –a reserve_key=key

The key value can be specified as a 1-8 character ASCII alphanumeric key or a 1-16
hexadecimal key that has the format 0xkey. If less than 8 characters are used for an
ASCII key such as hostA, the remaining characters will be set to 0x00 (NULL).

Note: If the Data Path Failover (DPF) feature is enabled for a logical device by
setting the alternate_pathing attribute to yes the configuration reserve_type
attribute is not used and the device driver uses persistent reservation. Either
the user defined reserve_key value or if not defined the default device
driver host reservation key will be used.

Default Device Driver Host Reservation Key
If a user defined host reservation key is not specified then the device driver uses a
unique static host reservation key for the device. This key is generated when the

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 15

first device is configured and the device driver is initially loaded into kernel
memory. The key is 16 hexadecimal digits in the format 0xApppppppssssssss
where ppppppp is the configuration process id that loaded the device driver and
ssssssss is the 32-bit value of the TOD clock when the device driver was loaded.
When any device is configured and the reserve_key value is NULL, then the
device driver sets the reserve_key value to this default internally for the device.

Preempting and Clearing Another Host Reservation
When another host initiator is no longer using the device but has left either a
SCSI-2 Reserve 6 or a Persistent Reserve active preventing using the device, either
type of reservation can be cleared by using the openx() extended parameter
SC_FORCED_OPEN described below.

Note: This should only be used when the application and/or user is absolutely
sure that the reservation should be cleared.

Openx() Extended Parameters
The following openx() extended parameters are provided for managing device
driver reserve during open processing and release during close processing . These
parameters apply to either SCSI-2 Reserve 6 or Persistent Reserve. The
SC_PASSTHRU parameter applies only to the Atape device driver and is defined
in /usr/include/sys/Atape.h All other parameters are AIX system parameters
defined in /usr/include/sys/scsi.h. AIX base tape device drivers may or may not
support all of these parameters.
v SC_PASSTHRU
v SC_DIAGNOSTIC
v SC_NO_RESERVE
v SC_RETAIN_RESERVATION
v SC_PR_SHARED_REGISTER
v SC_FORCED_OPEN

SC_PASSTHRU

The SC_PASSTHRU parameter bypasses all commands normally issued on open
and close by the device driver. In addition to bypassing the device driver reserving
on open and releasing the device on close, all other open commands except test
unit ready such as mode selects, etc. and rewind on close (if applicable) are also
bypassed. A test unit ready is still issued on open to clear any pending unit
attentions from the device. This is the only difference in using the
SC_DIAGNOSTIC parameter.

SC_DIAGNOSTIC

The SC_DIAGNOSTIC parameter bypasses all commands normally issued on open
and close by the device driver. In addition to bypassing the device driver reserving
on open and releasing the device on close, all other open commands such test unit
ready, mode selects, etc. and rewind on close (if applicable) are also bypassed.

SC_NO_RESERVE

The SC_NO_RESERVE parameter bypasses the device driver issuing a reserve on
open only. All other normal open device driver commands are still issued such as
test unit ready, mode selects, etc.

Persistent Reservation Support and IOCTL Operations

16 IBM Tape Device Drivers: Programming Reference

SC_RETAIN_RESERVATION

The SC_RETAIN_RESERVATION parameter bypasses the device driver issuing a
release on close only. All other normal close device driver commands are still
issued such as rewind (if applicable).

SC_PR_SHARED_REGISTER

The SC_PR_SHARED_REGISTER parameter sets the device driver reserve_type to
persistent and overrides the configuration reserve_type attribute whether it was set
to reserve_6 or persistent. A subsequent reserve on the current open by the device
driver (if applicable) will use Persistent Reserve. The reserve_type is only changed
for the current open. The next open without using this parameter will use the
configuration reserve_type. In addition to setting the reserve_type to persistent, the
device driver will register the host reservation key on the device. This parameter
can also be used in conjunction with the above extended parameters.

SC_FORCED_OPEN

The SC_FORCED_OPEN parameter first clears either a SCSI-2 Reserve 6 or a
Persistent Reservation if one currently exists on the device from another host. The
device driver open processing then continues according to the type of open. This
parameter can also be used in conjunction with the above extended parameters.

AIX Tape Persistent Reserve IOCTLS
The Atape device driver supports the AIX common tape Persistent Reserve ioctls
for application programs to manage their own Persistent Reserve support. These
ioctls are defined in the header file /usr/include/sys/tape.h.

The following two ioctls return Persistent Reserve information using the SCSI
Persistent Reserve In command:
v STPRES_READKEYS
v STPRES_READRES

The following four ioctls perform Persistent Reserve functions using the SCSI
Persistent Reserve Out command:
v STPRES_CLEAR
v STPRES_PREEMPT
v STPRES_PREEMPT_ABORT
v STPRES_REGISTER

Except for the STPRES_REGISTER ioctl, the other three ioctls require that the host
reservation key be registered on the device first. This can be done by either issuing
the STPRES_REGISTER ioctl prior to issuing these ioctls or by opening the device
with the SC_PR_SHARED_REGISTER parameter.

STPRES_READKEYS

The STPRES_READKEYS IOCTL will issue the persistent reserve in command with
the read keys service action. The following structure is the argument for the for
this ioctl:

struct st_pres_in {
ushort version;
ushort allocation_length;

Persistent Reservation Support and IOCTL Operations

Chapter 2. AIX Tape and Medium Changer Device Driver 17

uint generation;
ushort returned_length;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;
uchar *reservation_info;

}

The allocation_length is the maximum number of bytes of key values that should
be returned in the reservation_info buffer. The returned_length value indicates how
many bytes of key values that device reported in the parameter data as well as the
list of key values returned by the device up to allocation_length bytes. If the
returned_length is greater than the allocation_length, this is an indication that the
application did not provide an allocation_length large enough for all of the keys
the device has registered. This is not considered an error by the device driver.

STPRES_READRES

The SYPRES_READRES IOCTL will issue the persistent reserve in command with
the read reservations service action. The STPRES_READRES IOCTL uses the same
following ioctl structure as the STPRES_READKEYS ioctl.

struct st_pres_in {
ushort version;
ushort allocation_length;
uint generation;
ushort returned_length;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;
uchar *reservation_info;

}

The allocation length is the maximum number of bytes of reservation descriptors
that should be returned in the reservation info buffer. The returned_length value
indicates how many bytes of reservation descriptor values that device reported in
the parameter data as well as the list of reservation descriptor values returned by
the device up to allocation_length bytes. If the returned_length is greater than the
allocation_length, this is an indication that the application did not provide an
allocation_length large enough for all of the reservation descriptors the device has
registered. This is not considered an error by the device driver.

STPRES_CLEAR

The STPRES_CLEAR ioctl will issue the persistent reserve out command with the
clear service action. The following structure is the argument for the for this ioctl:

struct st_pres_clear {
ushort version;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;

}

The STPRES_CLEAR ioctl will clear a persistent reservation and all persistent
reservation registrations on the device.

STPRES_PREEMPT

Persistent Reservation Support and IOCTL Operations

18 IBM Tape Device Drivers: Programming Reference

The STPRES_PREEMPT ioctl will issue the persistent reserve out command with
the preempt service action. The following structure is the argument for the for this
ioctl:

struct st_pres_preempt {
ushort version;
unsigned long long preempt_key;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;

}

The STPRES_PREEMPT ioctl preempts a persistent reservation and/or registration.
The preempt_key should contain the value of the registration key of the initiator
that is to be preempted. The determination of whether it is the persistent
reservation and/or registration that is preempted is made by the device. If the
initiator corresponding to the preempt_key is associated with the reservation being
preempted, then the reservation is preempted and any matching registrations are
removed. If the initiator corresponding to the preempt_key is not associated with
the reservation being preempted, then any matching registrations are removed. The
SPC2 standard states that if a valid request for a preempt service action fails, this
may be due to the condition in which another initiator has left the device. The
suggested recourse in this case is for the preempting initiator to issue a logical unit
reset and retry the preempting service action.

STRES_PREEMPT_ABORT

The STPRES_PREEMPT_ABORT ioctl will issue the persistent reserve out
command with the preempt and abort service action. The
STPRES_PREEMPT_ABORT ioctl uses the same argument structure as the
STPRES_PREEMPT ioctl:

struct st_pres_preempt {
ushort version;
unsigned long long preempt_key;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;

}

The STPRES_PREEMPT_ABORT ioctl preempts a persistent reservation and/or
registration and abort all outstanding commands from the initiator(s)
corresponding to the preempt_key registration key value. The preempt_key should
contain the value of the registration key of the initiator for which the preempt and
abort is to apply. The determination of whether it is the persistent reservation
and/or registration that is to be preempted is made by the device. If the initiator
corresponding to the preempt_key is associated with the reservation being
preempted, then the reservation is preempted and any matching registrations are
removed. If the initiator corresponding to the preempt_key is not associated with
the reservation being preempted, then any matching registrations are removed.
Regardless of whether the preempted initiator holds the reservation, all
outstanding commands from all initiator(s) corresponding to the preempt_key will
be aborted.

STPRES_REGISTER

Persistent Reservation Support and IOCTL Operations

Chapter 2. AIX Tape and Medium Changer Device Driver 19

The STPRES_REGISTER ioctl will issue the persistent reserve out command with
the register service action. The following structure is the argument for the for this
ioctl:
struct st_pres_register {

ushort version;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;

}

The STPRES_REGISTER ioctl registers the current host persistent reserve
registration key value with the device. The STPRES_REGISTER ioctl is only
supported if the device is opened with a reserve_type set to persistent, otherwise
an error of EACCESS is returned. The intended use of this ioctl is to allow a
preempted host to regain access to a shared device without requiring that the
device be closed and reopened.

Return errno Values

If an above persistent reserve ioctl fails the return code is set to -1 and the errno
value is set to one of the following:
v ENOMEM Device driver cannot obtain memory to perform the command.
v EFAULT An error occurred while manipulating the caller's data buffer
v EACCES The device is opened with a reserve_type set to reserve_6
v EINVAL The requested IOCTL is not supported by this version of the device

driver or invalid parameter provided in the argument structure
v ENXIO The device indicated that the persistent reserve command is not

supported
v EBUSY The device has returned a SCSI status byte of RESERVATION

CONFLICT, BUSY, or the reservation for the device has been preempted by
another host and the device driver will not issue further commands

v EIO Unknown I/O failure occurred on the command

Atape Persistent Reserve IOCTLS
The Atape device driver provides Persistent Reserve ioctls for application
programs to manage their own Persistent Reserve support. These ioctls are defined
in the header file /usr/include/sys/Atape_pr.h..

The following ioctls return Persistent Reserve information using the SCSI Persistent
Reserve In command:
v STIOC_READ_RESERVEKEYS
v STIOC_READ_RESERVATIONS
v STIOC_READ_RESERVE_FULL_STATUS

The following ioctls perform Persistent Reserve functions using the SCSI Persistent
Reserve Out command:
v STIOC_REGISTER_KEY
v STIOC_REMOVE_REGISTRATION
v STIOC_CLEAR_ALL_REGISTRATIONS
v STIOC_PREEMPT_RESERVATION
v STIOC_PREEMPT_ABORT

Persistent Reservation Support and IOCTL Operations

20 IBM Tape Device Drivers: Programming Reference

|

v STIOC_CREATE_PERSISTENT_RESERVE

The following ioctls have been modified to handle both SCSI-2 Reserve 6 and
Persistent Reserve based on the current reserve_type setting.
v SIOC_RESERVE
v SIOC_RELEASE

STIOC_READ_RESERVEKEYS

This ioctl returns the reservation keys from the device. The argument for this ioctl
is the address of a read_keys structure. If the reserve_key_list pointer is NULL,
then only the generation and length fields are returned. This allows an application
to first obtain the length of the reserve_key_list and malloc a return buffer prior to
issuing the ioctl with a reserve_key_list pointer to that buffer. If the return length is
0, then no reservation keys are registered with the device.

The following structure is used for this ioctl:
struct read_keys
{

uint generation; /* counter for PERSISTENT RESERVE OUT requests */
uint length; /* number of bytes in the Reservation Key list */
ullong *reserve_key_list; /* list of reservation keys */

};

STIOC_READ_RESERVATIONS

This ioctl returns the current reservations from the device if any exist. The
argument for this ioctl is the address of a read_reserves structure. If the reserve_list
pointer is NULL, then only the generation and length fields are returned. This
allows an application to first obtain the length of the reserve_list and malloc a
return buffer prior to issuing the ioctl with a reserve_list pointer to that buffer. If
the return length is 0, then no reservations currently exist on the device.

The following structures are used for this ioctl:
struct reserve_descriptor
{

ullong key; /* reservation key */
uint scope_spec_addr; /* scope-specific address */
uchar reserved;
uint scope:4, /* persistent reservation scope */

type:4; /* reservation type */
ushort ext_length; /* extent length */

};

struct read_reserves
{

uint generation; /* counter for PERSISTENT RESERVE OUT requests */
uint length; /* number of bytes in the Reservation list */
struct reserve_descriptor* reserve_list; /* list of reservation key descriptors */

};

STIOC_READ_RESERVE_FULL_STATUS

This ioctl returns extended information for all reservation keys and reservations
from the device if any exist. The argument for this ioctl is the address of a
read_full_status structure. If the status_list pointer is NULL, then only the
generation and length fields are returned. This allows an application to first obtain
the length of the status_list and malloc a return buffer prior to issuing the ioctl

Persistent Reservation Support and IOCTL Operations

Chapter 2. AIX Tape and Medium Changer Device Driver 21

with a status_list pointer to that buffer. If the return length is 0, then no reservation
keys or reservations currently exist on the device.

The following structures are used for this ioctl:
struct transport_id
{

uint format_code:2,
rsvd:2,
protocol_id:4;

};

struct fcp_transport_id
{

uint format_code:2,
rsvd:2,
protocol_id:4;

char reserved1[7];
ullong n_port_name;
char reserved2[8];

};

struct scsi_transport_id
{

uint format_code:2,
rsvd:2,
protocol_id:4;

char reserved1[1];
ushort scsi_address;
ushort obsolete;
ushort target_port_id;
char reserved2[16];

};

struct sas_transport_id
{

uint format_code:2,
rsvd:2,
protocol_id:4;

char reserved1[3];
ullong sas_address;
char reserved2[12];

};

struct status_descriptor
{

ullong key; /* reservation key */
char reserved1[4];
uint rsvd:5,

spc2_r:1, /* future use for SCSI-2 reserve */
all_tg_pt:1, /* all target ports */
r_holder:1; /* reservation holder */

uint scope:4, /* persistent reservation scope */
type:4; /* reservation type */

char reserved2[4];
ushort target_port_id; /* relative target port id */
uint descriptor_length; /* additional descriptor length */
union {

struct transport_id transport_id; /* transport ID */
struct fcp_transport_id fcp_id; /* FCP transport ID */
struct sas_transport_id sas_id; /* SAS transport ID */
struct scsi_transport_id scsi_id; /* SCSI transport ID */
};

};

struct read_full_status
{

Persistent Reservation Support and IOCTL Operations

22 IBM Tape Device Drivers: Programming Reference

uint generation; /* counter for PERSISTENT RESERVE OUT requests */
uint length; /* number of bytes for total status descriptors */
struct status_descriptor *status_list; /* list of reserve status descriptors */

};

STIOC_REGISTER_KEY

This ioctl registers a host reservation key on the device. The argument for this ioctl
is the address of an unsigned long long key that can be 1 to 16 hexadecimal digits.
If the key value is 0, then the device driver registers the configuration reserve key
on the device. This key is either a user specified host key or the device driver
default host key.

If the host has a current persistent reservation on the device and the key is
different than the current reservation key, the reservation is retained and the host
reservation key is changed to the new key.

STIOC_REMOVE_REGISTRATION

This ioctl removes the host reservation key and reservation if one exists from the
device. There is no argument for this ioctl. The SIOC_RELEASE ioctl could also be
used to perform the same function.

STIOC_CLEAR_ALL_REGISTRATIONS

This ioctl clears all reservation keys and reservations on the device if any exist for
the same host and any other host. There is no argument for this ioctl.

STIOC_PREEMPT_RESERVATION

This ioctl registers a host reservation key on the device and then preempts the
reservation held by another host if one exists or creates a new persistent
reservation using the host reservation key. The argument for this ioctl is the
address of an unsigned long long key that can be 1 to 16 hexadecimal digits. If the
key value is 0, then the device driver registers the configuration reserve key on the
device. This key is either a user specified host key or the device driver default host
key.

STIOC_PREEMPT_ABORT

This ioctl registers a host reservation key on the device, preempts the reservation
held by another host, and clears the task set for the preempted initiator if one
exists, or creates a new persistent reservation using the host reservation key. The
argument for this ioctl is the address of an unsigned long key that can be 1 to 16
hexadecimal digits. If the key value is 0, then the device driver registers the
configuration reserve key on the device. This key is either a user specified host key
or the device driver default host key.

STIOC_CREATE_PERSISTENT_RESERVE

This ioctl creates a persistent reservation on the device using the host reservation
key that was registered with theSTIOC_REGISTER_KEY ioctl. There is no
argument for this ioctl. The SIOC_RESERVE ioctl could also be used to perform the
same function.

SIOC_RESERVE

Persistent Reservation Support and IOCTL Operations

Chapter 2. AIX Tape and Medium Changer Device Driver 23

|

|
|
|
|
|
|
|

This ioctl reserves the device. If the reserve_type is set to reserve_6, the device
driver issues a SCSI Reserve 6 command. If the reserve_type is set to persistent,
the device driver first registers the current host reservation key and then creates a
persistent reservation. The current host reservation key can be either the
configuration key for the device or a key that was registered previously with the
STIOC_REGISTER_KEY ioctl.

SIOC_RELEASE

This ioctl releases the device. If the reserve_type is set to reserve_6, the device
driver issues a SCSI Release 6 command. If the reserve_type is set to persistent, the
device driver removes the host reservation key and reservation if one exists from
the device.

Return errno Values

If an above persistent reserve ioctl fails the return code is set to -1 and the errno
value is set to one of the following:
v ENOMEM Device driver cannot obtain memory to perform the command.
v EFAULT An error occurred while manipulating the caller's data buffer
v EACCES The current open is using a reserve_type set to reserve_6
v EINVAL Device does not support either the SCSI Persistent Reserve In/Out

command, the service action for the command, or the sequence of the command
such as issuing the STIOC_REMOVE_REGISTRATION ioctl when no reservation
key has been registered for the host.

v EBUSY Device has failed the command with reservation conflict because either a
SCSI-2 Reserve 6 reservation is active, the sequence of the command such as
issuing the STIOC_CREATE_PERSISTENT_RESERVE ioctl when no reservation
key has been registered for the host, or the reservation for the device has been
preempted by another host and the device driver will not issue further
commands.

v EIO Unknown I/O failure occurred on the command.

General IOCTL Operations
This chapter describes the ioctl commands that provide control and access to the
tape and medium changer devices. These commands are available for all tape and
medium changer devices. They can be issued to any rmt*, rmt*.smc, or smc* special
file.

Overview
The following ioctl commands are supported:

IOCINFO Return device information.

STIOCMD Issue the AIX Pass-through command.

STPASSTHRU Issue the AIX Pass-through command.

SIOC_PASSTHRU_COMMAND
Issue the Atape Pass-through command.

SIOC_INQUIRY Return inquiry data.

SIOC_REQSENSE Return sense data.

SIOC_RESERVE Reserve the device.

Persistent Reservation Support and IOCTL Operations

24 IBM Tape Device Drivers: Programming Reference

SIOC_RELEASE Release the device.

SIOC_TEST_UNIT_READY Issue a SCSI Test Unit Ready command.

SIOC_LOG_SENSE_PAGE Return log sense data for a specific page.

SIOC_LOG_SENSE10_PAGE Return log sense data for a specific page and
Subpage

SIOC_MODE_SENSE_PAGE Return mode sense data for a specific page.

SIOC_MODE_SENSE_SUBPAGE
Return mode sense data for a specific page and
subpage.

SIOC_MODE_SENSE Return whole mode sense data include header,
block descriptor and page for a specific page.

SIOC_MODE_SELECT_PAGE
Set mode sense data for a specific page.

SIOC_MODE_SELECT_SUBPAGE
Set mode sense data for a specific page and
subpage.

SIOC_INQUIRY_PAGE Return inquiry data for a specific page.

SIOC_DISABLE_PATH Manually disable (fence) a SCSI path for a device.

SIOC_ENABLE_PATH Enable a manually disabled (fenced) SCSI path for
a device.

SIOC_SET_PATH Explicitly set the current path used by the device
driver.

SIOC_QUERY_PATH Query device and path information for the primary
and first alternate SCSI path for a device. This ioctl
is obsolete but still supported. The
SIOC_DEVICE_PATHS ioctl should be used instead
of this ioctl.

SIOC_DEVICE_PATHS Query device and path information for the primary
and all alternate SCSI paths for the device.

SIOC_RESET_PATH Issue an Inquiry command on each SCSI path that
has not been manually disabled (fenced) and
enable the path if the Inquiry command succeeds.

SIOC_CHECK_PATH Performs the same function as the
SIOC_RESET_PATH ioctl.

SIOC_QUERY_OPEN Returns the process ID that currently has the
device opened.

SIOC_RESET_DEVICE Issues a SCSI target reset or SCSI lun reset (for FCP
or SAS attached) to the device.

SIOC_DRIVER_INFO Query the device driver information.

These ioctl commands and their associated structures are defined by including the
/usr/include/sys/Atape.h header file in the C program using the functions.

IOCINFO
This ioctl command provides access to information about the tape or Medium
Changer device. It is a standard AIX ioctl function.

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 25

||
|

||
|

An example of the IOCINFO command is:
#include <sys/devinfo.h>
#include <sys/Atape.h>
struct devinfo info;

if (!ioctl (fd, IOCINFO, &info))
{

printf ("The IOCINFO ioctl succeeded\n");
}
else
{

perror ("The IOCINFO ioctl failed");
}

An example of the output data structure for a tape drive rmt* special file is:
info.devtype=DD_SCTAPE
info.devsubtype=ATAPE_3590
info.un.scmt.type=DT_STREAM
info.un.scmt.blksize=tape block size (0=variable)

An example of the output data structure for an integrated Medium Changer
rmt*.smc special file is:
info.devtype=DD_MEDIUM_CHANGER;
info.devsubtype=ATAPE_3590;

An example of the output data structure for an independent Medium Changer
smc* special file is:
info.devtype=DD_MEDIUM_CHANGER;
info.devsubtype=ATAPE_7337;

See the Atape.h header file for the defined devsubstype values.

STIOCMD
This ioctl command issues the SCSI Pass-through command. It is used by the
diagnostic and service aid routines. The structure for this command is in the
/usr/include/sys/scsi.h file.

This ioctl is supported on both SCSI adapter attached devices and FCP adapter
attached devices. For FCP adapter devices, the adapter_status field returned is
converted from the FCP codes defined in /usr/include/sys/scsi_buf.h to the SCSI
codes defined in /usr/include/sys/scsi.h, if possible. This is to provide downward
compatibility with existing applications that use the STIOCMD ioctl for SCSI
attached devices.

Note: There is no interaction by the device driver with this command. The error
handling and logging functions are disabled. If the command results in a
check condition, the application must issue a Request Sense command to
clear any contingent allegiance with the device.

An example of the STIOCMD command is:
struct sc_iocmd sciocmd;
struct inquiry_data inqdata;

bzero(&sciocmd, sizeof(struct sc_iocmd));
bzero(&inqdata, sizeof(struct inquiry_data));

/* issue inquiry */
sciocmd.scsi_cdb[0]=0x12;
sciocmd.timeout_value=200; /* SECONDS */

AIX Device Driver (Atape)

26 IBM Tape Device Drivers: Programming Reference

sciocmd.command_length=6;
sciocmd.buffer=(char *)&inqdata;
sciocmd.data_length=sizeof(struct inquiry_data);
sciocmd.scsi_cdb[4]=sizeof(struct inquiry_data);
sciocmd.flags=B_READ;

if (!ioctl (sffd, STIOCMD, &sciocmd))
{

printf ("The STIOCMD ioctl for Inquiry Data succeeded\n");
printf ("\nThe inquiry data is:\n");
dump_bytes (&inqdata, sizeof(struct inquiry_data),"Inquiry Data");

}
else
{

perror ("The STIOCMD ioctl for Inquiry Data failed");
}

STPASSTHRU
This ioctl command issues the AIX Pass-through command that is supported by
base AIX tape device drivers. The ioctl command and structure are defined in the
header files /usr/include/sys/scsi.h and /usr/include/sys/tape.h. Refer to AIX
documentation for information on using the command.

SIOC_PASSTHRU_COMMAND
This ioctl command issues the Atape device driver Pass-through command. The
data structure used on this ioctl is:
struct scsi_passthru_cmd {

uchar command_length; /* Length of SCSI command 6, 10, 12 or 16 */
uchar scsi_cdb[16]; /* SCSI command descriptor block */
uint timeout_value; /* Timeout in seconds or 0 for command default */
uint buffer_length; /* Length of data buffer or 0 */
char *buffer; /* Pointer to data buffer or NULL */
uint number_bytes; /* Number of bytes transfered to/from buffer */
uchar sense_length; /* Number of valid sense bytes */
uchar sense[MAXSENSE]; /* Sense data when sense length > 0 */
uint trace_length; /* Number bytes in buffer to trace, 0 for none */
char read_data_command; /* Input flag, set it to 1 for read type cmds */
char reserved[27];

};

The arg parameter for the ioctl is the address of a scsi_passthru_cmd structure.

The device driver will issue the SCSI command using the command_length and
scsi_cdb fields. If the command receives data from the device (such as SCSI
Inquiry) then the application must also set the buffer_length and buffer pointer for
the return data along with the read_data_command set to 1. For commands that
send data to the device (such as SCSI Mode Select), the buffer_length and pointer
should be set for the send data and the read_data_command set to 0. If the
command has no data transfer, the buffer length should be set to 0 and buffer
pointer set to NULL.

The specified timeout_value field will be used if not 0. If 0, then the device driver
will assign its internal timeout value based on the SCSI command.

The trace_length field is normally used only for debug and specifies the number of
bytes on a data transfer type command that will be traced when the AIX Atape
device driver trace is running.

If the SCSI command fails then the ioctl will return -1 and errno value will be set
for the failing command. If the device returned sense data for the failure, then the

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 27

sense_length will be set to the number of sense bytes returned in the sense field. If
there was no sense data for the failure the sense_length will be 0.

If the SCSI command transfers data either to or from the device then the
number_bytes fields indicates how many bytes were transferred.

SIOC_INQUIRY
This ioctl command collects the inquiry data from the device.

The data structure is:
struct inquiry_data

{
uint qual:3, /* peripheral qualifier */

type:5; /* device type */
uint rm:1, /* removable medium */

mod:7; /* device type modifier */
uint iso:2, /* ISO version */

ecma:3, /* ECMA version */
ansi:3; /* ANSI version */

uint aenc:1, /* asynchronous event notification */
trmiop:1, /* terminate I/O process message */
:2, /* reserved */
rdf:4; /* response data format */

uchar len; /* additional length */
uchar resvd1; /* reserved */
uint :4, /* reserved */

mchngr:1, /* Medium Changer mode (SCSI-3 only) */
:3; /* reserved */

uint reladr:1, /* relative addressing */
wbus32:1, /* 32-bit wide data transfers */
wbus16:1, /* 16-bit wide data transfers */
sync:1, /* synchronous data transfers */
linked:1, /* linked commands */
:1, /* reserved */
cmdque:1, /* command queueing */
sftre:1; /* soft reset */

uchar vid[8]; /* vendor ID */
uchar pid[16]; /* product ID */
uchar revision[4]; /* product revision level */
uchar vendor1[20]; /* vendor specific */
uchar resvd2[40]; /* reserved */
uchar vendor2[31]; /* vendor specific (padded to 127) */

};

An example of the SIOC_INQUIRY command is:
#include <sys/Atape.h>

struct inquiry_data inquiry_data;

if (!ioctl (fd, SIOC_INQUIRY, &inquiry_data))
{

printf ("The SIOC_INQUIRY ioctl succeeded\n");
printf ("\nThe inquiry data is:\n");
dump_bytes ((uchar *)&inquiry_data, sizeof (struct inquiry_data));

}
else
{

perror ("The SIOC_INQUIRY ioctl failed");
sioc_request_sense();

}

AIX Device Driver (Atape)

28 IBM Tape Device Drivers: Programming Reference

SIOC_REQSENSE
This ioctl command returns the device sense data. If the last command resulted in
an input/output error (EIO), the sense data is returned for the error. Otherwise, a
new sense command is issued to the device.

The data structure is:
struct request_sense

{
uint valid:1, /* sense data is valid */

err_code:7; /* error code */
uchar segnum; /* segment number */
uint fm:1, /* filemark detected */

eom:1, /* end of medium */
ili:1, /* incorrect length indicator */
resvd1:1, /* reserved */
key:4; /* sense key */

signed int info; /* information bytes */
uchar addlen; /* additional sense length */
uint cmdinfo; /* command specific information */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar fru; /* field replaceable unit code */
uint sksv:1, /* sense key specific valid */

cd:1, /* control/data */
resvd2:2, /* reserved */
bpv:1, /* bit pointer valid */
sim:3; /* system information message */

uchar field[2]; /* field pointer */
uchar vendor[109]; /* vendor specific (padded to 127) */

};

An example of the SIOC_REQSENSE command is:
#include <sys/Atape.h>

struct request_sense sense_data;

if (!ioctl (smcfd, SIOC_REQSENSE, &sense_data))
{

printf ("The SIOC_REQSENSE ioctl succeeded\n");
printf ("\nThe request sense data is:\n");
dump_bytes ((uchar *)&sense_data, sizeof (struct request_sense));

}
else
{

perror ("The SIOC_REQSENSE ioctl failed");
}

SIOC_RESERVE
This ioctl command reserves the device to the device driver. The specific SCSI
command issued to the device depends on the current reservation type being used
by the device driver, either a SCSI Reserve or Persistent Reserve.

There are no arguments for this ioctl command.

An example of the SIOC_RESERVE command is:
#include <sys/Atape.h>

if (!ioctl (fd, SIOC_RESERVE, NULL))
{

printf ("The SIOC_RESERVE ioctl succeeded\n");
}
else

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 29

{
perror ("The SIOC_RESERVE ioctl failed");
sioc_request_sense();

}

SIOC_RELEASE
This ioctl command releases the current device driver reservation on the device.
The specific SCSI command issued to the device depends on the current
reservation type being used by the device driver, either a SCSI Reserve or
Persistent Reserve.

There are no arguments for this ioctl command.

An example of the SIOC_RELEASE command is:
#include <sys/Atape.h>

if (!ioctl (fd, SIOC_RELEASE, NULL))
{

printf ("The SIOC_RELEASE ioctl succeeded\n");
}
else
{

perror ("The SIOC_RELEASE ioctl failed");
sioc_request_sense();

}

SIOC_TEST_UNIT_READY
This ioctl command issues the SCSI Test Unit Ready command to the device.

There are no arguments for this ioctl command.

An example of the SIOC_TEST_UNIT_READY command is:
#include <sys/Atape.h>

if (!ioctl (fd, SIOC_TEST_UNIT_READY, NULL))
{

printf ("The SIOC_TEST_UNIT_READY ioctl succeeded\n");
}
else
{

perror ("The SIOC_TEST_UNIT_READY ioctl failed");
sioc_request_sense();

}

SIOC_LOG_SENSE_PAGE
This ioctl command returns a log sense page from the device. The desired page is
selected by specifying the page_code in the log_sense_page structure. Optionally, a
specific parm pointer, also known as a parm code, and the number of parameter
bytes can be specified with the command.

To obtain the entire log page, the len and parm_pointer fields should be set to zero.
To obtain the entire log page starting at a specific parameter code, set the
parm_pointer field to the desired code and the len field to zero. To obtain a specific
number of parameter bytes, set the parm_pointer field to the desired code and set
the len field to the number of parameter bytes plus the size of the log page header
(four bytes). The first four bytes of returned data are always the log page header.

See the appropriate device manual to determine the supported log pages and
content.

AIX Device Driver (Atape)

30 IBM Tape Device Drivers: Programming Reference

The data structure is:
struct log_sense_page

{
char page_code;
unsigned short len;
unsigned short parm_pointer;
char data[LOGSENSEPAGE];

};

An example of the SIOC_LOG_SENSE_PAGE command is:
#include <sys/Atape.h>

struct log_sense_page log_page;
int temp;

/* get log page 0, list of log pages */
log_page.page_code = 0x00;
log_page.len = 0;
log_page.parm_pointer = 0;

if (!ioctl (fd, SIOC_LOG_SENSE_PAGE, &log_page))
{

printf ("The SIOC_LOG_SENSE_PAGE ioctl succeeded\n");
dump_bytes(log_page.data, LOGSENSEPAGE);

}
else
{

perror ("The SIOC_LOG_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

/* get 3590 fraction of volume traversed */
log_page.page_code = 0x38;
log_page.len = 0;
log_page.parm_pointer = 0x000F;

if (!ioctl (fd, SIOC_LOG_SENSE_PAGE, &log_page))
{

temp = log_page.data[(sizeof(log_page_header) + 4)];
printf ("The SIOC_LOG_SENSE_PAGE ioctl succeeded\n");
printf ("Fractional Part of Volume Traversed %x\n",temp);

}
else
{

perror ("The SIOC_LOG_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

SIOC_LOG_SENSE10_PAGE
This ioctl command is enhanced to add a subpage variable from
SIOC_LOG_SENSE_PAGE. It returns a log sense page or subpage from the device.
The desired page is selected by specifying the page_code or subpage_code in the
log_sense10_page structure. Optionally, a specific parm pointer, also known as a
parm code, and the number of parameter bytes can be specified with the command.

To obtain the entire log page, the len and parm_pointer fields should be set to zero.
To obtain the entire log page starting at a specific parameter code, set the
parm_pointer field to the desired code and the len field to zero. To obtain a specific
number of parameter bytes, set the parm_pointer field to the desired code and set
the len field to the number of parameter bytes plus the size of the log page header

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 31

|
|
|
|
|
|

|
|
|
|
|

(four bytes). The first four bytes of returned data are always the log page header.
See the appropriate device manual to determine the supported log pages and
content.

The data structure is:
/* log sense page and subpage structure */
struct log_sense10_page
{

uchar page_code; /* [IN] log sense page code */
uchar subpage_code; /* [IN] log sense Subpage code */
uchar reserved[2];
unsigned short len; /* [IN] specific allocation length for the data */

/* [OUT] number of valid bytes in
data(log_page_header_size+page_length) */

unsigned short parm_pointer;
/* [IN] specific parameter number at which the data begins */

char data[LOGSENSEPAGE]; /* [OUT] log sense page and Subpage data */
};

An example of the SIOC_LOG_SENSE10_PAGE command is:
#include <sys/Atape.h>

struct log_sense10_page logdata10;
struct log_page_header *page_header;
char text[80];

logdata10.page_code = page;
logdata10.subpage_code = subpage;
logdata10.len = len;
logdata10.parm_pointer = parm;
page_header = (struct log_page_header *)logdata10.data;

printf("Issuing log sense for page 0x%02X and subpage 0x%02X...\n",page,subpage);

if (!ioctl (fd, SIOC_LOG_SENSE10_PAGE, &logdata10))
{
sprintf(text,"Log Sense Page 0x%02X, Subpage 0x%02X, Page Length %d
Data",page,subpage,logdata10.len);
dump_bytes(logdata10.data,logdata10.len,text);
}
else
{
perror ("The SIOC_LOG_SENSE10_PAGE ioctl failed");
sioc_request_sense();
}

SIOC_MODE_SENSE_PAGE
This ioctl command returns a mode sense page from the device. The desired page
is selected by specifying the page_code in the mode_sense_page structure.

See the appropriate device manual to determine the supported mode pages and
content.

The data structure is:
struct mode_sense_page

{
char page_code;
char data[MODESENSEPAGE];

};

An example of the SIOC_MODE_SENSE_PAGE command is:

AIX Device Driver (Atape)

32 IBM Tape Device Drivers: Programming Reference

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

#include <sys/Atape.h>

struct mode_sense_page mode_page;

/* get Medium Changer mode */
mode_page.page_code = 0x20;
if (!ioctl (fd, SIOC_MODE_SENSE_PAGE, &mode_page))
{

printf ("The SIOC_MODE_SENSE_PAGE ioctl succeeded\n");
if (mode_page.data[2] == 0x02)

printf ("The library is in Random mode.\n");
else

if (mode_page.data[2] == 0x05)
printf ("The library is in Automatic (Sequential) mode.\n");

}
else
{

perror ("The SIOC_MODE_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

SIOC_MODE_SENSE_SUBPAGE
This ioctl command returns a specific mode sense page and subpage from the
device. The desired page and subpage is selected by specifying the page_code and
subpage_page in the mode_sense_subpage structure. See the appropriate device
manual to determine the supported mode pages and subpages. The arg parameter
for the ioctl is the address of a mode_sense_subpage structure.

The data structure is:
struct mode_sense_subpage

{
uchar page_code; /* mode sense page code */
uchar subpage_code; /* mode sense subpage code */
uint reserved:7,

sp_bit:1; /* mode select save page bit */
char data[MODESENSEPAGE];
};

This data structure is also used for the SIOC_MODE_SELECT_SUBPAGE ioctl.

SIOC_MODE_SENSE
This ioctl command returns the whole mode sense data including header, block
descriptor and page code for a specific page or subpage from the device. The
desired page or subpage is inputted by specifying the page_code and
subpage_code in the mode_sense structure.

The data structure is:
struct mode_sense
{
uchar page_code; /* [IN] mode sense page code */
uchar subpage_code; /* [IN] mode sense subpage code */
uchar reserved[6];
uchar cmd_code; /* [OUT] SCSI Command Code: this field is set with */

/* SCSI command code which the device responded. */
/* x’5A’ = Mode Sense (10) */
/* x’1A’ = Mode Sense (6) */

char data[MODESENSEPAGE]; /* [OUT] whole mode sense data include header,
block descriptor and page */
};

An example of the SIOC_MODE_SENSE command is:

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 33

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

#include <sys/Atape.h>

struct mode_sense modedata;
char text[80];
bzero(&modedata, sizeof(struct mode_sense));
modedata.page_code = page;
modedata.subpage_code = subpage;

printf("Issuing mode sense subpage for page 0x%02X subpage 0x%02X...\n",
page,subpage);

if (!ioctl (fd, SIOC_MODE_SENSE, &modedata))
{
sprintf(text,"Mode Sense 0x%02X Subpage 0x%02X cmd_code 0x%02X",

modedata.page_code,modedata.subpage_code,modedata.cmd_code);
dump_bytes((char *)&modedata, sizeof(struct mode_sense), text);
}
else
{
perror ("The SIOC_MODE_SENSE ioctl failed");
sioc_request_sense();
}

SIOC_MODE_SELECT_PAGE
This ioctl command sets device parameters in a specific mode page. The desired
page is selected by specifying the page_code in the mode_sense_page structure.
See the appropriate device manual to determine the supported mode pages and
parameters that can be modified. The arg parameter for the ioctl is the address of a
mode_sense_page structure.

The data structure is:
struct mode_sense_page

{
uchar page_code; /* mode sense page code */
char data[MODESENSEPAGE];
};

This data structure is also used for the SIOC_MODE_SENSE_PAGE ioctl. The
application should issue the SIOC_MODE_SENSE_PAGE ioctl, modify the desired
bytes in the returned mode_sense_page structure data field and then issue this ioctl
with the modified fields in the structure.

SIOC_MODE_SELECT_SUBPAGE
This ioctl command sets device parameters in a specific mode page and subpage.
The desired page and subpage is selected by specifying the page_code and
subpage_page in the mode_sense_subpage structure. See the appropriate device
manual to determine the supported mode pages, subpages, and parameters that
can be modified. The arg parameter for the ioctl is the address of a
mode_sense_subpage structure.

The data structure is:
struct mode_sense_subpage

{
uchar page_code; /* mode sense page code */
uchar subpage_code; /* mode sense subpage code */
uint reserved:7,

sp_bit:1; /* mode select save page bit */
char data[MODESENSEPAGE];
};

AIX Device Driver (Atape)

34 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

This data structure is also used for the SIOC_MODE_SENSE_SUBPAGE ioctl. The
application should issue the SIOC_MODE_SENSE_SUBPAGE ioctl, modify the
desired bytes in the returned mode_sense_subpage structure data field and then
issue this ioctl with the modified fields in the structure. If the device supports
setting the sp bit for the mode page to 1 then the sp_bit field can be set to 0 or 1, if
the device does not support the sp bit then the sp_bit field must be set to 0.

SIOC_QUERY_OPEN
This ioctl command returns the ID of the process that currently has a device open.
There is no associated data structure. The arg parameter specifies the address of an
int for the return process ID.

If the application opened the device using the extended open parameter SC_TMCP,
the process ID is returned for any other process that has the device open currently,
or zero is returned if the device is not currently open. If the application opened the
device without using the extended open parameter SC_TMCP, the process ID of the
current application is returned.

An example of the SIOC_QUERY_OPEN command is:
#include <sys/Atape.h>

int sioc_query_open (void)
{
int pid = 0;

if (ioctl(fd, SIOC_QUERY_OPEN, &pid) == 0)
{
if (pid)

printf("Device is currently open by process id %d\n",pid)
else
printf("Device is not open\n");
}

else
printf("Error querying device open...\n");

return errno;
}

SIOC_INQUIRY_PAGE
This ioctl command returns an inquiry page from the device. The desired page is
selected by specifying the page_code in the inquiry_page structure.

See the appropriate device manual to determine the supported inquiry pages and
content.

The data structure is:
struct inquiry_page

{
char page_code;
char data[INQUIRYPAGE];
};

An example of the SIOC_INQUIRY_PAGE command is:
#include <sys/Atape.h>

struct inquiry_page inq_page;

/* get inquiry page x83 */
inq_page.page_code = 0x83;
if (!ioctl (fd, SIOC_INQUIRY_PAGE, &inq_page))

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 35

{
printf ("The SIOC_INQUIRY_PAGE ioctl succeeded\n");
}
else
{
perror ("The SIOC_INQUIRY_PAGE ioctl failed");
sioc_request_sense();
}

SIOC_DISABLE_PATH
This ioctl command manually disables (fences) the device driver from using either
the primary or an alternate SCSI path to a device until the SIOC_ENABLE_PATH
ioctl command is issued for the same path that has been manually disabled. The
arg parameter on the ioctl command specifies the path to be disabled. The primary
path is path 1, the first alternate path 2, the second alternate path 3, etc. This
command can be used concurrently when the device is already open by another
process by using the openx() extended parameter SC_TMCP.

This ioctl command is valid only if the device has one or more alternate paths
configured. Otherwise, the ioctl command fails with errno set to EINVAL. The
SIOC_DEVICE_PATHS ioctl command can be used to determine the paths that are
enabled or manually disabled.

An example of the SIOC_DISABLE_PATH command is:
#include <sys/Atape.h>

/* Disable primary SCSI path */
ioctl(fd, SIOC_DISABLE_PATH, PRIMARY_SCSI_PATH);

/* Disable alternate SCSI path */
ioctl(fd, SIOC_DISABLE_PATH, ALTERNATE_SCSI_PATH);

SIOC_ENABLE_PATH
This ioctl command enables a manually disabled (fenced) path to a device that has
been disabled by SIOC_DISABLE_PATH ioctl. The arg parameter on the ioctl
command specifies the path to be enabled. The primary path is path 1, the first
alternate path 2, the second alternate path 3, etc. This command can be used
concurrently when the device is already open by another process by using the
openx() extended parameter SC_TMCP.

The SIOC_DEVICE_PATHS ioctl command can be used to determine the paths that
are enabled or manually disabled.

SIOC_SET_PATH
This ioctl command explicitly sets the current path to a device that the device
driver will use. The arg parameter on the ioctl command specifies the path to be set
to the current path. The primary path is path 1, the first alternate path 2, the
second alternate path 3, etc. This command can be used concurrently when the
device is already open by another process by using the openx() extended
parameter SC_TMCP.

The SIOC_DEVICE_PATHS ioctl command can be used to determine the current
path the device driver is using for the device.

SIOC_DEVICE_PATHS
This ioctl command returns a device_paths structure with the number of paths
configured to a device and a device_path_t path structure for each configured path
with the device, HBA, and path information for the primary path along with all

AIX Device Driver (Atape)

36 IBM Tape Device Drivers: Programming Reference

alternate SCSI paths configured. This ioctl command should be used instead of the
SIOC_QUERY_PATH ioctl that is obsolete. This command can be used concurrently
when the device is already open by another process by using the openx() extended
parameter SC_TMCP.

The data structures are:
struct device_path_t {

char name[15]; /* logical device name */
char parent[15]; /* logical parent name */
uchar id_valid; /* obsolete and not set */
uchar id; /* SCSI target address of device */
uchar lun; /* SCSI logical unit of device */
uchar bus; /* SCSI bus for device */
uchar fcp_id_valid; /* FCP scsi/lun id fields vaild */
unsigned long long fcp_scsi_id; /* FCP SCSI id of device */
unsigned long long fcp_lun_id; /* FCP logical unit of device */
unsigned long long fcp_ww_name; /* FCP world wide name */
uchar enabled; /* path enabled */
uchar drive_port_valid; /* drive port field valid */
uchar drive_port; /* drive port number */
uchar fenced; /* path fenced by disable ioctl */
uchar current_path; /* Current path assignment */
uchar dynamic_tracking; /* FCP Dynamic tracking enabled */
unsigned long long fcp_node_name; /* FCP node name */
char type[16]; /* Device type and model */
char serial[16]; /* Device serial number */
uchar sas_id_valid; /* FCP scsi/lun id fields vaild */
char cpname[15]; /* logical name of control path drive */
uchar last_path; /* Last failure path */
char reserved[4];
};

struct device_paths {
int number_paths; /* number of paths configured */
struct device_path_t path[MAX_SCSI_PATH];
};

The arg parameter for the ioctl is the address of a device_paths structure.

The current_path in the return structures is set to the current path the device is
using for the device. If this ioctl is issued to a Medium Changer smc logical driver,
the cpname will have the logical rmt name that is the control path drive for each
smc logical path.

SIOC_QUERY_PATH
This ioctl command returns information about the device and SCSI paths, such as
logical parent, SCSI IDs, and status of the SCSI paths.

Note: This ioctl is obsolete but still supported. The SIOC_DEVICE_PATHS ioctl
should be used instead.

The data structure is:
struct scsi_path {

char primary_name[15]; /* Primary logical device name */
char primary_parent[15]; /* Primary SCSI parent name */
uchar primary_id; /* Primary target address of device */
uchar primary_lun; /* Primary logical unit of device */
uchar primary_bus; /* Primary SCSI bus for device */
unsigned long long primary_fcp_scsi_id; /* Primary FCP SCSI id of device */
unsigned long long primary_fcp_lun_id; /* Primary FCP logical unit of device */
unsigned long long primary_fcp_ww_name; /* Primary FCP world wide name */
uchar primary_enabled; /* Primary path enabled */
uchar primary_id_valid; /* Primary id/lun/bus fields valid */

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 37

|
|

uchar primary_fcp_id_valid; /* Primary FCP scsi/lun id fields valid */
uchar alternate_configured; /* Alternate path configured */
char alternate_name[15]; /* Alternate logical device name */
char alternate_parent[15]; /* Alternate SCSI parent name */
uchar alternate_id; /* Alternate target address of device */
uchar alternate_lun; /* Alternate logical unit of device */
uchar alternate_bus; /* Alternate SCSI bus for device */
unsigned long long alternate_fcp_scsi_id; /* Alternate FCP SCSI id of device */
unsigned long long alternate_fcp_lun_id; /* Alternate FCP logical unit of device */
unsigned long long alternate_fcp_ww_name; /* Alternate FCP world wide name */
uchar alternate_enabled; /* Alternate path enabled */
uchar alternate_id_valid; /* Alternate id/lun/bus fields valid */
uchar alternate_fcp_id_valid; /* Alternate FCP scsi/lun id fields valid*/
uchar primary_drive_port_valid; /* Primary drive port field valid */
uchar primary_drive_port; /* Primary drive port number */
uchar alternate_drive_port_valid; /* Alternate drive port field valid */
uchar alternate_drive_port; /* Alternate drive port number */
uchar primary_fenced; /* Primary fenced by disable ioctl */
uchar alternate_fenced; /* Alternate fenced by disable ioctl */
uchar current_path; /* Current path assignment */
uchar primary_sas_id_valid; /* Primary FCP scsi/lun id fields vaild */
uchar alternate_sas_id_valid; /* Alternate FCP scsi/lun id fields vaild*/
char reserved[55];
};

An example of the SIOC_QUERY_PATH command is:
#include <sys/Atape.h>

int sioc_query_path(void)
{
struct scsi_path path;

printf("Querying SCSI paths...\n");

if (ioctl(fd, SIOC_QUERY_PATH, &path) == 0)
show_path(&path);

return errno;
}

void show_path(struct scsi_path *path)
{

printf("\n");
if (path->alternate_configured)
printf("Primary Path Information:\n");

printf(" Logical Device................. %s\n",path->primary_name);
printf(" SCSI Parent.................... %s\n",path->primary_parent);
if (path->primary_fcp_id_valid)
{
if (path->primary_id_valid)
{
printf(" Target ID...................... %d\n",path->primary_id);
printf(" Logical Unit................... %d\n",path->primary_lun);
printf(" SCSI Bus....................... %d\n",path->primary_bus);
}

printf(" FCP SCSI ID.................... 0x%llx\n",path->primary_fcp_scsi_id);
printf(" FCP Logical Unit............... 0x%llx\n",path->primary_fcp_lun_id);
printf(" FCP World Wide Name............ 0x%llx\n",path->primary_fcp_ww_name);
}

else
{
printf(" Target ID...................... %d\n",path->primary_id);
printf(" Logical Unit................... %d\n",path->primary_lun);
}

if (path->primary_drive_port_valid)
printf(" Drive Port Number.............. %d\n",path->primary_drive_port);

if (path->primary_enabled)
printf(" Path Enabled................... Yes\n");

else

AIX Device Driver (Atape)

38 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|
|

printf(" Path Enabled................... No \n");
if (path->primary_fenced)
printf(" Path Manually Disabled......... Yes\n");

else
printf(" Path Manually Disabled......... No \n");

if (!path->alternate_configured)
printf(" Alternate Path Configured...... No\n");

else
{
printf(" Alternate Path Configured...... Yes\n");
printf("\nAlternate Path Information:\n");
printf(" Logical Device................. %s\n",path->alternate_name);
printf(" SCSI Parent.................... %s\n",path->alternate_parent);
if (path->alternate_fcp_id_valid)
{
if (path->alternate_id_valid)
{
printf(" Target ID...................... %d\n",path->alternate_id);
printf(" Logical Unit................... %d\n",path->alternate_lun);
printf(" SCSI Bus....................... %d\n",path->alternate_bus);
}

printf(" FCP SCSI ID.................... 0x%llx\n",path->alternate_fcp_scsi_id);
printf(" FCP Logical Unit............... 0x%llx\n",path->alternate_fcp_lun_id);
printf(" FCP World Wide Name............ 0x%llx\n",path->alternate_fcp_ww_name);
}

else
{
printf(" Target ID...................... %d\n",path->alternate_id);
printf(" Logical Unit................... %d\n",path->alternate_lun);
}

if (path->alternate_drive_port_valid)
printf(" Drive Port Number.............. %d\n",path->alternate_drive_port);

if (path->alternate_enabled)
printf(" Path Enabled................... Yes\n");

else
printf(" Path Enabled................... No \n");

if (path->alternate_fenced)
printf(" Path Manually Disabled......... Yes\n");

else
printf(" Path Manually Disabled......... No \n");

}
}

SIOC_RESET_PATH and SIOC_CHECK_PATH
Both of these ioctl commands check all SCSI paths to a device that have not been
manually disabled by the SIOC_DISABLE_PATH ioctl by issuing a SCSI Inquiry
command on each path to verify communication. If the command succeeds then
the path is enabled and if it fails the path is disabled and will not be used by the
device driver. This command can be used concurrently when the device is already
open by another process by using the openx() extended parameter SC_TMCP.

This ioctl command returns the same data structure as the SIOC_QUERY_PATH
ioctl command with the updated path information for the primary and first
alternate path. See the SIOC_QUERY_PATH ioctl command for a description of the
data structure and output information. If more than one alternate path is
configured for the device then the SIOC_DEVICE_PATHS ioctl should be used to
determine the paths that are enabled.

An example of the SIOC_RESET_PATH command is:
#include <sys/Atape.h>

int sioc_reset_path(void)
{
struct scsi_path path;

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 39

printf("Resetting SCSI paths...\n");

if (ioctl(fd, SIOC_RESET_PATH, &path) == 0)
show_path(&path);

return errno;
}

SIOC_RESET_DEVICE
This ioctl command issues either a SCSI target reset to the device if parallel SCSI
attached or a SCSI lun reset if FCP/SAS attached to the device. This ioctl command
can be used to clear a SCSI Reservation that is currently active on the device. This
command can be used concurrently when the device is already open by another
process by using the openx() extended parameter SC_TMCP.

The is no argument for this ioctl and the arg parameter is ignored.

SIOC_DRIVER_INFO
This command returns the information about the currently installed Atape driver.

The following data structure is filled out and returned by the driver:
struct driver_info {

uchar dd_name[16]; /* Atape driver name (Atape) */
uchar dd_version[16]; /* Atape driver version e.g. 12.0.8.0 */
uchar os[16]; /* Operating System (AIX) */
uchar os_version[32]; /* Running OS Version e.g. 6.1 */
uchar sys_arch[16]; /* Sys Architecture (POWER or others) */
uchar reserved[32]; /* Reserved for IBM Development Use */
};

An example of the SIOC_DRIVER_INFO command is:
#include <sys/Atape.h>

int sioc_driver_info()
{
struct driver_info dd_info;

printf("Issuing driver info...\n");

if (!ioctl (fd, SIOC_DRIVER_INFO, &dd_info))
{
printf("Driver Name: %s\n",dd_info.dd_name);
printf("Driver Version: %s\n",dd_info.dd_version);
printf("Operating System: %s\n",dd_info.os);
printf("OS Version: %s\n",dd_info.os_version);
printf("System Arch: %s\n",dd_info.sys_arch);
}
return errno;
}

Tape IOCTL Operations
The device driver supports the tape ioctl commands available with the base AIX
operating system, in addition to a set of expanded tape ioctl commands that give
applications access to additional features and functions of the tape drives.

Overview
The following ioctl commands are supported:

STIOCHGP Set the block size.

AIX Device Driver (Atape)

40 IBM Tape Device Drivers: Programming Reference

STIOCTOP Perform the ioctl tape operation.

STIOCQRYP Query the tape device, device driver, and media
parameters.

STIOCSETP Change the tape device, device driver, and media
parameters.

STIOCSYNC Synchronize the tape buffers with the tape.

STIOCDM Display the message on the display panel.

STIOCQRYPOS Query the tape position and the buffered data.

STIOCSETPOS Set the tape position.

STIOCQRYSENSE Query the sense data from the tape device.

STIOCQRYINQUIRY Return the inquiry data.

STIOC_LOG_SENSE Return the log sense data.

STIOC_RECOVER_BUFFER Recover the buffered data from the tape device.

STIOC_LOCATE Locate to the tape position.

STIOC_READ_POSITION Read the current tape position.

STIOC_SET_VOLID Set the volume name for the current mounted tape.
The name is used for tape volume logging only.

STIOC_DUMP Force and read a dump from the device

STIOC_FORCE_DUMP Force a dump on the device.

STIOC_READ_DUMP Read a dump from the device.

STIOC_LOAD_UCODE Download the microcode to the device.

STIOC_RESET_DRIVE Issue a SCSI Send Diagnostic command to reset the
tape drive

STIOC_FMR_TAPE Create an FMR tape.

MTDEVICE Obtain the device number of a drive in an IBM
Enterprise Tape Library 3494.

STIOC_PREVENT_MEDIUM_REMOVAL
Prevent medium removal by an operator.

STIOC_ALLOW_MEDIUM_REMOVAL
Allow medium removal by an operator.

STIOC_REPORT_DENSITY_SUPPORT
Return supported densities from the tape device.

STIOC_GET_DENSITY Get the current write density settings from the tape
device.

STIOC_SET_DENSITY Set the write density settings on the tape device.

STIOC_CANCEL_ERASE Cancel an erase immediate command that is
currently in progress.

GET_ENCRYPTION_STATE This ioctl can be used for application-, system-, and
library-managed encryption. It only allows a query
of the encryption status.

SET_ENCRYPTION_STATE This ioctl can only be used for

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 41

application-managed encryption. It sets encryption
state for application-managed encryption.

SET_DATA_KEY This ioctl can only be used for
application-managed encryption. It sets the data
key for application-managed encryption.

READ_TAPE_POSITION Read current tape position in either short, long or
extended form.

SET_TAPE_POSITION Set the current tape position to either a logical
object or logical file position.

CREATE_PARTITION Create one or more tape partitions and format the
media.

QUERY_PARTITION Query tape partitioning information and current
active partition.

SET_ACTIVE_PARTITION Set the current active tape partition.

ALLOW_DATA_OVERWRITE
Set the drive to allow a subsequent data overwrite
type command at the current position or allow a
CREATE_PARTITION ioctl when data safe
(append-only) mode is enabled.

QUERY_LOGICAL_BLOCK_PROTECTION
Query Logical Block Protection (LBP) support and
its setup

SET_LOGICAL_BLOCK_PROTECTION
Enable/disable Logical Block Protection (LBP), set
the protection method, and how the protection
information is transferred

STIOC_READ_ATTRIBUTE Read attribute values from medium auxiliary
memory

STIOC_WRITE_ATTRIBUTE Write attribute values to medium auxiliary memory

VERIFY_TAPE_DATA Read the data from tape and verify its correction

These ioctl commands and their associated structures are defined in the
/usr/include/sys/Atape.h header file, which is included in the corresponding C
program using the functions.

STIOCHGP
This ioctl command sets the current block size. A block size of zero is a variable
block. Any other value is a fixed block.

An example of the STIOCHGP command is:
#include <sys/Atape.h>

struct stchgp stchgp;

stchgp.st_blksize = 512;

if (ioctl(tapefd,STIOCHGP,&stchgp)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

AIX Device Driver (Atape)

42 IBM Tape Device Drivers: Programming Reference

||
|

||

||

STIOCTOP
This ioctl command performs basic tape operations. The st_count variable is used
for many of its operations. Normal error recovery applies to these operations. The
device driver can issue several tries to complete them.

For all space operations, the tape position finishes on the end-of-tape side of the
record or filemark for forward movement and on the beginning-of-tape side of the
record or filemark for backward movement. The only exception occurs for forward
and backward space record operations over a filemark if the device is configured for
the AIX record space mode.

The input data structure is:
struct stop

{
short st_op; /* operations defined below */
daddr_t st_count; /* how many of them to do (if applicable) */
};

The st_op variable is set to one of the following operations:

STOFFL Unload the tape. The st_count parameter does not apply.

STREW Rewind the tape. The st_count parameter does not apply.

STERASE Erase the entire tape. The st_count parameter does not apply.

STERASE_IMM
Erase the entire tape with the immediate bit set. The st_count
parameter does not apply.

This issues the erase command to the device with the immediate
bit set in the SCSI CDB. When this is used another process can
cancel the erase operation by issuing the STIOC_CANCEL_ERASE
ioctl. The application that issued the STERASE_IMM will still wait
for the erase command to complete like the STERASE st_op if the
STIOC_CANCEL_ERASE ioctl is not issued. Refer to
“STIOC_CANCEL_ERASE” on page 62 for a description of the
STIOC_CANCEL_ERASE ioctl.

STERASEGAP
Erase the gap that was written to the tape. The st_count parameter
does not apply. This operation is supported only on the IBM 3490E.

STRETEN Perform the rewind operation. The tape devices perform the
retension operation automatically when needed.

STWEOF Write the st_count number of filemarks.

STWEOF_IMM
Write the st_count number of filemarks with the immediate bit set.

This issues a write filemark command to the device with the
immediate bit set in the SCSI CDB. The device will return
immediate status and the ioctl will return immediately also. Unlike
the STWEOF st_op, any buffered write data will not be flushed to
tape before the filemarks are written. This can improve the time it
takes for a write filemark command to complete.

STFSF Space forward the st_count number of filemarks.

STRSF Space backward the st_count number of filemarks.

STFSR Space forward the st_count number of records.

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 43

STRSR Space backward the st_count number of records.

STTUR Issue the Test Unit Ready command. The st_count parameter does
not apply.

STLOAD Issue the SCSI Load command. The st_count parameter does not
apply. The operation of the SCSI Load command varies depending
on the type of device. See the appropriate hardware reference
manual.

STSEOD Space forward to the end of the data. The st_count parameter does
not apply. This operation is supported except on the IBM 3490E
tape devices.

STFSSF Space forward to the first st_count number of contiguous filemarks.

STRSSF Space backward to the first st_count number of contiguous
filemarks.

STEJECT Unload the tape. The st_count parameter does not apply.

STINSRT Issue the SCSI Load command. The st_count parameter does not
apply.

Note: If zero is used for operations that require the count parameter, the command
is not issued to the device, and the device driver returns a successful
completion.

An example of the STIOCTOP command is:
#include <sys/Atape.h>

struct stop stop;

stop.st_op=STWEOF;

stop.st_count=3;

if (ioctl(tapefd,STIOCTOP,&stop)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCQRYP or STIOCSETP
The STIOCQRYP ioctl command allows the program to query the tape device,
device driver, and media parameters. The STIOCSETP ioctl command allows the
program to change the tape device, device driver, and media parameters. Before
issuing the STIOCSETP ioctl command, use the STIOCQRYP ioctl command to
query and fill the fields of the data structure that you do not want to change. Then
issue the STIOCSETP command to change the selected fields.

Changing certain fields (such as buffered_mode) impacts performance. If the
buffered_mode field is false, then each record written to the tape is transferred to the
tape immediately. This operation guarantees that each record is on the tape, but it
impacts performance.

STIOCQRYP Parameters That Cannot Be Changed Using STIOCSETP ioctl
command: The following parameters returned by the STIOCQRYP ioctl command
cannot be changed by the STIOCSETP ioctl command:

AIX Device Driver (Atape)

44 IBM Tape Device Drivers: Programming Reference

trace: This parameter is the current setting of the AIX system tracing for channel
0. All Atape device driver events are traced in channel 0 with other kernel events.
If set to On, device driver tracing is active.

hkwrd: This parameter is the trace hookword used for Atape events.

write_protect: If the currently mounted tape is write-protected, this field is set to
TRUE. Otherwise, it is set to FALSE.

min_blksize: This parameter is the minimum block size for the device. The driver
sets this field by issuing the SCSI Read Block Limits command.

max_blksize: This parameter is the maximum block size for the device. The
driver sets this field by issuing the SCSI Read Block Limits command.

max_scsi_xfer: This parameter is the maximum transfer size of the parent SCSI
adapter for the device.

acf_mode: If the tape device has the ACF installed, this parameter returns the
current mode of the ACF. Otherwise, the value of ACF_NONE is returned. The
ACF mode can be set from the operator panel on the tape device.

alt_pathing: This parameter is the configuration setting for path failover support.
If the path failover support is enabled, this parameter will be set to TRUE.

medium_type: This parameter is the media type of the current loaded tape. Some
tape devices support multiple media types and report different values in this field.
See the documentation for the specific tape device to determine the possible
values.

density_code: This parameter is the density setting for the current loaded tape.
Some tape devices support multiple densities and report the current setting in this
field. See the documentation for the specific tape device to determine the possible
values.

reserve_type: This parameter is the configuration setting for the reservation type
that the device driver will use when reserving the device, either a SCSI Reserve 6
command or a SCSI Persistent Reserve command.

reserve_key: This parameter is the reservation key the device driver will use
when using SCSI Persistent Reserve. If a configuration reservation key was
specified then this key could be either a 1-8 ASCII character key or a 1-16
hexadecimal key. If a configuration key was not specified then the reservation key
will be a 16 hexadecimal key that the device driver generates.

Parameters That Can Be Changed Using STIOCSETP ioctl Command: The
following parameters can be changed using the STIOCSETP ioctl command:

blksize: This parameter specifies the effective block size for the tape device.

autoload: This parameter turns the autoload feature On and Off in the device
driver. If set to On, the cartridge loader is treated as a large virtual tape.

buffered_mode: This parameter turns the buffered mode write On and Off.

compression: This parameter turns the hardware compression On and Off.

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 45

trailer_labels: If this parameter is set to On, writing a record past the early
warning mark on the tape is allowed. The first write operation to detect EOM
returns the ENOSPC error code. This write operation will not complete successfully.
All subsequent write operations are allowed to continue despite the check
conditions that result from EOM. When the end of the physical volume is reached,
EIO is returned. This parameter can be used before reaching EOM or after EOM is
reached.

rewind_immediate: This parameter turns the immediate bit On and Off in rewind
commands. If set to On, the STREW tape operation executes faster, but the next
command takes a long time to finish unless the rewind operation is physically
complete.

logging: This parameter turns the volume logging On and Off. If set to On, the
volume log data is collected and saved in the tape log file when the Rewind and
Unload command is issued to the tape drive.

volid: This parameter is the volume ID of the current loaded tape. If it is not set,
the device driver initializes the volid to UNKNOWN. If logging is active, the
parameter is used to identify the volume in the tape log file entry. It is reset to
UNKNOWN when the tape is unloaded.

emulate_autoloader: This parameter turns the emulate autoloader feature On and
Off.

record_space_mode: This parameter specifies how the device driver operates
when a forward or backward space record operation encounters a filemark. The two
modes of operation are SCSI and AIX.

logical_write_protect: This parameter sets or resets the logical write protect of the
current tape.

Note: The tape position must be at the beginning of the tape to change this
parameter from its current value.

capacity_scaling and capacity_scaling_value: The capacity_scaling parameter
queries the capacity or logical length of the current tape or on a set operation
changes the current tape capacity. On a query operation this parameter returns the
current capacity for the tape. It will be one of the defined values below such as
SCALE_100, SCALE_75, SCALE_VALUE etc. If the query returns SCALE_VALUE
then the capacity_scaling_value parameter is the current capacity, otherwise the
capacity_scaling parameter is the current capacity.

On a set operation, if the capacity_scaling parameter is set to SCALE_VALUE then
the capacity_scaling_value parameter is used to set the tape capacity. Otherwise
one of the other defined values for the capacity_scaling parameter is used.

Notes:

1. The tape position must be at the beginning of the tape to change this parameter
from its current value.

2. Changing this parameter destroys any existing data on the tape.

retain_reservation: When this parameter if set to 1 the device driver will not
release the device reservation when the device is closed for the current open and
any subsequent opens and closes until the STIOCSETP ioctl is issued with
retain_reservation parameter set to 0. The device driver will still reserve the device
on open to make sure the previous reservation is still valid.

AIX Device Driver (Atape)

46 IBM Tape Device Drivers: Programming Reference

data_safe_mode: This parameter queries the current drive setting for data safe
(append-only) mode or on a set operation changes the current data safe mode
setting on the drive. On a set operation a parameter value of zero sets the drive to
normal (non-data safe) mode and a value of 1 sets the drive to data safe mode.

disable_sim_logging: This parameter turns the automatic logging of tape
SIM/MIM data On and Off . By default, the device driver reads Log Sense Page
X'31' automatically when device sense data indicates data is available. The data is
saved in the AIX error log. Reading Log Sense Page X'31' clears the current
SIM/MIM data.

Setting this bit disables the device driver from reading the Log Sense Page so an
application can read and manage its own SIM/MIM data. The SIM/MIM data is
saved in the AIX error log if an application reads the data using the
SIOC_LOG_SENSE_PAGE or STIOC_LOG_SENSE ioctls.

read_sili_bit: This parameter turns the Suppress Incorrect Length Indication (SILI)
bit On and Off for variable length read commands. The device driver sets this bit
when the device is configured, if it detects that the adapter can support this
setting. When this bit is Off, variable length read commands results in a SCSI
check condition if there is less data read than the read system call requested. This
can have a significant impact on read performance.

The input or output data structure is:
struct stchgp_s

{
int blksize; /* new block size */
boolean trace; /* TRUE=trace on */
uint hkwrd; /* trace hook word */
int sync_count; /* obsolete - not used */
boolean autoload; /* on/off autoload feature */
boolean buffered_mode; /* on/off buffered mode */
boolean compression; /* on/off compression */
boolean trailer_labels; /* on/off allow writing after EOM */
boolean rewind_immediate; /* on/off immediate rewinds */
boolean bus_domination; /* obsolete - not used */
boolean logging; /* volume logging */
boolean write_protect; /* write_protected media */
uint min_blksize; /* minimum block size */
uint max_blksize; /* maximum block size */
uint max_scsi_xfer; /* maximum scsi tranfer len */
char volid[16]; /* volume id */
uchar acf_mode; /* automatic cartridge facility mode */

#define ACF_NONE 0
#define ACF_MANUAL 1
#define ACF_SYSTEM 2
#define ACF_AUTOMATIC 3
#define ACF_ACCUMULATE 4
#define ACF_RANDOM 5

uchar record_space_mode; /* fsr/bsr space mode */
#define SCSI_SPACE_MODE 1
#define AIX_SPACE_MODE 2

uchar logical_write_protect; /* logical write protect */
#define NO_PROTECT 0
#define ASSOCIATED_PROTECT 1
#define PERSISTENT_PROTECT 2
#define WORM_PROTECT 3

uchar capacity_scaling; /* capacity scaling */
#define SCALE_100 0
#define SCALE_75 1
#define SCALE_50 2
#define SCALE_25 3

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 47

#define SCALE_VALUE 4 /* use capacity_scaling_value below */
uchar retain_reservation; /* retain reservation */
uchar alt_pathing; /* alternate pathing active */
boolean emulate_autoloader; /* emulate autoloader in random mode */
uchar medium_type; /* tape medium type */
uchar density_code; /* tape density code */
boolean disable_sim_logging; /* disable sim/mim error logging */
boolean read_sili_bit; /* SILI bit setting for read commands */
uchar capacity_scaling_value; /* capacity scaling provided value */
uchar reserve_type; /* reservation type */

#define RESERVE6_RESERVE 0 /* SCSI Reserve 6 type */
#define PERSISTENT_RESERVE 1 /* persistent reservation type */

uchar reserve_key[8]; /* persistent reservation key */
uchar data_safe_mode; /* data safe mode */
ushort pew_size; /* programmable early warning size */
uchar reserved[9];
};

pew_size: Using the tape parameter, the application is allowed to request the tape
drive to create a zone called the programmable early warning zone (PEWZ) in the
front of Early Warning (EW), see the figure below:

BOP EW EOP
PEWZ

a
2
5
0
0
2
9
1

When a WRITE or WRITE FILE MARK (WFM) command writes data or filemark
upon first reaching the PEWZ, Atape driver sets ENOSPC for Write and WFM to
indicate the current position has reached the PEWZ. After PEWZ is reached and
before reaching Early Warning, all further writes and WFMs are allowed. The
TRAILER parameter and the current design for LEOM (Logical End of
Medium/Partition, or Early Warning Zone) and PEOM (Physical End of
Medium/Partition) have no effect on the driver behavior in PEWZ.

For the application developers:
1. Two methods are used to determine PEWZ when the errno is set to ENOSPC

for Write or Write FileMark command, since ENOSPC is returned for either EW
or PEW.
v Method 1: Issue a Request Sense ioctl, check the sense key and ASC-ASCQ,

and if it is 0x0/0x0007 (PROGRAMMABLE EARLY WARNING DETECTED),
the tape is in PEW. If the sense key ASC-ASCQ is 0x0/0x0000 or 0x0/0x0002,
the tape is in EW.

v Method 2: Call Read Position ioctl in long or extended form and check bpew
and eop bits. If bpew = 1 and eop = 0, the tape is in PEW. If bpew = 1 and
eop = 1, the tape is in EW.

Atape driver requests the tape drive to save the mode page indefinitely. The
PEW size will be modified in the drive until a new setup is requested from the
driver or application. The application must be programmed to issue the "Set"
ioctl to zero when PEW support is no longer needed, as Atape drivers don't
perform this function. Note that PEW is a setting of the drive and not tape.
Therefore, it is the same on each partition should partitions exist.

2. Encountering the PEWZ does not cause the device server to perform a
synchronize operation or terminate the command. It means that the data or
filemark has been written in the cartridge when a check condition with
PROGRAMMABLE EARLY WARNING DETECTED is returned. But, the Atape
driver still returns the counter to less than zero (-1) for a write command or a
failure for Write FileMark ioctl call with ENOSPC error. In this way, it will force

AIX Device Driver (Atape)

48 IBM Tape Device Drivers: Programming Reference

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

the application to use one of the above methods to check PEW or EW. Once the
application determines ENOSPC comes from PEW, it will read the requested
write data or filemark written into the cartridge and reach or pass the PEW
point. The application can issue a "Read position" ioctl to validate the tape
position.

An example of the STIOCQRYP and STIOCSETP commands is:
#include <sys/Atape.h>

struct stchgp_s stchgp;

/* get current parameters */
if (ioctl(tapefd,STIOCQRYP,&stchgp)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

/* set new parameters */
stchgp.rewind_immediate=1;
stchgp.trailer_labels=1;
if (ioctl(tapefd,STIOCSETP,&stchgp)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCSYNC
This input/output control (ioctl) command flushes the tape buffers to the tape
immediately.

There are no arguments for this ioctl command.

An example of the STIOCSYNC command is:
if (ioctl(tapefd,STIOCSYNC,NULL)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCDM
This ioctl command displays and manipulates one or two messages on the message
display. The message sent using this call does not always remain on the display. It
depends on the current state of the tape device.

The input data structure is:
#define MAXMSGLEN 8
struct stdm_s

{
char dm_func; /* function code */

/* function selection */
#define DMSTATUSMSG 0x00 /* general status message */
#define DMDVMSG 0x20 /* demount/verify message */
#define DMMIMMED 0x40 /* mount with immediate action indicator*/
#define DMDEMIMMED 0xE0 /* demount/mount with immediate action */

/* message control */
#define DMMSG0 0x00 /* display message 0 */
#define DMMSG1 0x04 /* display message 1 */
#define DMFLASHMSG0 0x08 /* flash message 0 */
#define DMFLASHMSG1 0x0C /* flash message 1 */

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 49

|
|
|
|
|

#define DMALTERNATE 0x10 /* alternate message 0 and message 1 */
char dm_msg0[MAXMSGLEN]; /* message 0 */
char dm_msg1[MAXMSGLEN]; /* message 1 */
};

An example of the STIOCDM command is:
#include <sys/Atape.h>
struct stdm_s stdm;
stdm.dm_func=DMSTATUSMSG|DMMSG0;
bcopy("SSD",stdm.dm_msg0,8);
if (ioctl(tapefd,STIOCDM,&stdm)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCQRYPOS or STIOCSETPOS
The STIOCQRYPOS ioctl command queries the position on the tape. The
STIOCSETPOS ioctl command sets the position on the tape. Only the block_type and
curpos fields are used during a set operation. The tape position is defined as where
the next read or write operation occurs. The query function can be used
independently or in conjunction with the set function. Also, the set function can be
used independently or in conjunction with the query function.

The block_type field is set to QP_LOGICAL when a SCSI logical blockid format is
desired. During a query operation, the curpos field is set to a simple unsigned int.

On IBM 3490 tape drives only, the block_type field can be set to QP_PHYSICAL.
Setting this block_type on any other device is ignored and defaults to
QP_LOGICAL. After a set operation, the position is at the logical block indicated
by the curpos field. If the block_type field is set to QP_PHYSICAL, the curpos field
returned is a vendor-specific blockid format from the tape device. When
QP_PHYSICAL is used for a query operation, the curpos field is used only in a
subsequent set operation with QP_PHYSICAL. This function performs a high
speed locate operation. Whenever possible, use QP_PHYSICAL because it is faster.
This advantage is obtained only when the set operation uses the curpos field from
the QP_PHYSICAL query.

After a query operation, the lbot field indicates the last block of the data that was
transferred physically to the tape. If the application writes 12 (0 to 11) blocks and
lbot equals 8, then three blocks are in the tape buffer. This field is valid only if the
last command was a write command. This field does not reflect the number of
application write operations. A write operation can translate into multiple blocks. It
reflects tape blocks as indicated by the block size. If an attempt is made to obtain
this information and the last command is not a write command, the value of
LBOT_UNKNOWN is returned.

The driver sets the bot field to TRUE if the tape position is at the beginning of the
tape. Otherwise, it is set to FALSE. The driver sets the eot field to TRUE if the tape
is positioned between the early warning and the physical end of the tape.
Otherwise, it is set to FALSE.

The number of blocks and number of bytes currently in the tape device buffers is
returned in the num_blocks and num_bytes fields, respectively. The bcu and bycu
settings will indicate if these fields contain valid data. The block ID of the next
block of data that transferred to or from the physical tape is returned in the tapepos
field.

AIX Device Driver (Atape)

50 IBM Tape Device Drivers: Programming Reference

The partition number field returned is the current partition of the loaded tape.

The input or output data structure is:
typedef unsigned int blockid_t;
struct stpos_s

{
char block_type; /* format of block ID information */
#define QP_LOGICAL 0 /* SCSI logical block ID format */
#define QP_PHYSICAL 1 /* 3490 only, vendor-specific block ID format */

/* ignored for all other devices*/
boolean eot; /* position is after early warning,

before physical end of tape */
blockid_t curpos; /* for query, current position,

for set, position to go to */
blockid_t lbot; /* last block written to tape */
#define LBOT_NONE 0xFFFFFFFF /* no blocks were written to tape */
#define LBOT_UNKNOWN 0xFFFFFFFE /* unable to determine information */
uint num_blocks; /* number of blocks in buffer */
uint num_bytes; /* number of bytes in buffer */
boolean bot; /* position is at beginning of tape */
uchar partition_number; /* current partition number on tape */
boolean bcu; /* number of blocks in buffer is unknown*/
boolean bycu; /* number of bytes in buffer is unknown*/
blockid_t tapepos; /* next block transferred */
uchar reserved2[48];
};

An example of the STIOCQRYPOS and STIOCSETPOS commands is:
#include <sys/Atape.h>
struct stpos_s stpos;
stpos.block_type=QP_PHYSICAL;
if (ioctl(tapefd,STIOCQRYPOS,&stpos)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

oldposition=stpos.curpos;
.
.
.

stpos.curpos=oldposition;
stpos.block_type=QP_PHYSICAL;
if (ioctl(tapefd,STIOCSETPOS,&stpos)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCQRYSENSE
This ioctl command returns the last sense data collected from the tape device, or it
issues a new Request Sense command and returns the collected data. If
LASTERROR is requested, the sense data is valid only if the last tape operation has
an error that issued a sense command to the device. If the sense data is valid, the
ioctl command completes successfully and the len field is set to a value greater than
zero.

The residual_count field contains the residual count from the last operation.

The input or output data structure is:
#define MAXSENSE 255
struct stsense_s

{
/* input */

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 51

char sense_type; /* fresh (new sense) or sense from last error */
#define FRESH 1 /* initiate a new sense command */
#define LASTERROR 2 /* return sense gathered from

the last SCSI sense command */
/* output */
uchar sense[MAXSENSE]; /* actual sense data */
int len; /* length of valid sense data returned */
int residual_count; /* residual count from last operation */
uchar reserved[60];
};

An example of the STIOCQRYSENSE command is:
#include <sys/Atape.h>
struct stsense_s stsense;
stsense.sense_type=LASTERROR;
#define MEDIUM_ERROR 0x03
if (ioctl(tapefd,STIOCQRYSENSE,&stsense)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

if ((stsense.sense[2]&0x0F)==MEDIUM_ERROR)
{
printf("We’re in trouble now!");
exit(SENSE_KEY(&stsense.sense));
}

STIOCQRYINQUIRY
This ioctl command returns the inquiry data from the device. The data is divided
into standard and vendor-specific portions.

The output data structure is:
/* inquiry data info */
struct inq_data_s

{
BYTE b0;
/* macros for accessing fields of byte 1 */
#define PERIPHERAL_QUALIFIER(x) ((x->b0 & 0xE0)>>5)
#define PERIPHERAL_CONNECTED 0x00
#define PERIPHERAL_NOT_CONNECTED 0x01
#define LUN_NOT_SUPPORTED 0x03

#define PERIPHERAL_DEVICE__TYPE(x) (x->b0 & 0x1F)
#define DIRECT_ACCESS 0x00
#define SEQUENTIAL_DEVICE 0x01
#define PRINTER_DEVICE 0x02
#define PROCESSOR_DEVICE 0x03
#define CD_ROM_DEVICE 0x05
#define OPTICAL_MEMORY_DEVICE 0x07
#define MEDIUM_CHANGER_DEVICE 0x08
#define UNKNOWN 0x1F

BYTE b1;
/* macros for accessing fields of byte 2 */
#define RMB(x) ((x->b1 & 0x80)>>7) /* removable media bit */
#define FIXED 0
#define REMOVABLE 1
#define device_type_qualifier(x) (x->b1 & 0x7F) /* vendor specific */

BYTE b2;
/* macros for accessing fields of byte 3 */
#define ISO_Version(x) ((x->b2 & 0xC0)>>6)
#define ECMA_Version(x) ((x->b2 & 0x38)>>3)

AIX Device Driver (Atape)

52 IBM Tape Device Drivers: Programming Reference

#define ANSI_Version(x) ((x->b2 & 0x07)
#define NONSTANDARD 0
#define SCSI1 1
#define SCSI2 2

BYTE b3;
/* macros for accessing fields of byte 4 */
#define AENC(x) ((x->b3 & 0x80)>>7) /* asynchronous event notification */
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define TrmIOP(x) ((x->b3 & 0x40)>>6) /* support terminate I/O process message? */
#define Response_Data_Format(x) (x->b3 & 0x0F)
#define SCSI1INQ 0 /* SCSI-1 standard inquiry data format */
#define CCSINQ 1 /* CCS standard inquiry data format */
#define SCSI2INQ 2 /* SCSI-2 standard inquiry data format */

BYTE additional_length; /* number of bytes following this field minus 4 */
BYTE res56[2];

BYTE b7;
/* macros for accessing fields of byte 7 */
#define RelAdr(x) ((x->b7 & 0x80)>>7) /* the following fields are true or false */
#define WBus32(x) ((x->b7 & 0x40)>>6)
#define WBus16(x) ((x->b7 & 0x20)>>5)
#define Sync(x) ((x->b7 & 0x10)>>4)
#define Linked(x) ((x->b7 & 0x08)>>3)
#define CmdQue(x) ((x->b7 & 0x02)>>1)
#define SftRe(x) ((x->b7 & 0x01)

char vendor_identification[8];
char product_identification[16];
char product_revision_level[4];
};

struct st_inquiry
{
struct inq_data_s standard;
BYTE vendor_specific[255-sizeof(struct inq_data_s)];
};

An example of the STIOCQRYINQUIRY command is:
struct st_inquiry inqd;
if (ioctl(tapefd,STIOCQRYINQUIRY,&inqd)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

if (ANSI_Version(((struct inq_data_s *)&(inqd.standard)))==SCSI2)
printf("Hey! We have a SCSI-2 device\n");

STIOC_LOG_SENSE
This ioctl command returns the log sense data from the device. If volume logging
is set to On, the log sense data is saved in the tape log file.

The output data structure is:
struct log_sense

{
struct log_record_header header;
char data[MAXLOGSENSE];
}

An example of the STIOC_LOG_SENSE command is:

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 53

struct log_sense logdata;

if (ioctl(tapefd,STIOC_LOG_SENSE,&logdata)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_RECOVER_BUFFER
This ioctl command recovers the buffer data from the tape device. It is typically
used after an error occurs during a write operation that prevents the data in the
tape device buffers from being written to tape. The STIOCQRYPOS ioctl command
can be used before this ioctl command to determine the number of blocks and the
bytes of data that are in the device buffers.

Each STIOC_RECOVER_BUFFER ioctl call returns one block of data from the
device. This ioctl command can be issued multiple times to completely recover all
the buffered data from the device.

After the ioctl command is completed, the ret_len field contains the number of
bytes returned in the application buffer for the block. If no blocks are in the tape
device buffer, then the ret_len value is set to zero.

The output data structure is:
struct buffer_data

{
char *buffer;
int bufsize;
int ret_len;
};

An example of the STIOC_RECOVER_BUFFER command is:
struct buffer_data bufdata;

bufdata.bufsize = 256 * 1024;
bufdata.buffer = malloc(256 * 1024);

if (ioctl(tapefd,STIOC_RECOVER_BUFFER,&bufdata)<0)
{
printf("IOCTL failure. errno=%d",errno);
}

else
{
printf("Returned bytes=%d",bufdata.ret_len);
}

STIOC_LOCATE
This ioctl command causes the tape to be positioned at the specified block ID. The
block ID used for the command must be obtained using the
STIOC_READ_POSITION command.

An example of the STIOC_LOCATE command is:
#include <sys/Atape.h>

unsigned int current_blockid;

/* read current tape position */
if (ioctl(tapefd,STIOC_READ_POSITION,¤t_blockid)<0)

{
printf("IOCTL failure. errno=%d"n,errno);
exit(1);

AIX Device Driver (Atape)

54 IBM Tape Device Drivers: Programming Reference

}

/* restore current tape position */
if (ioctl(tapefd,STIOC_LOCATE,current_blockid)<0)

{
printf("IOCTL failure. errno=%d"n,errno);
exit(1);
}

STIOC_READ_POSITION
This ioctl command returns the block ID of the current position of the tape. The
block ID returned from this command can be used with the STIOC_LOCATE
command to set the position of the tape.

An example of the STIOC_READ_POSITION command is:
#include <sys/Atape.h>

unsigned int current_blockid;

/* read current tape position */
if (ioctl(tapefd,STIOC_READ_POSITION,¤t_blockid)<0)

{
printf("IOCTL failure. errno=%d"n,errno);
exit(1);
}

/* restore current tape position */
if (ioctl(tapefd,STIOC_LOCATE,current_blockid)<0)

{
printf("IOCTL failure. errno=%d"n,errno);
exit(1);
}

STIOC_SET_VOLID
This ioctl command sets the volume name for the currently mounted tape. The
volume name is used by the device driver for tape volume logging only and is not
written or stored on the tape. The volume name is reset to unknown whenever an
unload command is issued to unload the current tape. The volume name can be
queried and set using the STIOCQRYP and STIOCSETP ioctls, respectively.

The argument used for this command is a character pointer to a buffer that
contains the name of the volume to be set.

An example of the STIOC_SET_VOLID command is:
/* set the volume id for the current tape to VOL001 */

char *volid = "VOL001";
if (ioctl(tapefd,STIOC_SET_VOLID,volid)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_DUMP
This ioctl command forces a dump on the tape device, then stores the dump to
either a host-specified file or in the /var/adm/ras system directory. The device driver
stores up to three dumps in this directory. The first dump created is named
Atape.rmtx.dump1, where x is the device number, for example, rmt0. The second
and third dumps are dump2 and dump3, respectively. After a third dump file is
created, the next dump starts at dump1 again and overlays the previous dump1 file.

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 55

The argument used for this command is either NULL to dump to the system
directory, or a character pointer to a buffer that contains the path and file name for
the dump file. The dump can also be stored on a diskette by specifying /dev/rfd0
for the name.

An example of the STIOC_DUMP command is:
/* generate drive dump and store in the system directory */

if (ioctl(tapefd,STIOC_DUMP,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

/* generate drive dump and store in file 3590.dump */
char *dump_name = "3590.dump";
if (ioctl(tapefd,STIOC_DUMP,dump_name)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_FORCE_DUMP
This ioctl command forces a dump on the tape device. The dump can be retrieved
from the device using the STIOC_READ_DUMP ioctl.

There are no arguments for this ioctl command.

An example of the STIOC_FORCE_DUMP command is:
/* generate a drive dump */

if (ioctl(tapefd,STIOC_FORCE_DUMP,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_READ_DUMP
This ioctl command reads a dump from the tape device, then stores the dump to
either a host specified file or in the /var/adm/ras system directory. The device driver
stores up to three dumps in this directory. The first dump created is named
Atape.rmtx.dump1, where x is the device number, for example rmt0. The second and
third dumps are dump2 and dump3, respectively. After a third dump file is created,
the next dump starts at dump1 again and overlays the previous dump1 file.

Dumps are either generated internally by the tape drive or can be forced using the
STIOC_FORCE_DUMP ioctl.

The argument used for this command is either NULL to dump to the system
directory, or a character pointer to a buffer that contains the path and file name for
the dump file. The dump can also be stored on a diskette by specifying /dev/rfd0
for the name.

An example of the STIOC_READ_DUMP command is:
/* read drive dump and store in the system directory */

if (ioctl(tapefd,STIOC_READ_DUMP,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

/* read drive dump and store in file 3590.dump */

AIX Device Driver (Atape)

56 IBM Tape Device Drivers: Programming Reference

char *dump_name = "3590.dump";
if (ioctl(tapefd,STIOC_READ_DUMP,dump_name)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_LOAD_UCODE
This ioctl command downloads microcode to the device. The argument used for
this command is a character pointer to a buffer that contains the path and file
name of the microcode. Microcode can also be loaded from a diskette by specifying
/dev/rfd0 for the name.

An example of the STIOC_LOAD_UCODE command is:
/* download microcode from file */

char *name = "/etc/microcode/D0I4_BB5.fmrz";
if (ioctl(tapefd,STIOC_LOAD_UCODE,name)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

/* download microcode from diskette */
if (ioctl(tapefd,STIOC_LOAD_UCODE,"/dev/rfd0")<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_RESET_DRIVE
This ioctl command issues a SCSI Send Diagnostic command to reset the tape
drive. There are no arguments for this ioctl command.

An example of the STIOC_RESET_DRIVE command is:
/* reset the tape drive */

if (ioctl(tapefd,STIOC_RESET_DRIVE,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);

exit(errno);
}

STIOC_FMR_TAPE
This ioctl command creates an FMR tape. The tape is created with the current
microcode loaded in the tape device.

There are no arguments for this ioctl command.

An example of the STIOC_FMR_TAPE command is:
/* create fmr tape */

if (ioctl(tapefd,STIOC_FMR_TAPE,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

MTDEVICE (Obtain Device Number)
This ioctl command obtains the device number used for communicating with the
IBM TotalStorage Enterprise Library 3494.

The structure of the ioctl request is:

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 57

int device;
if (ioctl(tapefd,MTDEVICE,&device)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_PREVENT_MEDIUM_REMOVAL
This ioctl command prevents an operator from removing medium from the device
until the STIOC_ALLOW_MEDIUM_REMOVAL command is issued or the device
is reset.

There is no associated data structure.

An example of the STIOC_PREVENT_MEDIUM_REMOVAL command is:
#include <sys/Atape.h>

if (!ioctl (tapefd, STIOC_PREVENT_MEDIUM_REMOVAL, NULL))
printf ("The STIOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded\n");
else
{
perror ("The STIOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();
}

STIOC_ALLOW_MEDIUM_REMOVAL
This ioctl command allows an operator to remove medium from the device. This
command is used normally after an STIOC_PREVENT_MEDIUM_REMOVAL
command to restore the device to the default state.

There is no associated data structure.

An example of the STIOC_ALLOW_MEDIUM_REMOVAL command is:
#include <sys/Atape.h>

if (!ioctl (tapefd, STIOC_ALLOW_MEDIUM_REMOVAL, NULL))
printf ("The STIOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded\n");
else
{
perror ("The STIOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();
}

STIOC_REPORT_DENSITY_SUPPORT
This ioctl command issues the SCSI Report Density Support command to the tape
device and returns either all supported densities or supported densities for the
currently mounted media. The media field specifies which type of report is
requested. The number_reports field is returned by the device driver and indicates
how many density reports in the reports array field were returned.

The data structures used with this ioctl are:
typedef struct density_report

{
uchar primary_density_code; /* primary density code */
uchar secondary_density_code; /* secondary density code */
uint wrtok :1, /* write ok, device can write this format */

dup :1, /* zero if density only reported once */
deflt :1, /* current density is default format */
res_1 :5; /* reserved */

uchar reserved[2]; /* reserved */
uchar bits_per_mm[3]; /*bits per mm */

AIX Device Driver (Atape)

58 IBM Tape Device Drivers: Programming Reference

uint bits_per_mm:24; /* bits per mm */
ushort media_width; /* media width in millimeters */
ushort tracks; /* tracks */
uint capacity; /* capacity in megabytes */
char assigning_org[8]; /* assigning organization in ASCII */
char density_name[8]; /* density name in ASCII */
char description[20]; /* description in ASCII */

};

struct report_density_support
{

uchar media; /* report all or current media as defined above */
ushort number_reports; /* number of density reports returned in array */
struct density_report reports[MAX_DENSITY_REPORTS];

};

Examples of the STIOC_REPORT_DENSITY_SUPPORT command are:
#include <sys/Atape.h>

int stioc_report_density_support(void)
{
int i;
struct report_density_support density;

printf("Issuing Report Density Support for ALL supported media...\n");

density.media = ALL_MEDIA_DENSITY;

if (ioctl(fd, STIOC_REPORT_DENSITY_SUPPORT, &density) != 0)
return errno;

printf("Total number of densities reported: %d\n",density.number_reports);
for (i = 0; i < density.number_reports; i++)
{
printf("\n");
printf(" Density Name............%0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization..%0.8s\n",

density.reports[i].assigning_org);
printf(" Description.............%0.20s\n",

density.reports[i].description);
printf(" Primary Density Code....%02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code..%02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..............Yes\n");

else
printf(" Write OK..............No\n");

if (density.reports[i].dup)
printf(" Duplicate.............Yes\n");

else
printf(" Duplicate.............No\n");

if (density.reports[i].deflt)
printf(" Default...............Yes\n");

else
printf(" Default............... No\n");

printf(" Bits per MM............. %d\n",
density.reports[i].bits_per_mm);

printf(" Media Width (millimeters)%d\n",
density.reports[i].media_width);

printf(" Tracks.................. %d\n",
density.reports[i].tracks);

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 59

printf(" Capacity (megabytes).....%d\n",
density.reports[i].capacity);

if (opcode)
{
printf ("\nHit <enter> to continue...");
getchar();
}
}

printf("\nIssuing Report Density Support for CURRENT media...\n");

density.media = CURRENT_MEDIA_DENSITY;

if (ioctl(fd, STIOC_REPORT_DENSITY_SUPPORT, &density) != 0)
return errno;

for (i = 0; i < density.number_reports; i++)
{
printf("\n");
printf(" Density Name............%0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization..%0.8s\n",

density.reports[i].assigning_org);
printf(" Description.............%0.20s\n",

density.reports[i].description);
printf(" Primary Density Code....%02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code..%02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..............Yes\n");

else
printf(" Write OK..............No\n");

if (density.reports[i].dup)
printf(" Duplicate.............Yes\n");

else
printf(" Duplicate.............No\n");

if (density.reports[i].deflt)
printf(" Default...............Yes\n");

else
printf(" Default...............No\n");

printf(" Bits per MM.............%d\n",density.reports[i].bits_per_mm);
printf(" Media Width (millimeters)%d\n",density.reports[i].media_width);
printf(" Tracks..................%d\n",density.reports[i].tracks);
printf(" Capacity (megabytes)...%d\n",density.reports[i].capacity);
}

return errno;
}

STIOC_GET_DENSITY and STIOC_SET DENSITY
The STIOC_GET_DENSITY ioctl is used to query the current write density format
settings on the tape drive. The current density code from the drive Mode Sense
header, the Read/Write Control Mode page default density and pending density
are returned.

The STIOC_SET_DENSITY ioctl is used to set a new write density format on the
tape drive using the default and pending density fields. The density code field is
not used and ignored on this ioctl. The application can specify a new write density
for the current loaded tape only or as a default for all tapes. Refer to the examples
below.

AIX Device Driver (Atape)

60 IBM Tape Device Drivers: Programming Reference

The application should get the current density settings first before deciding to
modify the current settings. If the application specifies a new density for the
current loaded tape only, then the application must issue another set density ioctl
after the current tape is unloaded and the next tape is loaded to either the default
maximum density or a new density to ensure the tape drive will use the correct
density. If the application specifies a new default density for all tapes, the setting
remains in effect until changed by another set density ioctl or the tape drive is
closed by the application.

Following is the structure for the STIOC_GET_DENSITY and
STIOC_SET_DENSITY ioctls:
struct density_data_t
{

char density_code; /* mode sense header density code */
char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

Notes:

1. These ioctls are only supported on tape drives that can write multiple density
formats. Refer to the Hardware Reference for the specific tape drive to
determine if multiple write densities are supported. If the tape drive does not
support these ioctls, errno EINVAL will be returned.

2. The device driver always sets the default maximum write density for the tape
drive on every open system call. Any previous STIOC_SET_DENSITY ioctl
values from the last open are not used.

3. If the tape drive detects an invalid density code or can not perform the
operation on the STIOC_SET_DENSITY ioctl, the errno will be returned and the
current drive density settings prior to the ioctl will be restored.

4. The struct density_data_t defined in the header file is used for both ioctls.
The density_code field is not used and ignored on the STIOC_SET_DENSITY
ioctl .

Examples:
struct density_data_t data;

/* open the tape drive */
/* get current density settings */
rc = ioctl(fd, STIOC_GET_DENSITY, %data);

/* set 3592 J1A density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x51;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* unload tape */
/* load next tape */
/* set 3592 E05 density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x52;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* unload tape */
/* load next tape */
/* set default maximum density for current loaded tape */
data.default_density = 0;
data.pending_density = 0;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* close the tape drive */
/* open the tape drive */

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 61

/* set 3592 J1A density format for current loaded tape and all subsequent tapes */
data.default_density = 0x51;
data.pending_density = 0x51;

rc = ioctl(fd, STIOC_SET_DENSITY, %data);

STIOC_CANCEL_ERASE
The STIOC_CANCEL_ERASE ioctl is used to cancel an erase operation currently in
progress when an application issued the STIOCTOP ioctl with the st_op field
specifying STERASE_IMM. The application that issued the erase and is waiting for
the erase to complete will then return immediately with errno ECANCELLED .
This ioctl will always return 0 whether an erase immediate operation is in progress
or not.

This ioctl can only be issued when the openx() extended parameter SC_TMCP is
used to open the device since the application that issued the erase still has the
device currently open. The is no argument for this ioctl and the arg parameter is
ignored.

GET_ENCRYPTION_STATE
This ioctl command queries the drive's encryption method and state. The data
structure used for this ioctl is as follows on all of the supported operating systems:
struct encryption_status {

uchar encryption_capable; /* (1)Set this field as a boolean based on the
capability of the drive */

uchar encryption_method; /* (2)Set this field to one of the
#defines METHOD_* below */

#define METHOD_NONE 0 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_LIBRARY 1 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_SYSTEM 2 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_APPLICATION 3 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_CUSTOM 4 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_UNKNOWN 5 /* Only used in GET_ENCRYPTION_STATE */

uchar encryption_state; /* (3) Set this field to one of the
#defines STATE_* below */

#define STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_NA 2 /* Only used in GET_ENCRYPTION_STATE*/

uchar[13] reserved;
};

An example of the GET_ENCRYPTION_STATE command is:
int qry_encrytion_state (void)
{

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(,&encryption_status_t 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE, &encryption_status_t);
if(rc == 0)
{

if(encryption_status_t.encryption_capable)
printf("encryption capable......Yes\n");

else
printf("encryption capable......No\n");

switch(encryption_status_t.encryption_method)
{
case METHOD_NONE:
printf("encryption method.......METHOD_NONE\n");
break;

AIX Device Driver (Atape)

62 IBM Tape Device Drivers: Programming Reference

case METHOD_LIBRARY:
printf("encryption method.......METHOD_LIBRARY\n");
break;
case METHOD_SYSTEM:
printf("encryption method.......METHOD_SYSTEM\n");
break;
case METHOD_APPLICATION:
printf("encryption method.......METHOD_APPLICATION\n");
break;
case METHOD_CUSTOM:
printf("encyrpiton method.......METHOD_CUSTOM\n");
break;
case METHOD_UNKNOWN:
printf("encryption method.......METHOD_UNKNOWN\n");
break;

default:
printf("encryption method.......Error\n");
}

switch(encryption_status_t.encryption_state)
{
case STATE_OFF:
printf("encryption state........OFF\n");
break;
case STATE_ON:
printf("encryption state........ON\n");
break;
case STATE_NA:
printf("encryption state........NA\n");
break;

default:
printf("encryption state......Error\n");
}

}

return rc;
}

SET_ENCRYPTION_STATE
This ioctl command only allows set encryption state for application-managed
encryption. Please note that on unload, some of drive setting may be reset to
default. To set encryption state, the application should issue this ioctl after a tape is
loaded and at BOP.

The data structure used for this ioctl is the same as the one for
GET_ENCRYPTION_STATE. An example of the SET_ENCRYPTIO_STATE
command is:
int set_encryption_state(int option)
{

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(,&encryption_status_t 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE,);&encryption_status_t
if(rc < 0) return rc;

if(option == 0)
encryption_status_t.encryption_state = STATE_OFF;

else if(option == 1)
encryption_status_t.encryption_state = STATE_ON;

else
{

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 63

printf("Invalid parameter.\n");
return -EINVAL;

}

printf("Issuing set encryption state......\n");
rc = ioctl(fd, SET_ENCRYPTION_STATE, &encryption_status_t);

return rc;
}

SET_DATA_KEY
This ioctl command only allows set the data key for application-managed
encryption. The data structure used for this ioctl is as follows on all of the
supported operating systems:
struct data_key
{

uchar[12 data_key_index;
uchar data_key_index_length;
uchar[15] reserved1;
uchar[32] data_key;
uchar[48] reserved2;

};

An example of the SET_DATA_KEY command is:
int set_datakey(void)
{

int rc = 0;
struct data_key encryption_data_key_t;

printf("Issuing set encryption data key......\n");
memset(&encryption_data_key_t, 0, sizeof(struct data_key));
/* fill in your data key here, then issue the following ioctl*/
rc = ioctl(fd, SET_DATA_KEY, &encryption_data_key_t);
return rc;

}

READ_TAPE_POSITION
The READ_TAPE_POSITION ioctl is used to return Read Position command data
in either the short, long, or extended form. The type of data to return is specified
by setting the data_format field to either RP_SHORT_FORM, RP_LONG_FORM, or
RP_EXTENDED_FORM.

The data structures used with this ioctl are:
#define RP_SHORT_FORM 0x00
#define RP_LONG_FORM 0x06
#define RP_EXTENDED_FORM 0x08

struct short_data_format {
uint bop:1, /* beginning of partition */

eop:1, / end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */
rsvd :1,
lolu:1, /* 1 means the first and last logical obj position

fields are unknown */
perr: 1, /* 1 means the position fields have overflowed and

can not be reported */
bpew :1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
char reserved[2];
uint first_logical_obj_position; /* current logical object position */
uint last_logical_obj_position; /* next logical object to be transferred to tape */
uint num_buffer_logical_obj; /* number of logical objects in buffer */

AIX Device Driver (Atape)

64 IBM Tape Device Drivers: Programming Reference

uint num_buffer_bytes; /* number of bytes in buffer */
char reserved1;
};

struct long_data_format {
uint bop:1, /* beginning of partition */

eop:1, /* end of partition */
rsvd1:2,
mpu:1, /* 1 means the logical file id field in unknown */
lonu:1, /* 1 means either the partition number or logical obj

number field are unknown */
rsvd2:1,
bpew :1; /* beyond programmable early warning */

char reserved[6];
uchar active_partition; /* current active partition */
ullong logical_obj_number; /* current logical object position */
ullong logical_file_id; /* number of filemarks from bop and current logical position */
ullong obsolete;
};

struct extended_data_format {
uint bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */
rsvd :1,
lolu:1, /* 1 means the first and last logical obj position fields

are unknown */
perr: 1, /* 1 means the position fields have overflowed and can not

be reported */
bpew :1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
ushort additional_length;
uint num_buffer_logical_obj; /* number of logical objects in buffer */
ullong first_logical_obj_position; /* current logical object position */
ullong last_logical_obj_position; /* next logical object to be transferred to tape */
ullong num_buffer_bytes; /* number of bytes in buffer */
char reserved;
};

struct read_tape_position{
uchar data_format; /* Specifies the return data format either short,
long or extended as defined above */
union

{
struct short_data_format rp_short;
struct long_data_format rp_long;
struct extended_data_format rp_extended;
char reserved[64];
} rp_data;

};

Example of the READ_TAPE_POSITION ioctl:
#include <sys/Atape.h>

struct read_tape_position rpos;

printf("Reading tape position long form....\n");
rpos.data_format = RP_LONG_FORM;
if (ioctl (fd, READ_TAPE_POSITION, &rpos) <0)

return errno;

if (rpos.rp_data.rp_long.bop)
printf(" Beginning of Partition Yes\n");

else
printf(" Beginning of Partition No\n");

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 65

if (rpos.rp_data.rp_long.eop)
printf(" End of Partition Yes\n");

else
printf(" End of Partition No\n");
if (rpos.rp_data.rp_long.bpew)
printf(" Beyond Early Warning Yes\n");

else
printf(" Beyond Early Warning No\n");
if (rpos.rp_data.rp_long.lonu)
{
printf(" Active Partition UNKNOWN \n");
printf(" Logical Object Number UNKNOWN \n");
}

else
{
printf(" Active Partition %u \n",

rpos.rp_data.rp_long.active_partition);
printf(" Logical Object Number %llu \n",

rpos.rp_data.rp_long.logical_obj_number);
}

if (rpos.rp_data.rp_long.mpu)
printf(" Logical File ID UNKNOWN \n");

else
z printf(" Logical File ID %llu \n",

rpos.rp_data.rp_long.logical_file_id);

SET_TAPE_POSITION
The SET_TAPE_POSITION ioctl is used to position the tape in the current active
partition to either a logical block id or logical filemark. The logical_id_type field in
the ioctl structure specifies either a logical block or logical filemark.

The data structure used with this ioctl is:
#define LOGICAL_ID_BLOCK_TYPE 0x00
#define LOGICAL_ID_FILE_TYPE 0x01

struct set_tape_position{
uchar logical_id_type; /* Block or file as defined above */
ullong logical_id; /* logical object or logical file to position to */
char reserved[32];
};

Examples of the SET_TAPE_POSITION ioctl:
#include <sys/Atape.h>

struct set_tape_position setpos;

/* position to logical block id 10 */
setpos.logical_id_type = LOGICAL_ID_BLOCK_TYPE
setpos.logical_id = 10;
ioctl(fd, SET_TAPE_POSITION, &setpos);

/* position to logical filemark 4 */
setpos.logical_id_type = LOGICAL_ID_FILE_TYPE
setpos.logical_id = 4;
ioctl(fd, SET_TAPE_POSITION, &setpos);

SET_ACTIVE_PARTITION
The SET_ACTIVE_PARTITION ioctl is used to position the tape to a specific
partition which will become the current active partition for subsequent commands
and a specific logical bock id in the partition. To position to the beginning of the
partition the logical_block_id field should be set to 0.

AIX Device Driver (Atape)

66 IBM Tape Device Drivers: Programming Reference

The data structure used with this ioctl is:
struct set_active_partition {

uchar partition_number; /* Partition number 0-n to change to */
ullong logical_block_id; /* Blockid to locate to within partition */
char reserved[32];
};

Examples of the SET_ACTIVE_PARTITION ioctl:
#include <sys/Atape.h>

struct set_active_partition partition;

/* position the tape to partition 1 and logical block id 12 */
partition.partition_number = 1;
partition.logical_block_id = 12;
ioctl(fd, SET_ACTIVE_PARTITION, &partition);

/* position the tape to the beginning of partition 0 */
partition.partition_number = 0;
partition.logical_block_id = 0;
ioctl(fd, SET_ACTIVE_PARTITION, &partition);

QUERY_PARTITION
The QUERY_PARTITION ioctl is used to return partition information for the tape
drive and the current media in the tape drive including the current active partition
the tape drive is using for the media. The number_of partitions field is the current
number of partitions on the media and the max_partitions is the maximum
partitions that the tape drive supports. The size_unit field could be either one of
the defined values below or another value such as 8 and is used in conjunction
with the size array field value for each partition to specify the actual size partition
sizes. The partition_method field is either Wrap-wise Partitioning or Longitudinal
Partitioning, also refer to “CREATE_PARTITION” on page 68 for details.

The data structure used with this ioctl is:
The define for “partition_method”:
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */

The define for "size_unit":
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

struct query_partition {
uchar max_partitions; /* Max number of supported partitions */
uchar active_partition; /* current active partition on tape */
uchar number_of_partitions; /* Number of partitions from 1 to max */
uchar size_unit; /* Size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method;/* partitioning type for 3592 E07 and
later generation only */
char reserved [31];
};

Examples of the QUERY_PARTITION ioctl:
#include <sys/Atape.h>

struct query_partition partition;
int i;

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 67

if (ioctl(fd, QUERY_PARTITION, &partition) < 0)
return errno;

printf(" Max supported partitions ... %d\n",partition.max_partitions);
printf(" Number of partitions %d\n",partition.number_of_partitions);
printf(" Active partition %d\n",partition.active_partition);
printf(" Partition Method %d\n",partition.partition_method);
if (partition.size_unit == SIZE_UNIT_BYTES)

printf(" Partition size unit Bytes\n");
else if (partition.size_unit == SIZE_UNIT_KBYTES)

printf(" Partition size unit Kilobytes\n");
else if (partition.size_unit == SIZE_UNIT_MBYTES)

printf(" Partition size unit Megabytes\n");
else if (partition.size_unit == SIZE_UNIT_GBYTES

printf(" Partition size unit Gigabytes\n");
else if (partition.size_unit == SIZE_UNIT_TBYTES)

printf(" Partition size unit Terabytes\n");
else

printf(" Partition size unit %d\n",partition.size_unit);

for (i=0; i < partition.number_of_partitions; i++)
printf(" Partition %d size %d\n",i,partition.size[i]);

CREATE_PARTITION
The CREATE_PARTITION ioctl is used to format the current media in the tape
drive into 1 or more partitions. The number of partitions to create is specified in
the number_of_partitions field. When creating more than 1 partition the type field
specifies the type of partitioning, either FDP, SDP, or IDP. The tape must be
positioned at the beginning of tape (partition 0 logical block id 0) before using this
ioctl.

If the number_of_partitions field to create in the ioctl structure is 1 partition, all
other fields are ignored and not used. The tape drive formats the media using it's
default partitioning type and size for a single partition.

When the type field in the ioctl structure is set to either FDP or SDP, the size_unit
and size fields in the ioctl structure are not used. When the type field in the ioctl
structure is set to IDP, the size_unit in conjunction with the size fields are used to
specify the size for each partition.

There are two partition types: Wrap-wise Partitioning (Figure 3 on page 69)
optimized for streaming performance, and Longitudinal Partitioning (Figure 4 on
page 69) optimized for random access performance. Media is always partitioned
into 1 by default or more than one partition where the data partition will always
exist as partition 0 and other additional index partition 1 to n could exist. A
volume can be partitioned (up to 4 partitions) using Wrap-wise partition supported
on TS1140 only.

A WORM media cannot be partitioned and the Format Medium commands are
rejected. Attempts to scale a partitioned media will be accepted but only if you use
the correct FORMAT field setting, as part of scaling the volume will be set to a
single data partition cartridge.

AIX Device Driver (Atape)

68 IBM Tape Device Drivers: Programming Reference

The following chart lists the maximum number of partitions that the tape drive
will support.

Table 3. Number of Supported Partitions

Drive type Maximum number of supported partitions

LTO-5 (TS2250 and TS2350) 2 in Wrap-wise Partitioning

3592 E07 (TS 1140) 4 in Wrap-wise Partitioning

2 in Longitudinal Partitioning

The data structure used with this ioctl is:
The define for "partition_method":
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */
#define WRAP_WISE_PARTITION_WITH_FASTSYNC 3 /* Wrap-wise Partitioning with RABF */

The define for "type":
#define IDP_PARTITION 1 /* Initiator Defined Partition type */
#define SDP_PARTITION 2 /* Select Data Partition type */
#define FDP_PARTITION 3 /* Fixed Data Partition type */

The define for "size_unit":
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

Partition 0

Partition 1

Partition 2

Partition 3

Guard wraps

a
2
5
0
0
2
8
3

Figure 3. Wrap-wise Partitioning

Partition 1Partition 0

a
2
5
0
0
2
8
4

Guard gap

Figure 4. Longitudinal Partitioning

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 69

|

struct tape_partition {
uchar type; /* Type of tape partition to create */
uchar number_of_partitions; /* Number of partitions to create */
uchar size_unit; /* IDP size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition,0 to (number - 1) */
uchar partition_method; /* partitioning type for 3592 E07 and */

/* later generations only */
char reserved [31];
};

Examples of the CREATE_PARTITION ioctl:
#include <sys/Atape.h>

struct tape_partition partition;

/* create 2 SDP partitions on LTO-5 */
partition.type = SDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = UNKNOWN_TYPE;
ioctl(fd, CREATE_PARTITION, &partition);

/* create 2 IDP partitions with partition 1 for 37 gigabytes and partition 0
for the remaining capacity on LTO-5 */
partition.type = IDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = UNKNOWN_TYPE;
partition.size_unit = SIZE_UNIT_GBYTES;
partition.size[0] = 0xFFFF;
partition.size[1] = 37;
ioctl(fd, CREATE_PARTITION, &partition);

/* format the tape into 1 partition */
partition.number_of_partitions = 1;
ioctl(fd, CREATE_PARTITION, &partition);

/* create 4 IDP partitions on 3592 JC volume in Wrap-wise partitioning
with partition 0 and 2 for 94.11 gigabytes (minimum size)and partition 1 and 3
to use the remaining capacity equally around 1.5 TB on 3592 E07 */
partition.type = IDP_PARTITION;
partition.number_of_partitions = 4;
partition.partition_method = WRAP_WISE_PARTITION;
partition.size_unit = 8; /* 100 megabytes */
partition.size[0] = 0x03AD;
partition.size[1] = 0xFFFF;
partition.size[2] = 0x03AD;
partition.size[3] = 0x3AD2;

ALLOW_DATA_OVERWRITE
The ALLOW_DATA_OVERWRITE ioctl is used to set the drive to allow a
subsequent data write type command at the current position or allow a
CREATE_PARTITION ioctl when data safe (append-only) mode is enabled.

For a subsequent write type command the allow_format_overwrite field must be
set to 0 and the partition_number and logical_block_id fields must be set to the
current partition and position within the partition where the overwrite will occur.

For a subsequent CREATE_PARTITION ioctl the allow_format_overwrite field
must be set to 1. The partiton_number and logical_block_id fields are not used but
the tape must be at the beginning of tape (partition 0 logical block id 0) prior to
issuing the Create Partition ioctl.

AIX Device Driver (Atape)

70 IBM Tape Device Drivers: Programming Reference

The data structure used with this ioctl is:
struct allow_data_overwrite{

uchar partition_number; /* Partition number 0-n to overwrite */
ullong logical_block_id; /* Blockid to overwrite to within partition */
uchar allow_format_overwrite; /* allow format if in data safe mode */
char reserved[32];
};

Examples of the ALLOW_DATA_OVERWRITE ioctl:
#include <sys/Atape.h>

struct read_tape_position rpos;
struct allow_data_overwrite data_overwrite;
struct set_active_partition partition;

/* get current tape position for a subsequent write type command and */
/* set the allow_data_overwrite fields with the current position for the next

write type command */
rpos.data_format = RP_LONG_FORM;
if (ioctl (fd, READ_TAPE_POSITION, &rpos) <0)

retun errno;

data_overwrite.partition_number = rpos.rp_data.rp_long.active_partition;
data_overwrite.logical_block_id = rpos.rp_data.rp_long.logical_obj_number;
data_overwrite.allow_format_overwrite = 0;
ioctl (fd, ALLOW_DATA_OVERWRITE, &data_overrite;);

/* set the tape position to the beginning of tape and */
/* prepare a format overwrite for the CREATE_PARTITION ioctl */
partition.partition_number = 0;
partition.logical_block_id = 0;
if (ioctl(fd, SET_ACTIVE_PARTITION, &partition;) &10)

return errno;

data_overwrite.allow_format_overwrite = 1;
ioctl (fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

QUERY_LOGICAL_BLOCK_PROTECTION
The ioctl queries whether the drive is capable of supporting this feature, what lbp
method is used and where the protection information is included.

The lbp_capable field indicates whether or not the drive has logical block
protection (LBP) capability. The lbp_method field displays if LBP is enabled and
what the protection method is. The LBP information length is shown in the
lbp_info_length field. The fields of lbp_w, lbp_r, and rbdp present that the
protection information is included in write, read or recover buffer data.

The data structure used with this ioctl is:
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT]and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 71

Examples of the QUERY_LOGICAL_BLOCK_PROTECTION ioctl:
#include <sys/Atape.h>

struct logical_block_protection lbp_protect;

printf("Querying Logical Block Protection....\n");

if (ioctl(fd, QUERY_LOGICAL_BLOCK_PROTECTION, &lbp_protect) < 0)
return errno;

printf(" Logical Block Protection capable........ %d\n",lbp_protect.lbp_capable);
printf(" Logical Block Protection method.......... %d\n",lbp_protect.lbp_method);
printf(" Logical Block Protection Info Length... %d\n",lbp_protect.lbp_info_length);
printf(" Logical Block Protection for Write........ %d\n",lbp_protect.lbp_w);
printf(" Logical Block Protection for Read....... %d\n",lbp_protect.lbp_r);
printf(" Logical Block Protection for RBDP...... %d\n",lbp_protect.rbdp);

SET_LOGICAL_BLOCK_PROTECTION
The ioctl enables or disables Logical Block Protection, setups what method is used
and where the protection information is included.

The lbp_capable field is ignored in this ioctl by Atape driver. If the lbp_method
field is 0 (LBP_DISABLE), all other fields are ignored and not used. When the
lbp_method field is set to a valid non-zero method, all other fields are used to
specify the setup for LBP.

The data structure used with this ioctl is:
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

Examples of the SET_LOGICAL_BLOCK_PROTECTION ioctl:
#include <sys/Atape.h>

int rc;
struct logical_block_protection lbp_protect;

printf("Setting Logical Block Protection....\n\n");

printf ("Enter Logical Block Protection method: ");
gets (buf);
lbp_protect.lbp_method= atoi(buf);
printf ("Enter Logical Block Protection Info Length: ");
gets (buf);
lbp_protect.lbp_info_length= atoi(buf);
printf ("Enter Logical Block Protection for Write: ");
gets (buf);
lbp_protect.lbp_w= atoi(buf);
printf ("Enter Logical Block Protection for Read: ");
gets (buf);
lbp_protect.lbp_r= atoi(buf);
printf ("Enter Logical Block Protection for RBDP: ");

AIX Device Driver (Atape)

72 IBM Tape Device Drivers: Programming Reference

gets (buf);
lbp_protect.rbdp= atoi(buf);

rc = ioctl(fd, SET_LOGICAL_BLOCK_PROTECTION, &lbp_protect);

if (rc)
printf ("Set Logical Block Protection Fails (rc %d)",rc);

else
printf ("Set Logical Block Protection Succeeds");

Notes:

1. The drive always expects a CRC attached with a data block when LBP is
enabled for lbp_r and lbp_w. Without the CRC bytes attachment, the drive will
fail the Read and Write command. To prevent the CRC block transfer between
the drive and application, the maximum block size limit should be determined
by application. Call the STIOCQRYP ioctl and get the system maximum block
size limit, then call the Read Block Limits command to get the drive maximum
block size limit. Then use the minimum of the two limits.

2. When a unit attention with a power-on and device reset (Sense key/Asc-Ascq
x6/x2900) occurs, the LBP enable bits (lbp_w, lbp_r and rbdp) is reset to OFF
by default. Atape tape driver returns EIO for an ioctl call in the situation. Once
the application determines it is a reset unit attention in the sense data, it
responses to query LBP setup again and re-issues this ioctl to setup LBP
properly.

3. The LBP setting is controlled by the application and not the device driver. If an
application enables LBP, it should also disable LBP when it closes the drive, as
this is not performed by the device driver.

STIOC_READ_ATTRIBUTE
The ioctl is issued to read attribute values that is belonged to a specific partition
from medium auxiliary memory.

The input or output data structure is:
#define MAX_ATTR_LEN 1024
struct read_attribute
{

uchar service_action; /* [IN] service action */
uchar partition_number; /* [IN] the partition which the attributes belong to */
ushort first_attr_id; /* [IN] first attribute id to be returned */
uint attr_data_len; /* [OUT] length of attribute data returned */
uchar reserved[8];
char data[MAX_ATTR_LEN]; /* [OUT] read attributes data */

} ;

An example of the STIOC_READ_ATTRIBUTE command is:
#include <sys/Atape.h>
int rc,attr_len;
struct read_attribute rd_attr;

memset(&rd_attr,0,sizeof(struct read_attribute));
rd_attr.service_action=0x00;
rd_attr.partition_number=1;
rd_attr.first_attr_id=0x800;

printf("Read attribute command\n");
rc=ioctl(fd, STIOC_READ_ATTRIBUTE, &rd_attr);

if (rc)
printf ("Read Attribute failed (rc %d)",rc);

else
{

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 73

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf ("Read Attribute Succeeds!");
dump_bytes (rd_attr.data, min(MAX_ATTR_LEN, rd_attr.attr_data_len),

"Attribute Data");
}

STIOC_WRITE_ATTRIBUTE
The ioctl sets the attributes in medium auxiliary memory at a specific partition.

Following is the structure for STIOC_WRITE_ATTRIBURE ioctl:
struct write_attribute
{

uchar write_cache; /* [IN] WTC - Write-through cache */
uchar partition_number; /* [IN] the partition which the attribute is belonged to */
uint parm_list_len; /* [IN] parameter list length */
uchar reserved[10];
char data[MAX_ATTR_LEN]; /* [IN] write attributes data */

} ;

An example of the STIOC_WRITE_ATTRIBURE commands is:
#include <sys/Atape.h>

int rc;
struct write_attribute wr_attr;

memset(&wr_attr,0,sizeof(struct write_attribute));

wr_attr.write_cache=0;
wr_attr.parm_list_len=0x11;
wr_attr.data[3]=0x0D;
wr_attr.data[4]=0x08;
wr_attr.data[6]=0x01;
wr_attr.data[8]=0x08;
wr_attr.data[9]=’I’;
wr_attr.data[10]=’B’;
wr_attr.data[11]=’M’;
wr_attr.data[12]=’ ’;
wr_attr.data[13]=’T’;
wr_attr.data[14]=’E’;
wr_attr.data[15]=’S’;
wr_attr.data[16]=’T’;

printf("Issuing a sample Write Attribute command\n\n");
rc=ioctl(fd, STIOC_WRITE_ATTRIBUTE, &wr_attr);

if (rc)
printf ("Write Attribute failed (rc %d)",rc);
else
printf ("Write Attribute Succeeds");

VERIFY_TAPE_DATA
The ioctl issues VERIFY command to cause data to be read from the tape and
passed through the drive’s error detection and correction hardware to determine
whether it can be recovered from the tape, or whether the protection information is
present and validates correctly on logical block on the medium. The driver returns
the ioctl a failure or a success if VERIFY SCSI command is completed in a Good
SCSI status.

Notes:

1. When an application sets VBF method, it should consider the driver’s close
operation in which the driver may write filemark(s) in its close which the
application didn't explicitly request. For example, some drivers write two

AIX Device Driver (Atape)

74 IBM Tape Device Drivers: Programming Reference

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

consecutive filemarks marking the end of data on the tape in its close, if the
last tape operation was a WRITE command.

2. Per the user's or application's request, Atape driver sets the block size in the
field of "Block Length" in mode block descriptor for Read and Write commands
and maintains this block size setting in a whole open. For instance, the tape
driver set a zero in the "Block Length" field for the variable block size. This will
cause the missing of an overlength condition on a SILI Read. Block Length
should be set to a non-zero value.
Prior to set Fixed bit ON with VTE or VBF ON in Verify ioctl, the application is
also requested to set the block size in mode block descriptor, so that the drive
uses it to verify the length of each logical block. For example, a 256 KB length
is set in "Block Length" field to verify the data. The setup will override the
early setting from IBM tape driver.
Once the application completes Verify ioctl call, the original block size setting
needs to be restored for Read and Write commands, the application either
issues "set block size" ioctl, or closes the drive immediately and re-opens the
drive for the next tape operation. It is strongly recommended to re-open the
drive for the next tape operation. Otherwise, it will causes next Read and Write
command misbehavior.

3. To support DPF for Verify command with FIXED bit on, it is requested to issue
IBM tape driver to set “ blksize" in STIOCSETP ioctl, IBM tape driver will set
the "block length" in mode block descriptor same as the block size and save the
block size in kernel memory, so that the driver restores the "block length"
before to retry Verify SCSI command. Otherwise, it will cause the retry Verify
command fail.

4. The ioctl may be returned longer than the timeout when DPF occurs.

The structure is defined for this ioctl below:
struct verify_data
{

uint : 2, /* reserved */
vte: 1, /* [IN] verify to end-of-data */

vlbpm: 1, /* [IN] verify logical block protection info */
vbf: 1, /* [IN] verify by filemarks */

immed: 1, /* [IN] return SCSI status immediately */
bytcmp: 1, /* No use currently */
fixed: 1; /* [IN] set Fixed bit to verify the length of each logical block */

uchar reseved[15];
uint verify_length; /* [IN] amount of data to be verified */
} ;

An example of the VERIFY_TAPE_DATA command is to verify all of logical block
from the current position to end of data and also includes a verification that each
logical block uses the logical block protection method specified in the Control Data
Protection mode page, when vte is set to 1 with vlbpm on.
#include <sys/Atape.h>

int rc;
struct verify_data vrf_data;

memset(&vrf_data,0,sizeof(struct verify_data));
vrf_data.vte=1;
vrf_data.vlbpm=1;
vrf_data.vbf=0;
vrf_data.immed=0;
vrf_data.fixed=0;
vrf_data.verify_length=0;

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 75

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

printf("Verify Tape Data command\n");
rc=ioctl(fd,VERIFY_TAPE_DATA, &vrf_data);

if (rc)
printf ("Verify Tape Data failed (rc %d)",rc);
else printf
("Verify Tape Data Succeeded!");

Medium Changer IOCTL Operations
This chapter describes the set of ioctl commands that provides control and access to
the SCSI medium changer functions. These ioctl operations can be issued to the
tape special file (such as rmt0), through a separate special file (such as rmt0.smc)
that was created during the configuration process, or a separate special file (such
as smc0), to access the medium changer.

When an application opens a /dev/rmt special file that is assigned to a drive that
has access to a Medium Changer, the ioctl operations described in this chapter are
also available. The interface to the /dev/rmt*.smc special file provides the application
access to a separate Medium Changer device. When this special file is open, the
Medium Changer is treated as a separate device. While /dev/rmt*.smc is open,
access to the ioctl operations described in this chapter is restricted to /dev/rmt*.smc
and any attempt to access them through /dev/rmt* fails.

Overview
The following ioctl commands are supported:

SMCIOC_ELEMENT_INFO Obtain the device element information.

SMCIOC_MOVE_MEDIUM Move a cartridge from one element to another
element.

SMCIOC_EXCHANGE_MEDIUM
Exchange a cartridge in an element with another
cartridge.

SMCIOC_POS_TO_ELEM Move the robot to an element.

SMCIOC_INIT_ELEM_STAT Issue the SCSI Initialize Element Status command.

SMCIOC_INIT_ELEM_STAT_RANGE
Issue the SCSI Initialize Element Status with Range
command.

SMCIOC_INVENTORY Return the information about the four element
types.

SMCIOC_LOAD_MEDIUM Load a cartridge from a slot into the drive.

SMCIOC_UNLOAD_MEDIUM
Unload a cartridge from the drive and return it to
a slot.

SMCIOC_PREVENT_MEDIUM_REMOVAL
Prevent medium removal by the operator.

SMCIOC_ALLOW_MEDIUM_REMOVAL
Allow medium removal by the operator.

SMCIOC_READ_ELEMENT_DEVIDS
Return the device ID element descriptors for drive
elements.

AIX Device Driver (Atape)

76 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|
|

|

SMCIOC_READ_CARTIDGE_LOCATION
Returns the cartridge location information for
storage elements in the library.

These ioctl commands and their associated structures are defined by including the
/usr/include/sys/Atape.h header file in the C program using the functions.

SMCIOC_ELEMENT_INFO
This ioctl command obtains the device element information.

The data structure is:
struct element_info
{

ushort robot_addr; /* first robot address */
ushort robots; /* number of medium transport elements */
ushort slot_addr; /* first medium storage element address */
ushort slots; /* number of medium storage elements */
ushort ie_addr; /* first import/export element address */
ushort ie_stations; /* number of import/export elements */
ushort drive_addr; /* first data-transfer element address */
ushort drives; /* number of data-transfer elements */

};

An example of the SMCIOC_ELEMENT_INFO command is:
#include <sys/Atape.h>

struct element_info element_info;

if (!ioctl (smcfd, SMCIOC_ELEMENT_INFO, &element_info))
{

printf ("The SMCIOC_ELEMENT_INFO ioctl succeeded\n");
printf ("\nThe element information data is:\n");
dump_bytes ((uchar *)&element_info, sizeof (struct element_info));

}
else
{

perror ("The SMCIOC_ELEMENT_INFO ioctl failed");
smcioc_request_sense();

}

SMCIOC_MOVE_MEDIUM
This ioctl command moves a cartridge from one element to another element.

The data structure is:
struct move_medium
{

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination; /* move to location */
char invert; /* invert before placement bit */

};

An example of the SMCIOC_MOVE_MEDIUM command is:
#include <sys/Atape.h>

struct move_medium move_medium;

move_medium.robot = 0;
move_medium.invert = 0;
move_medium.source = source;
move_medium.destination = dest;

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 77

if (!ioctl (smcfd, SMCIOC_MOVE_MEDIUM, &move_medium))
printf ("The SMCIOC_MOVE_MEDIUM ioctl succeeded\n");

else
{

perror ("The SMCIOC_MOVE_MEDIUM ioctl failed");
smcioc_request_sense();

}

SMCIOC_EXCHANGE_MEDIUM
This ioctl command exchanges a cartridge in an element with another cartridge.
This command is equivalent to two SCSI Move Medium commands. The first
moves the cartridge from the source element to the destination1 element, and the
second moves the cartridge that was previously in the destination1 element to the
destination2 element. The destination2 element can be the same as the source
element.

The input data structure is:
struct exchange_medium
{

ushort robot; /* robot address */
ushort source; /* source address for exchange */
ushort destination1; /* first destination address for exchange */
ushort destination2; /* second destination address for exchange */
char invert1; /* invert before placement into destination1 */
char invert2; /* invert before placement into destination2 */

};

An example of the SMCIOC_EXCHANGE_MEDIUM command is:
#include <sys/Atape.h>

struct exchange_medium exchange_medium;

exchange_medium.robot = 0;
exchange_medium.invert1 = 0;
exchange_medium.invert2 = 0;
exchange_medium.source = 32; /* slot 32 */
exchange_medium.destination1 = 16; /* drive address 16 */
exchange_medium.destination2 = 35; /* slot 35 */

/* exchange cartridge in drive address 16 with cartridge from slot 32 and */
/* return the cartridge currently in the drive to slot 35 */
if (!ioctl (smcfd, SMCIOC_EXCHANGE_MEDIUM, &exchange_medium))

printf ("The SMCIOC_EXCHANGE_MEDIUM ioctl succeeded\n");
else
{

perror ("The SMCIOC_EXCHANGE_MEDIUM ioctl failed");
smcioc_request_sense();

}

SMCIOC_POS_TO_ELEM
This ioctl command moves the robot to an element.

The input data structure is:
struct pos_to_elem
{

ushort robot; /* robot address */
ushort destination; /* move to location */
char invert; /* invert before placement bit */

};

An example of the SMCIOC_POS_TO_ELEM command is:

AIX Device Driver (Atape)

78 IBM Tape Device Drivers: Programming Reference

#include <sys/Atape.h>

char buf[10];
struct pos_to_elem pos_to_elem;

pos_to_elem.robot = 0;
pos_to_elem.invert = 0;
pos_to_elem.destination = dest;

if (!ioctl (smcfd, SMCIOC_POS_TO_ELEM, &pos_to_elem))
printf ("The SMCIOC_POS_TO_ELEM ioctl succeeded\n");

else
{

perror ("The SMCIOC_POS_TO_ELEM ioctl failed");
smcioc_request_sense();

}

SMCIOC_INIT_ELEM_STAT
This ioctl command instructs the Medium Changer robotic device to issue the SCSI
Initialize Element Status command.

There is no associated data structure.

An example of the SMCIOC_INIT_ELEM_STAT command is:
#include <sys/Atape.h>

if (!ioctl (smcfd, SMCIOC_INIT_ELEM_STAT, NULL))
printf ("The SMCIOC_INIT_ELEM_STAT ioctl succeeded\n");

else
{

perror ("The SMCIOC_INIT_ELEM_STAT ioctl failed");
smcioc_request_sense();

}

SMCIOC_INIT_ELEM_STAT_RANGE
This ioctl command issues the SCSI Initialize Element Status with Range command
and is used to audit specific elements in a library by specifying the starting
element address and number of elements. Use the SMCIOC_INIT_ELEM_STAT ioctl
to audit all elements.

The data structure is:
struct element_range

{
ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */

}

An example of the SMCIOC_INIT_ELEM_STAT_RANGE command is:
#include <sys/Atape.h>

struct element_range elements;

/* audit slots 32 to 36 */
elements.element_address = 32;
elements.number_elements = 5;

if (!ioctl (smcfd, SMCIOC_INIT_ELEM_STAT_RANGE, &elements))
printf ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl succeeded\n");

else
{

perror ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl failed");
smcioc_request_sense();
}

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 79

SMCIOC_INVENTORY
This ioctl command returns information about the four element types. The software
application processes the input data (the number of elements about which it
requires information) and allocates a buffer large enough to hold the output for
each element type.

The input data structure is:
struct element_status
{

ushort address; /* element address */
uint :2, /* reserved */

inenab:1, /* media into changer’s scope */
exenab:1, /* media out of changer’s scope */
access:1, /* robot access allowed */
except:1, /* abnormal element state */
impexp:1, /* import/export placed by operator or robot */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uint notbus:1, /* element not on same bus as robot */

:1, /* reserved */
idvalid:1, /* element address valid */
luvalid:1, /* logical unit valid */
:1, /* reserved */
lun:3; /* logical unit number */

uchar scsi; /* SCSI bus address */
uchar resvd2; /* reserved */
uint svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
uchar volume[36]; /* primary volume tag */
uchar resvd3[4]; /* reserved */

};

struct inventory
{

struct element_status *robot_status; /* medium transport element pages */
struct element_status *slot_status; /* medium storage element pages */
struct element_status *ie_status; /* import/export element pages */
struct element_status *drive_status; /* data-transfer element pages */

};

An example of the SMCIOC_INVENTORY command is:
#include <sys/Atape.h>

ushort i;
struct element_status robot_status[1];
struct element_status slot_status[20];
struct element_status ie_status[1];
struct element_status drive_status[1];
struct inventory inventory;

bzero((caddr_t)robot_status,sizeof(struct element_status));

for (i=0;i<20;i++)
bzero((caddr_t)(&slot_status[i]),sizeof(struct element_status));

bzero((caddr_t)ie_status,sizeof(struct element_status));
bzero((caddr_t)drive_status,sizeof(struct element_status));

smcioc_element_info();

AIX Device Driver (Atape)

80 IBM Tape Device Drivers: Programming Reference

inventory.robot_status = robot_status;
inventory.slot_status = slot_status;
inventory.ie_status = ie_status;
inventory.drive_status = drive_status;

if (!ioctl (smcfd, SMCIOC_INVENTORY, &inventory))
{

printf ("\nThe SMCIOC_INVENTORY ioctl succeeded\n");
printf ("\nThe robot status pages are:\n");

for (i = 0; i < element_info.robots; i++)
{

dump_bytes ((uchar *)(inventory.robot_status+i),
sizeof (struct element_status));

printf ("\n--- more ---");
getchar();

}

printf ("\nThe slot status pages are:\n");

for (i = 0; i < element_info.slots; i++)
{

dump_bytes ((uchar *)(inventory.slot_status+i),
sizeof (struct element_status));

printf ("\n--- more ---");
getchar();

}

printf ("\nThe ie status pages are:\n");

for (i = 0; i < element_info.ie_stations; i++)
{

dump_bytes ((uchar *)(inventory.ie_status+i),
sizeof (struct element_status));

printf ("\n--- more ---");
getchar();

}

printf ("\nThe drive status pages are:\n");

for (i = 0; i < element_info.drives; i++)
{

dump_bytes ((uchar *)(inventory.drive_status+i),
sizeof (struct element_status));

printf ("\n--- more ---");
getchar();

}
}
else
{

perror ("The SMCIOC_INVENTORY ioctl failed");
smcioc_request_sense();

}

SMCIOC_LOAD_MEDIUM
This ioctl command loads a tape from a specific slot into the drive or from the first
full slot into the drive if the slot address is specified as zero.

An example of the SMCIOC_LOAD_MEDIUM command is:
#include <sys/Atape.h>

/* load cartridge from slot 3 */
if (ioctl (tapefd, SMCIOC_LOAD_MEDIUM,3)<0)

{
printf ("IOCTL failure. errno=%d\n",errno)
exit(1):

}

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 81

/* load first cartridge from magazine */
if (ioctl (tapefd, SMCIOC_LOAD_MEDIUM,0)<0)

{
printf ("IOCTL failure. errno=%d\n",errno)
exit(1):

}

SMCIOC_UNLOAD_MEDIUM
This ioctl command moves a tape from the drive and returns it to a specific slot or
to the first empty slot in the magazine if the slot address is specified as zero. If the
ioctl is issued to the /dev/rmt special file, the tape is automatically rewound and
unloaded from the drive first.

An example of the SMCIOC_UNLOAD_MEDIUM command is:
#include <sys/Atape.h>

/* unload cartridge to slot 3 */
if (ioctl (tapefd, SMCIOC_UNLOAD_MEDIUM,3)<0)

{
printf ("IOCTL failure. errno=%d\n",errno)
exit(1):

}

/* unload cartridge to first empty slot in magazine */
if (ioctl (tapefd, SMCIOC_UNLOAD_MEDIUM,0)<0)

{
printf ("IOCTL failure. errno=%d\n",errno)
exit(1):

}

SMCIOC_PREVENT_MEDIUM_REMOVAL
This ioctl command prevents an operator from removing medium from the device
until the SMCIOC_ALLOW_MEDIUM_REMOVAL command is issued or the
device is reset.

There is no associated data structure.

An example of the SMCIOC_PREVENT_MEDIUM_REMOVAL command is:
#include <sys/Atape.h>

if (!ioctl (smcfd, SMCIOC_PREVENT_MEDIUM_REMOVAL, NULL))
printf ("The SMCIOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded\n");

else
{

perror ("The SMCIOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

SMCIOC_ALLOW_MEDIUM_REMOVAL
This ioctl command allows an operator to remove medium from the device. This
command is used normally after an SMCIOC_PREVENT_MEDIUM_REMOVAL
command to restore the device to the default state.

There is no associated data structure.

An example of the SMCIOC_ALLOW_MEDIUM_REMOVAL command is:
#include <sys/Atape.h>

if (!ioctl (smcfd, SMCIOC_ALLOW_MEDIUM_REMOVAL, NULL))
printf ("The SMCIOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded\n");

AIX Device Driver (Atape)

82 IBM Tape Device Drivers: Programming Reference

else
{

perror ("The SMCIOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

SMCIOC_READ_ELEMENT_DEVIDS
This ioctl command issues the SCSI Read Element Status command with the device
ID (DVCID) bit set and returns the element descriptors for the data transfer
elements. The element_address field specifies the starting address of the first data
transfer element. The number_elements field specifies the number of elements to
return. The application must allocate a return buffer large enough for the
number_elements specified in the input structure.

The input data structure is:
struct read_element_devids
{

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
struct element_devid *drive_devid; /* data transfer element pages */

};

The output data structure is:
struct element_devid
{

ushort address; /* element address */
uint :4, /* reserved */

access:1, /* robot access allowed */
except:1, /* abnormal element state */
:1, /* reserved */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uint notbus:1, /* element not on same bus as robot */

:1, /* reserved */
idvalid:1, /* element address valid */
luvalid:1, /* logical unit valid */
:1, /* reserved */
lun:3; /* logical unit number */

uchar scsi; /* scsi bus address */
uchar resvd2; /* reserved */
uint svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
uint :4, /* reserved */

code_set:4; /* code set X’2’ is all ASCII identifier */
uint :4, /* reserved */

ident_type:4; /* identifier type */
uchar resvd3; /* reserved */
uchar ident_len; /* identifier length */
uchar identifier[36]; /* device identification */

};

An example of the SMCIOC_READ_ELEMENT_DEVIDS command is:
#include <sys/Atape.h>

int smcioc_read_element_devids()
{
int i;
struct element_devid *elem_devid, *elemp;
struct read_element_devids devids;

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 83

struct element_info element_info;

if (ioctl(fd, SMCIOC_ELEMENT_INFO, &element_info))
return errno;

if (element_info.drives)
{
elem_devid = malloc(element_info.drives * sizeof(struct element_devid));
if (elem_devid == NULL)

{
errno = ENOMEM;
return errno;
}
bzero((caddr_t)elem_devid,element_info.drives * sizeof(struct element_devid));
devids.drive_devid = elem_devid;
devids.element_address = element_info.drive_addr;
devids.number_elements = element_info.drives;

printf("Reading element device ids...\n");

if (ioctl (fd, SMCIOC_READ_ELEMENT_DEVIDS, &devids))
{
free(elem_devid);
return errno;
}

elemp = elem_devid;
for (i = 0; i < element_info.drives; i++, elemp++)
{
printf("\nDrive Address %d\n",elemp->address);
if (elemp->except)

printf(" Drive State Abnormal\n");
else

printf(" Drive State Normal\n");
if (elemp->asc == 0x81 && elemp->ascq ==0x00)

printf(" ASC/ASCQ %02X%02X (Drive Present)\n",
elemp->asc,elemp->ascq);

else if (elemp->asc == 0x82 && elemp->ascq ==0x00)
printf(" ASC/ASCQ %02X%02X (Drive Not Present)\n",

elemp->asc,elemp->ascq);
else

printf(" ASC/ASCQ %02X%02X\n",
elemp->asc,elemp->ascq);

if (elemp->full)
printf(" Media Present Yes\n");

else
printf(" Media Present No\n");

if (elemp->access)
printf(" Robot Access Allowed Yes\n");

else
printf(" Robot Access Allowed No\n");

if (elemp->svalid)
printf(" Source Element Address %d\n",elemp->source);
else

printf(" Source Element Address Valid ... No\n");
if (elemp->invert)

printf(" Media Inverted Yes\n");
else

printf(" Media Inverted No\n");
if (elemp->notbus)

printf(" Same Bus as Medium Changer No\n");
else

printf(" Same Bus as Medium Changer Yes\n");
if (elemp->idvalid)

printf(" SCSI Bus Address %d\n",elemp->scsi);
else

printf(" SCSI Bus Address Valid No\n");

AIX Device Driver (Atape)

84 IBM Tape Device Drivers: Programming Reference

if (elemp->luvalid)
printf(" Logical Unit Number %d\n",elemp->lun);

else
printf(" Logical Unit Number Valid No\n");

printf(" Device ID %0.36s\n", elemp->identifier);
}
}
else
{
printf("\nNo drives found in element information\n");
}

free(elem_devid);
return errno;
}

SMCIOC_READ_CARTIDGE_LOCATION
The SMCIOC_READ_CARTIDGE_LOCATION ioctl is used to return the cartridge
location information for storage elements in the library. The element_address field
specifies the starting element address to return and the number_elements field
specifies how many storage elements will be returned. The data field is a pointer
to the buffer for return data. The buffer must be large enough for the number of
elements that will be returned. If the storage element contains a cartridge then the
ASCII identifier field in return data specifies the location of the cartridge.

Note: This ioctl is only supported on the TS3500 (3584) library.

The data structures used with this ioctlare:
struct cartridge_location_data
{

ushort address; /* element address */
uint :4, /* reserved */

access:1, /* robot access allowed */
except:1, /* abnormal element state */

:1, /* reserved */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar resvd2[3]; /* reserved */
uint svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
uchar volume[36]; /* primary volume tag */
uint :4, /* reserved */

code_set:4; /* code set X’2’ is all ASCII identifier */
uint :4, /* reserved */

ident_type:4; /* identifier type */
uchar resvd3; /* reserved */
uchar ident_len; /* identifier length */
uchar identifier[24]; /* slot identification */

};

struct read_cartridge_location
{

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
struct cartridge_location_data *data; /* storage element pages */
char reserved[8]; /* reserved */

};

Example of the SMCIOC_READ_CARTRIDGE_LOCATION ioctl:

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 85

#include <sys/Atape.h>

int i;
struct cartridge_location_data *data, *elemp;
struct read_cartridge_location cart_location;
struct element_info element_info;

/* get the number of slots and starting element address */
if (ioctl(fd, SMCIOC_ELEMENT_INFO, &element_info) < 0)

return errno;

if (element_info.slots == 0)
return 0;

data = malloc(element_info.slots * sizeof(struct cartridge_location_data));
if (data == NULL)

return ENOMEM;

/* Read cartridge location for all slots */
bzero(data,element_info.slots * sizeof(struct cartridge_location_data));
cart_location.data = data;
cart_location.element_address = element_info.slot_addr;
cart_location.number_elements = element_info.slots;

if (ioctl (fd, SMCIOC_READ_CARTRIDGE_LOCATION, &cart_location) < 0)
{
free(data);
return errno;
}

elemp = data;
for (i = 0; i < element_info.slots; i++, elemp++)

{
if (elemp->address == 0

) continue;

printf("Slot Address %d\n",elemp->address);
if (elemp->except)

printf(" Slot State Abnormal\n");
else

printf(" Slot State Normal\n");
printf(" ASC/ASCQ %02X%02X\n",

elemp->asc,elemp->ascq);
if (elemp->full)

printf(" Media Present Yes\n");
else

printf(" Media Present No\n");
if (elemp->access)

printf(" Robot Access Allowed Yes\n");
else

printf(" Robot Access Allowed No\n");
if (elemp->svalid)

printf(" Source Element Address %d\n",elemp->source);
else

printf(" Source Element Address Valid ... No\n");
if (elemp->invert)

printf(" Media Inverted Yes\n");
else

printf(" Media Inverted No\n");
printf(" Volume Tag %0.36s\n", elemp->volume);
printf(" Cartridge Location %0.24s\n", elemp->identifier);

} free(data);
return 0;

AIX Device Driver (Atape)

86 IBM Tape Device Drivers: Programming Reference

Return Codes
This chapter describes the return codes that the device driver generates when an
error occurs during an operation. The standard errno values are in the AIX
/usr/include/sys/errno.h header file.

If the return code is input/output error (EIO), the application can issue the
STIOCQRYSENSE ioctl command with the LASTERROR option or the
SIOC_REQSENSE ioctl command to analyze the sense data and determine why the
error occurred.

Codes for All Operations

The following codes and their descriptions apply to all operations:

[EACCES] Data encryption access denied.

[EBADF] A bad file descriptor was passed to the device.

[EBUSY] An excessive busy state was encountered in the device.

[EFAULT] A memory failure occurred due to an invalid pointer or address.

[EMEDIA] An unrecoverable media error was detected in the device.

[ENOMEM] Insufficient memory was available for an internal memory
operation.

[ENOTREADY]
The device was not ready for operation, or a tape was not in the
drive.

[ENXIO] The device was not configured and is not receiving requests.

[EPERM] The process does not have permission to perform the desired
function.

[ETIMEDOUT]
A command timed out in the device.

[ENOCONNECT]
The device did not respond to selection.

[ECONNREFUSED]
The device driver detected that the device vital product data (VPD)
has changed. The device must be unconfigured in AIX and
reconfigured to correct the condition.

Open Error Codes
The following codes and their descriptions apply to open operations:

[EAGAIN] The device was opened before the open operation.

[EBADF] A write operation was attempted on a device that was opened with
the O_RDONLY flag.

[EBUSY] The device was reserved by another initiator, or an excessive busy
state was encountered.

[EINVAL] The operation requested has invalid parameters or an invalid
combination of parameters, or the device is rejecting open
commands.

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 87

[ENOTREADY]
If the device was not opened with the O_NONBLOCK or
O_NDELAY flag, then the drive is not ready for operation, or a
tape is not in the drive. If a nonblocking flag was used, then the
drive is not ready for operation.

[EWRPROTECT]
An open operation with the O_RDWR or O_WRONLY flag was
attempted on a write-protected tape.

[EIO] An I/O error occurred that indicates a failure to operate the device.
Perform the failure analysis.

[EINPROGRESS]
This errno is returned when using the extended open flag
SC_KILL_OPEN to kill all processes that currently have the device
opened.

Write Error Codes
The following codes and their descriptions apply to write operations:

[EINVAL] The operation requested has invalid parameters or an invalid
combination of parameters.

The number of bytes requested in the write operation was not a
multiple of the block size for a fixed block transfer.

The number of bytes requested in the write operation was greater
than the maximum block size allowed by the device for variable
block transfers.

[ENOSPC] A write operation failed because it reached the early warning mark
or the programmable early warning zone (PEWZ) while it was in
label-processing mode. This return code is returned only once
when the early warning or the programmable early warning zone
(PEWZ) is reached.

[ENXIO] A write operation was attempted after the device reached the
logical end of the medium.

[EWRPROTECT]
A write operation was attempted on a write-protected tape.

[EIO] The physical end of the medium was detected, or a general error
occurred that indicates a failure to write to the device. Perform the
failure analysis.

Read Error Codes
The following codes and their descriptions apply to read operations:

[EBADF] A read operation was attempted on a device opened with the
O_WRONLY flag.

[EINVAL] The operation requested has invalid parameters or an invalid
combination of parameters.

The number of bytes requested in the read operation was not a
multiple of the block size for a fixed block transfer.

The number of bytes requested in the read operation was greater
than the maximum size allowed by the device for variable block
transfers.

AIX Device Driver (Atape)

88 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|

[ENOMEM] The number of bytes requested in the read operation of a variable
block record was less than the size of the block. This error is
known as an overlength condition.

Close Error Codes
The following codes and their descriptions apply to close operations:

[EIO] An I/O error occurred during the operation. Perform the failure
analysis.

[ENOTREADY]
A command issued during close, such as a rewind command, failed
because the device was not ready.

IOCTL Error Codes
The following codes and their descriptions apply to ioctl operations:

[EINVAL] The operation requested has invalid parameters or an invalid
combination of parameters.

This error code also results if the ioctl is not supported for the
device.

[EWRPROTECT]
An operation that modifies the media was attempted on a
write-protected tape or a device opened with the O_RDONLY flag.

[EIO] An I/O error occurred during the operation. Perform the failure
analysis.

[ECANCELLED]
The STIOCTOP ioctl with the st_op field specifying
STERASE_IMM was cancelled by another process that issued the
STIOC_CANCEL_ERASE ioctl.

AIX Device Driver (Atape)

Chapter 2. AIX Tape and Medium Changer Device Driver 89

AIX Device Driver (Atape)

90 IBM Tape Device Drivers: Programming Reference

Chapter 3. HP-UX Tape and Medium Changer Device Driver

HP-UX Programming Interface
The HP-UX programming interface to the Advanced Tape Device Driver (ATDD)
software conforms to the standard HP-UX tape device driver interface. The
following user callable entry points are supported:
v open

v close

v read

v write

v ioctl

open
The open entry point is called to make the driver and device ready for
input/output (I/O). Only one open at a time is allowed for each tape device.
Additional opens of the same device (whether from the same or a different client
system) fail with an EBUSY error. ATDD supports multiple opens to the medium
changer if the configuration parameter RESERVE is set to 0. To set the
configuration parameter, see the IBM Tape Device Drivers Installation and User's
Guide for guidance .

The following code fragment illustrates a call to the open routine:
/*integer file handle */
int tape;
/*Open for reading/writing */
tape =open ("/dev/rmt/0mn",O_RDWR);
/*Print msg if open failed */
if (tape ==-1)
{
printf("open failed \n");
printf("errno =%d \n",errno);
exit (-1);
}

If the open system call fails, it returns -1, and the system errno value contains the
error code as defined in the /usr/include/sys/errno.h header file.

The oflags parameters are defined in the /usr/include/sys/fcntl.h system header file.
Use bitwise inclusive OR operations to aggregate individual values together. ATDD
recognizes and supports the following oflags values:

O_RDONLY
This flag only allows operations that do not alter the content of the tape.
All special files support this flag.

O_RDWR
This flag allows data on the tape to be read and written. An open call to
any tape drive special file where the tape device has a write protected
cartridge mounted fails.

O_WRONLY
This flag does not allow the tape to be read. All other tape operations are

© Copyright IBM Corp. 1999, 2012 91

allowed. An open call to any tape drive special file where the tape device
has a write protected cartridge mounted fails.

O_NDELAY
This option indicates to the driver not to wait until the tape drive is ready
before opening the device and sending commands. If the flag is not set, an
open call requires a physical tape to be loaded and ready. The open
without the flag will fail and an EIO is returned if the the tape drive isn't
ready.

close
The close entry point is called to terminate I/O to the driver and device.

The following code fragment illustrates a call to the close routine:
int rc;
rc =close (tape);
if (rc ==-1)
{

printf("close failed \n");
printf("errno =%d \n",errno);
exit (-1);

}

where tape is the open file handle returned by the open call. The close routine
normally would not return an error. The exception is related to the fact that any
data buffered on the drive will be flushed out to tape before completion of the
close. If any error occurs in flushing the data, an error code will be returned by the
close routine.

An application should explicitly issue the close() call when the I/O resource is no
longer necessary or in preparation for termination. The operating system will
implicitly issue the close() call for an application that terminates without closing
the resource itself. If an application terminates unexpectedly but leaves behind
child processes that had inherited the file descriptor for the open resource, the
operating system will not implicitly close the file descriptor because it believes it is
still in use.

The close operation behavior depends on which special file was used during the
open operation and which tape operation was last performed while it was opened.
The commands are issued to the tape drive during the close operation according to
the following logic and rules:
if last operation was WRITE FILEMARK

WRITE FILEMARK
BACKWARD SPACE 1 FILEMARK

if last operation was WRITE
WRITE FILEMARK
WRITE FILEMARK
BACKWARD SPACE 1 FILEMARK

if last operation was READ
if special file is NOT BSD

if EOF was encountered
FORWARD SPACE1 FILEMARK

if special file is REWIND ON CLOSE
REWIND

Rules:

HP-UX Device Driver (ATDD)

92 IBM Tape Device Drivers: Programming Reference

1. Return EIO and release the drive when an unit attention happens before the
close().

2. Fail the command, return EIO and release the drive if an unit attention occurs
during the close().

3. If a SCSI command fails during close processing, only the SCSI RELEASE will
be attempted thereafter.

4. The return code from the SCSI RELEASE command is ignored.

read
The read entry point is called to read data from tape. The caller provides a buffer
address and length, and the driver returns data from the tape to the buffer. The
amount of data returned never exceeds the length parameter.

The following code fragment illustrates a read call to the driver:
actual = read(tape, buf_addr, bufsize);

if (actual > 0)
printf("Read %d bytes\n", actual);

else if (actual == 0)
printf("Read found file mark\n");

else
{

printf("Error on read\n");
printf("errno = %d\n",errno);
exit (-1);

}

where tape is the open file handle, buf_addr is the address of a buffer in which to
place the data, and bufsize is the number of bytes to be read.

The returned value, actual, is the actual number of bytes read (and zero indicates a
file mark).

variable block size
When in variable block size mode, the bufsize parameter can be any value valid to
the drive. The amount of data returned equals the size of the next record on the
tape or the size requested (bufsize), whichever is less. If bufsize is less than the
actual record size on the tape, the remainder of the record is lost, because the next
read starts from the start of the next record.

fixed block size
If the tape drive is configured for fixed block size operation, the bufsize parameter
must be a multiple of the device block size, or an error code (EINVAL) is returned.
If the bufsize parameter is valid, the read command always returns the amount of
data requested unless a file mark is encountered. In that case, it returns all data
that occurred before the filemark and actual equals the number of bytes returned.

write
The write entry point is called to write data to the tape. The caller provides the
address and length of the buffer to be written. Physical limitations of the drive can
cause write to fail (for example, attempting to write past the physical end of tape).

The following code fragment shows a call to the write routine:
actual = write(tape, buf_addr, bufsize);

if (actual < 0)

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 93

{
printf("Error on write\n");
printf("errno = %d\n",errno);
exit (-1);

}

where tape is the open file handle, buf_addr is the buffer address, and bufsize is the
size of the buffer in bytes.

The bufsize parameter must be a multiple of the block size or an error is returned
(EINVAL). If the write size exceeds the device maximum block size or the
configured buffer size of the tape drive, an error is returned (EINVAL).

ioctl
The ATDD software supports all input/output control (ioctl) commands supported
by the HP-UX native drivers, tape2, and stape. See the following HP-UX man pages
for more information:
v mt(7)

v scsi(7)

IOCTL Operations
The following sections describe ioctl operations supported by the ATDD. Usage,
syntax, and examples are given.

The ioctl operations supported by the driver are described in:
v “General SCSI IOCTL Operations”
v “SCSI Medium Changer IOCTL Operations” on page 101
v “SCSI Tape Drive IOCTL Operations” on page 111
v “Base Operating System Tape Drive IOCTL Operations” on page 143
v “Service Aid IOCTL Operations” on page 144

The following files should be included by user programs that issue the ioctl
commands described in this section to access the tape device driver:
v #include <sys/st.h>

v #include <sys/svc.h>

v #include <sys/smc.h>

v #include <sys/mtio.h>

General SCSI IOCTL Operations
A set of general SCSI ioctl commands gives applications access to standard SCSI
operations, such as device identification, access control, and problem determination
for both tape drive and medium changer devices.

The following commands are supported:

IOC_TEST_UNIT_READY
Determine if the device is ready for operation.

IOC_INQUIRY
Collect the inquiry data from the device.

IOC_INQUIRY_PAGE
Return the inquiry data for a special page from the device.

HP-UX Device Driver (ATDD)

94 IBM Tape Device Drivers: Programming Reference

IOC_REQUEST_SENSE
Return the device sense data.

IOC_LOG_SENSE_PAGE
Return a log sense page from the device.

IOC_LOG_SENSE10_PAGE
Return the log sense data using a ten-byte CDB with optional
subpage.

IOC_MODE_SENSE
Return the mode sense data from the device.

IOC_RESERVE
Reserve the device for exclusive use by the initiator.

IOC_RELEASE
Release the device from exclusive use by the initiator.

IOC_PREVENT_ MEDIUM_REMOVAL
Prevent medium removal by an operator.

IOC_ALLOW_ MEDIUM_REMOVAL
Allow medium removal by an operator.

IOC_GET_DRIVER_INFO
Return the driver information.

These commands and associated data structures are defined in the st.h and smc.h
header files in the /usr/include/sys directory that is installed with the HP-UX
Advanced Tape Device Driver (ATDD) package. Any application program that
issues these commands must include one or both header files.

IOC_TEST_UNIT_READY
This command determines if the device is ready for operation.

No data structure is required for this command.

An example of the IOC_TEST_UNIT_READY command is:
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_TEST_UNIT_READY, 0))) {
printf ("The IOC_TEST_UNIT_READY ioctl succeeded.\n");

}

else {
perror ("The IOC_TEST_UNIT_READY ioctl failed");
scsi_request_sense ();

}

IOC_INQUIRY
This command collects the inquiry data from the device.

The following data structure is filled out and returned by the driver.
typedef struct {

uchar qual : 3, /* peripheral qualifier */
type : 5; /* device type */

uchar rm : 1, /* removable medium */
mod : 7; /* device type modifier */

uchar iso : 2, /* ISO version */
ecma : 3, /* ECMA version */
ansi : 3; /* ANSI version */

uchar aen : 1, /* asynchronous even notification */

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 95

|
|
|

trmiop : 1, /* terminate I/O process message */
: 2, /* reserved */

rdf : 4; /* response data format */
uchar len; /* additional length */
uchar : 8; /* reserved */
uchar : 1, /* reserved */

encsrv : 1, /* enclosure service */
barcod : 1, /* bar code scanner attached */
multip : 1, /* multi-port */
mchngr : 1, /* medium changer mode */

: 3; /* reserved */
uchar reladr : 1, /* relative addressing */

wbus32 : 1, /* 32-bit wide data transfers */
wbus16 : 1, /* 16-bit wide data transfers */
sync : 1, /* synchronous data transfers */
linked : 1, /* linked commands */

: 1, /* reserved */
cmdque : 1, /* command queueing */
sftre : 1; /* soft reset */

uchar vid[8]; /* vendor ID */
uchar pid[16]; /* product ID */
uchar rev[4]; /* product revision level */
uchar vendor[92]; /* vendor specific (padded to 128) */

} inquiry_data_t;

An example of the IOC_INQUIRY command is:
#include <sys/st.h>

inquiry_data_t inquiry_data;

if (!(ioctl (dev_fd, IOC_INQUIRY, &inquiry_data))) {
printf ("The IOC_INQUIRY ioctl succeeded.\n");
printf ("\nThe inquiry data is:\n");
dump_bytes ((char *)&inquiry_data, sizeof (inquiry_data_t));

}

else {
perror ("The IOC_INQUIRY ioctl failed");
scsi_request_sense ();

}

IOC_INQUIRY_PAGE
This command returns the inquiry data when a nonzero page code is requested.
For inquiry pages 0x80, data mapped by structures inq_pg_80_t is returned in the
data array. Otherwise, an array of data is returned in the data array.

The following data structures for inquiry page x80 is filled out and returned by the
driver:
typedef struct {

uchar page_code; /* page code */
uchar data[253]; /* inquiry parameter List */

} inquiry_page_t;

typedef struct {
uchar periph_qual : 3, /* peripheral qualifier */

periph_type : 5; /* peripheral device type */
uchar page_code; /* page code */
uchar reserved_1; /* reserved */
uchar page_len; /* page length */
uchar serial[12]; /* serial number */

} inq_pg_80_t;

An example of the IOC_INQUIRY_PAGE command is:

HP-UX Device Driver (ATDD)

96 IBM Tape Device Drivers: Programming Reference

#include <sys/st.h>

inquiry_page_t inquiry_page;
inquiry_page.page_code = (uchar) page;

if (!(ioctl (dev_fd, IOC_INQUIRY_PAGE, &inquiry_page))){
printf ("Inquiry Data (Page 0x%02x):\n", page);
dump_bytes ((char *)&inquiry_page.data, inquiry_page.data[3]+4);

}
else {

perror ("The IOC_INQUIRY_PAGE ioctl for page 0x%X failed.\n", page);
scsi_request_sense ();

}

IOC_REQUEST_SENSE
This command returns the device sense data. If the last command resulted in an
error, the sense data is returned for that error. Otherwise, a new (unsolicited)
Request Sense command is issued to the device.

The following data structure is filled out and returned by the driver.
typedef struct {

uchar valid : 1, /* sense data is valid */
code : 7, /* error code */

uchar segnum; /* segment number */
uchar fm : 1, /* filemark detected */

eom : 1, /* end of media */
ili : 1, /* incorrect length indicator */

: 1, /* reserved */
key : 4; /* sense key */

uchar info[4]; /* information bytes */
uchar addlen; /* additional sense length */
uchar cmdinfo[4]; /* command-specific information */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar fru; /* field-replaceable unit code */
uchar sksv : 1, /* sense key specific valid */

cd : 1, /* control/data */
: 2, /* reserved */

bpv : 1, /* bit pointer valid */
sim : 3; /* system information message */

uchar field[2]; /* field pointer */
uchar vendor[110]; /* vendor specific (padded to 128) */

} sense_data_t;

An example of the IOC_REQUEST_SENSE command is:
#include <sys/st.h>

sense_data_t sense_data;

if (!(ioctl (dev_fd, IOC_REQUEST_SENSE, &sense_data))) {
printf ("The IOC_REQUEST_SENSE ioctl succeeded.\n");
printf ("\nThe request sense data is:\n");
dump_bytes ((char *)&sense_data, sizeof (sense_data_t));

}

else {
perror ("The IOC_REQUEST_SENSE ioctl failed");

}

IOC_LOG_SENSE_PAGE
This ioctl command returns a log sense page from the device. The desired page is
selected by specifying the page_code in the log_sense_page structure.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 97

The structure of a log page consists of the following log page header and log
parameters.
v Log Page

– Log Page Header
- Page Code
- Page Length

– Log Parameter(s) (One or more may exist)
- Parameter Code
- Control Byte
- Parameter Length
- Parameter Value

The following data structure is filled out and returned by the driver.
typedef struct {

uchar page_code; /* page code */
uchar data[MAX_LGPGDATA]; /* log data structure */

}log_sns_pg_t;

An example of the IOC_LOG_SENSE_PAGE command is:
#include <sys/st.h>

static int scsi_log_sense_page (int page, int type, int parmcode)
{

int i, j=0;
int rc;
int true;
int len, parm_len;
int parm_code;
log_sns_pg_t log_sns_page;
log_page_hdr_t page_header;

memset ((char *)&log_sns_page, (char)0, sizeof(log_sns_pg_t));
log_sns_page.page_code = (uchar) page;

if (!(rc = ioctl (dev_fd, IOC_LOG_SENSE_PAGE, &log_sns_page))) {
len =(int) ((log_sns_page.data[2] << 8) + log_sns_page.data[3]) + 4;
if (type != 1) {

printf ("Log Sense Data (Page 0x%02x):\n", page);
dump_bytes ((char *)&log_sns_page.data, len);

}
else {

for(i=4; i<=len; i=(parm_len+4)){
j += i;
parm_code = (int) ((log_sns_page.data[j] << 8) +

log_sns_page.data[j+1]);
parm_len = (int) (log_sns_page.data[j+3]);
if (true = (parm_code == parmcode)) {

printf ("Log Sense Data (Page 0x%02x, Parameter Code 0x%04x):\n",
page, parmcode);

dump_bytes ((char *)&log_sns_page.data[j], (parm_len+4));
break;

}
}
if (!true)

printf ("IOC_LOG_SENSE_PAGE for Page 0x%02x,
Parameter Code 0x%04x failed.\n",

page, parmcode);
}

}
else {

printf ("IOC_LOG_SENSE_PAGE for page 0x%X failed.\n", page);

HP-UX Device Driver (ATDD)

98 IBM Tape Device Drivers: Programming Reference

printf ("\n");
scsi_request_sense ();

}
return (rc);
}

IOC_LOG_SENSE10_PAGE
This ioctl command is enhanced to add a Subpage variable from
IOC_LOG_SENSE_PAGE. It returns a log sense page and/or Subpage from the
device. The desired page is selected by specifying the page_code and/or
subpage_code in the log_sense10_page structure. Optionally, a specific parm
pointer, also known as a parm code, and the number of parameter bytes can be
specified with the command.

To obtain the entire log page, the len and parm_pointer fields should be set to zero.
To obtain the entire log page starting at a specific parameter code, set the
parm_pointer field to the desired code and the len field to zero. To obtain a specific
number of parameter bytes, set the parm_pointer field to the desired code and set
the len field to the number of parameter bytes plus the size of the log page header
(four bytes). The first four bytes of returned data are always the log page header.
See the appropriate device manual to determine the supported log pages and
content. The data structure is:
/* log sense page and subpage structure */

typedef struct {
uchar page_code; /* [IN] Log sense page */
uchar subpage_code; /* [IN] Log sense subpage */
uchar reserved[2]; /* unused */
unsigned short len; /* [OUT] number of valid bytes in data

(log_page_header_size + page_length) */
unsigned short parm_pointer; /* [IN] specific parameter number at which

the data begins */
char data[LOGSENSEPAGE]; /* [OUT] log data */

} log_sense10_page_t;

IOC_MODE_SENSE
This command returns a mode sense page from the device. The desired page is
selected by specifying the page_code in the mode_sns_t structure.

The following data structure is filled out and returned by the driver.
typedef struct {

uchar page_code; /* page code */
uchar cmd_code; /* SCSI command code */
uchar data[253]; /* mode parameter list

}mode_sns_t;

An example of the IOC_MODE_SENSE command is:
#include <sys/st.h>

int offset;
mode_sns_t mode_data;
mode_data.page_code = (uchar) page;

memset ((char *)&mode_data, (char)0, sizeof(mode_sns_t));

if (!(rc = ioctl (dev_fd, IOC_MODE_SENSE, &mode_data))) {
if (mode_data.cmd_code == 0x1A)

offset = (int) (mode_data.data[3]) + sizeof(mode_hdr6_t);
if (mode_data.cmd_code == 0x5A)

offset = (int) ((mode_data.data[6] << 8) + mode_data.data[7]) +
sizeof(mode_hdr10_t);

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 99

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

printf("Mode Data (Page 0x%02x):\n", mode_data.page_code);
dump_bytes ((char *)&mode_data.data[offset], (mode_data.data[offset+1] + 2));

}
else {
printf("IOC_MODE_SENSE for page 0x%X failed.\n", mode_data.page_code);
scsi_request_sense ();

}

IOC_RESERVE
This command persistently reserves the device for exclusive use by the initiator.
The ATDD normally reserves the device in the open operation and releases the
device in the close operation. Issuing this command prevents the driver from
releasing the device during the close operation and the reservation is maintained
after the device is closed. This command is negated by issuing the IOC_RELEASE
ioctl command.

No data structure is required for this command.

An example of the IOC_RESERVE command is:
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_RESERVE, 0))) {
printf ("The IOC_RESERVE ioctl succeeded.\n");

}

else {
perror ("The IOC_RESERVE ioctl failed");
scsi_request_sense ();

}

IOC_RELEASE
This command releases the persistent reservation of the device for exclusive use by
the initiator. It negates the result of the IOC_RESERVE ioctl command issued either
from the current or a previous open session.

No data structure is required for this command.

An example of the IOC_RELEASE command is:
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_RELEASE, 0))) {
printf ("The IOC_RELEASE ioctl succeeded.\n");

}

else {
perror ("The IOC_RELEASE ioctl failed");
scsi_request_sense ();

}

IOC_PREVENT_MEDIUM_REMOVAL
This command prevents an operator from removing media from the tape drive or
the medium changer.

No data structure is required for this command.

An example of the IOC_PREVENT_MEDIUM_REMOVAL command is:
#include <sys/st.h>

if (!(ioctl (dev_fd,IOC_PREVENT_MEDIUM_REMOVAL,NULL)))
printf ("The IOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded \n");

HP-UX Device Driver (ATDD)

100 IBM Tape Device Drivers: Programming Reference

else {
perror ("The IOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
scsi_request_sense();

}

IOC_ALLOW_MEDIUM_REMOVAL
This command allows an operator to remove media from the tape drive and the
medium changer. This command is normally used after an
IOC_PREVENT_MEDIUM_REMOVAL command to restore the device to the
default state.

No data structure is required for this command.

An example of the IOC_ALLOW_MEDIUM_REMOVAL command is:
#include <sys/st.h>

if (!(ioctl (dev_fd,IOC_ALLOW_MEDIUM_REMOVAL,NULL)))
printf ("The IOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded \n");

else {
perror ("The IOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
scsi_request_sense();

}

IOC_GET_DRIVER_INFO
This command returns the information of the current installed ATDD.

The following data structure is filled out and returned by the driver.
typedef struct {

char driver_id[64]; /* the name of the tape driver (ATDD) */
char version[25]; /* the version of the tape driver */

} Get_driver_info_t;

An example of the IOC_GET_DRIVER_INFO command is:
#include <sys/st.h>

get_driver_info_t get_driver_info;

if (!(rc = ioctl (dev_fd, IOC_GET_DRIVER_INFO, &get_driver_info))) {
strncpy (driver_level, get_driver_info.version, 7);
PRINTF ("The version of %s(Advanced Tape Device Driver): %s\n",

get_driver_info.driver_id, driver_level);
}
else {

PERROR ("Failure obtaining the version of ATDD");
PRINTF ("\n");
scsi_request_sense ();

}

SCSI Medium Changer IOCTL Operations
A set of medium changer ioctl commands gives applications access to IBM medium
changer devices.

The following commands are supported:

SMCIOC_MOVE_MEDIUM
Transport a cartridge from one element to another element.

SMCIOC_POS_TO_ELEM
Move the robot to an element.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 101

SMCIOC_ELEMENT_INFO
Return the information about the device elements.

SMCIOC_INVENTORY
Return the information about the medium changer elements.

SMCIOC_AUDIT
Perform an audit of the element status.

SMCIOC_LOCK_DOOR
Lock and unlock the library access door.

SMCIOC_READ_ELEMENT_DEVIDS
Return the device ID element descriptors for drive elements.

SMCIOC_EXCHANGE_MEDIUM
Exchange a cartridge in an element with another cartridge.

SMCIOC_INIT_ELEM_STAT_RANGE
Issue the SCSI Initialize Element Status with Range command.

SMCIOC_READ_CARTRIDGE_LOCATION
Returns the cartridge location information for all storage elements
in the library.

These commands and associated data structures are defined in the smc.h header file
in the /usr/include/sys directory installed with the ATDD package. Any application
program that issues these commands must include this header file.

SMCIOC_MOVE_MEDIUM
This command transports a cartridge from one element to another element.

The following data structure is filled out and supplied by the caller:
typedef struct {

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination; /* move to location */
uchar invert; /* invert medium before insertion */

} move_medium_t;

An example of the SMCIOC_MOVE_MEDIUM command is:
#include <sys/smc.h>

move_medium_t move_medium;

move_medium.robot = 0;
move_medium.invert = NO_FLIP;
move_medium.source = src;
move_medium.destination = dst;

if (!(ioctl (dev_fd, SMCIOC_MOVE_MEDIUM, &move_medium))) {
printf ("The SMCIOC_MOVE_MEDIUM ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_MOVE_MEDIUM ioctl failed");
scsi_request_sense ();

}

SMCIOC_POS_TO_ELEM
This command moves the robot to an element.

The following data structure is filled out and supplied by the caller:

HP-UX Device Driver (ATDD)

102 IBM Tape Device Drivers: Programming Reference

typedef struct {
ushort robot; /* robot address */
ushort destination; /* move to location */
uchar invert; /* invert medium before insertion */

} pos_to_elem_t;

An example of the SMCIOC_POS_TO_ELEM command is:
#include <sys/smc.h>

pos_to_elem_t pos_to_elem;

pos_to_elem.robot = 0;
pos_to_elem.invert = NO_FLIP;
pos_to_elem.destination = dst;

if (!(ioctl (dev_fd, SMCIOC_POS_TO_ELEM, &pos_to_elem))) {
printf ("The SMCIOC_POS_TO_ELEM ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_POS_TO_ELEM ioctl failed");
scsi_request_sense ();

}

SMCIOC_ELEMENT_INFO
This command requests the information about the device elements.

There are four types of medium changer elements. (Not all medium changers
support all four types.) The robot elements are associated with the cartridge
transport devices. The cell elements are associated with the cartridge storage slots.
The port elements are associated with the import/export mechanisms. The drive
elements are associated with the data transfer devices. The quantity of each
element type and its starting address is returned by the driver.

The following data structure is filled out and returned by the driver.
typedef struct {

ushort robot_address; /* medium transport element address */
ushort robot_count; /* number medium transport elements */
ushort cell_address; /* medium storage element address */
ushort cell_count; /* number medium storage elements */
ushort port_address; /* import/export element address */
ushort port_count; /* number import/export elements */
ushort drive_address; /* data-transfer element address */
ushort drive_count; /* number data-transfer elements */

} element_info_t;

An example of the SMCIOC_ELEMENT_INFO command is:
#include <sys/smc.h>

element_info_t element_info;

if (!(ioctl (dev_fd, SMCIOC_ELEMENT_INFO, &element_info))) {
printf ("The SMCIOC_ELEMENT_INFO ioctl succeeded.\n");
printf ("\nThe element information data is:\n");
dump_bytes ((char *)&element_info, sizeof (element_info_t));

}

else {
perror ("The SMCIOC_ELEMENT_INFO ioctl failed");
scsi_request_sense ();

}

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 103

SMCIOC_INVENTORY
This command returns information about the medium changer elements (SCSI
Read Element Status command).

There are four types of medium changer elements. (Not all medium changers
support all four types.) The robot elements are associated with the cartridge
transport devices. The cell elements are associated with the cartridge storage slots.
The port elements are associated with the import/export mechanisms. The drive
elements are associated with the data transfer devices.

Note: The application must allocate buffers large enough to hold the returned
element status data for each element type. The SMCIOC_ELEMENT_INFO
ioctl is generally called first to establish the criteria.

The following data structure is filled out and supplied by the caller:
typedef struct {

element_status_t *robot_status; /* medium transport element pages */
element_status_t *cell_status; /* medium storage element pages */
element_status_t *port_status; /* import/export element pages */
element_status_t *drive_status; /* data-transfer element pages */

} inventory_t;

One or more of the following data structures are filled out and returned to the user
buffer by the driver:
typedef struct {

ushort address; /* element address */
uchar : 2, /* reserved */

inenab : 1, /* medium in robot scope */
exenab : 1, /* medium not in robot scope */
access : 1, /* robot access allowed */
except : 1, /* abnormal element state */
impexp : 1, /* medium imported or exported */
full : 1; /* element contains medium */

uchar : 8; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar notbus : 1, /* element not on same bus as robot */

: 1, /* reserved */
idvalid : 1, /* element address valid */
luvalid : 1, /* logical unit valid */

: 1, /* reserved */
lun : 3; /* logical unit number */

uchar scsi; /* SCSI bus address */
uchar : 8; /* reserved */
uchar svalid : 1, /* element address valid */

invert : 1, /* medium inverted */
: 6; /* reserved */

ushort source; /* source storage element address */
uchar volume[36]; /* primary volume tag */
uchar vendor[80]; /* vendor specific (padded to 128) */

} element_status_t;

An example of the SMCIOC_INVENTORY command is:
#include <sys/smc.h>

ushort i;
element_info_t element_info;
inventory_t inventory;

smc_element_info (); /* get element information first */

inventory.robot_status = (element_status_t *)malloc

HP-UX Device Driver (ATDD)

104 IBM Tape Device Drivers: Programming Reference

(sizeof (element_status_t) * element_info.robot_count);
inventory.cell_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.cell_count);
inventory.port_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.port_count);
inventory.drive_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.drive_count);

if (!inventory.robot_status || !inventory.cell_status ||
!inventory.port_status || !inventory.drive_status) {

perror ("The SMCIOC_INVENTORY ioctl failed");
return;

}

if (!(ioctl (dev_fd, SMCIOC_INVENTORY, &inventory))) {

printf ("\nThe SMCIOC_INVENTORY ioctl succeeded.\n");

printf ("\nThe robot status pages are:\n");

for (i = 0; i < element_info.robot_count; i++) {
dump_bytes ((char *)(&inventory.robot_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe cell status pages are:\n");

for (i = 0; i < element_info.cell_count; i++) {
dump_bytes ((char *)(&inventory.cell_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe port status pages are:\n");

for (i = 0; i < element_info.port_count; i++) {
dump_bytes ((char *)(&inventory.port_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe drive status pages are:\n");

for (i = 0; i < element_info.drive_count; i++) {
dump_bytes ((char *)(&inventory.drive_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

}

else {
perror ("The SMCIOC_INVENTORY ioctl failed");
scsi_request_sense ();

}

SMCIOC_AUDIT
This command causes the medium changer device to perform an audit of the
element status (SCSI Initialize Element Status command).

No data structure is required for this command.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 105

An example of the SMCIOC_AUDIT command is:
#include <sys/smc.h>

if (!(ioctl (dev_fd, SMCIOC_AUDIT, 0))) {
printf ("The SMCIOC_AUDIT ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_AUDIT ioctl failed");
scsi_request_sense ();

}

SMCIOC_LOCK_DOOR
This command locks and unlocks the library access door. Not all IBM medium
changer devices support this operation.

The following data structure is filled out and supplied by the caller:
typedef uchar lock_door_t;

An example of the SMCIOC_LOCK_DOOR command is:
#include <sys/smc.h>

lock_door_t lock_door;

lock_door = LOCK;

if (!(ioctl (dev_fd, SMCIOC_LOCK_DOOR, &lock_door))) {
printf ("The SMCIOC_LOCK_DOOR ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_LOCK_DOOR ioctl failed");
scsi_request_sense ();

}

SMCIOC_READ_ELEMENT_DEVIDS
This ioctl command issues the SCSI Read Element Status command with the device
ID (DVCID) bit set and returns the element descriptors for the data transfer
elements. The element_address field specifies the starting address of the first data
transfer element. The number_elements field specifies the number of elements to
return. The application must allocate a return buffer large enough for the
number_elements specified in the input structure.

The input data structure is:
typedef struct {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
element_devid_t *drive_devid; /* data transfer element pages */

} read_element_devids_t;

The output data structure is:
typedef struct {

ushort address; /* element address */
uchar :4, /* reserved */

access :1, /* robot access allowed */
except :1, /* abnormal element state */

:1, /* reserved */
full :1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */

HP-UX Device Driver (ATDD)

106 IBM Tape Device Drivers: Programming Reference

uchar notbus :1, /* element not on same bus as robot */
:1, /* reserved */

idvalid :1, /* element address valid */
luvalid :1, /* logical unit valid */

:1, /* reserved */
lun :3; /* logical unit number */

uchar scsi; /* scsi bus address */
uchar resvd2; /* reserved */
uchar svalid :1, /* element address valid */

invert :1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
uchar :4, /* reserved */

code_set :4; /* code set X’2’ is all ASCII identifier */
uchar :4, /* reserved */

id_type :4; /* identifier type */
uchar resvd3; /* reserved */
uchar id_len; /* identifier length */
uchar dev_id[36]; /* device identification with serial number */

} element_devid_t;

An example of the SMCIOC_READ_ELEMENT_DEVIDS command is:
#include <sys/smc.h>

static int smc_read_element_devids ()
{

int rc;
int i;

element_devid_t *elem_devid, *elemp;
read_element_devids_t devids;
element_info_t element_info;
if (rc = ioctl (dev_fd, SMCIOC_ELEMENT_INFO, &element_info)) {

perror ("The SMCIOC_READ_ELEMENT_DEVIDS ioctl failed:
Get the element info failure.\n");

printf ("\n");
scsi_request_sense ();
return (rc);

}

if (element_info.drive_count) {
elem_devid = malloc(element_info.drive_count * sizeof(element_devid_t));
if (elem_devid == NULL) {

printf ("The SMCIOC_READ_ELEMENT_DEVIDS ioctl failed:
Memory allocation failure.\n");

return (ENOMEM);
}
bzero(elem_devid, element_info.drive_count * sizeof(element_devid_t));
devids.drive_devid = elem_devid;
devids.element_address = element_info.drive_address;
devids.number_elements = element_info.drive_count;

printf("Reading element device ids...\n");

if (!(rc = ioctl (dev_fd, SMCIOC_READ_ELEMENT_DEVIDS, &devids))) {
elemp = elem_devid;
printf ("\nThe SMCIOC_READ_ELEMENT_DEVIDS ioctl succeeded.\n");
printf ("\nThe drives status datas are:\n");
for (i = 0; i < element_info.drive_count; i++, elemp++) {

printf("\n Drive Address %d\n",elemp->address);
if (elemp->except)

printf(" Drive State Abnormal\n");
else

printf(" Drive State Normal\n");
if (elemp->asc == 0x81 && elemp->ascq ==0x00)

printf(" ASC/ASCQ %02X%02X (Drive Present)\n",
elemp->asc,elemp->ascq);

else if (elemp->asc == 0x82 && elemp->ascq ==0x00)

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 107

printf(" ASC/ASCQ %02X%02X (Drive Not Present)\n",
elemp->asc,elemp->ascq);

else
printf(" ASC/ASCQ %02X%02X\n",

elemp->asc,elemp->ascq);
if (elemp->full)

printf(" Media Present Yes\n");
else

printf(" Media Present No\n");
if (elemp->access)

printf(" Robot Access Allowed Yes\n");
else

printf(" Robot Access Allowed No\n");
if (elemp->svalid)

printf(" Source Element Address %d\n",elemp->source);
else

printf(" Source Element Address Valid ... No\n");
if (elemp->invert)

printf(" Media Inverted Yes\n");
else

printf(" Media Inverted No\n");
if (elemp->notbus)

printf(" Same Bus as Medium Changer No\n");
else

printf(" Same Bus as Medium Changer Yes\n");
if (elemp->idvalid)

printf(" SCSI Bus Address %d\n",elemp->scsi);
else

printf(" SCSI Bus Address Vaild No\n");
if (elemp->luvalid)

printf(" Logical Unit Number %d\n",elemp->lun);
else

printf(" Logical Unit Number Valid No\n");
if (elemp->dev_id[0] == ’\0’)

printf(" Device ID No\n");
else

printf(" Device ID %0.36s\n", elemp->dev_id);

printf ("\n--- more ---");
getchar();

}
}
else {

perror ("The SMCIOC_READ_ELEMENT_DEVIDS ioctl failed");
printf ("\n");
scsi_request_sense ();

}
}
else {

printf("\nNo drives found in element information\n");
}

free (elem_devid);
return (rc);

}

SMCIOC_EXCHANGE_MEDIUM
This ioctl command exchanges a cartridge in an element with another cartridge.
This command is equivalent to two SCSI Move Medium commands. The first
moves the cartridge from the source element to the destination1 element, and the
second moves the cartridge that was previously in the destination1 element to the
destination2 element. The destination2 element can be the same as the source
element.

The input data structure is:

HP-UX Device Driver (ATDD)

108 IBM Tape Device Drivers: Programming Reference

typedef struct {
ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination1; /* move to location */
ushort destination2; /* move to location */
uchar invert1; /* invert before placement into destination 1 */
uchar invert2; /* invert before placement into destination 2 */
}exchange_medium_t;

An example of the SMCIOC_EXCHANGE_MEDIUM command is:
#include <sys/smc.h>
int rc;
exchange_medium_t exchange_medium;
exchange_medium.robot = 0;
exchange_medium.invert1 = NO_FLIP;
exchange_medium.invert2 = NO_FLIP;
exchange_medium.source = (short)src;
exchange_medium.destination1 = (short)dst;
exchange_medium.destination2 = (short)dst2;
if (!(rc = ioctl (dev_fd, SMCIOC_EXCHANGE_MEDIUM,
&exchange_medium))) {
PRINTF ("The SMCIOC_EXCHANGE_MEDIUM ioctl succeeded.\n");
}
else {
PERROR ("The SMCIOC_EXCHANGE_MEDIUM ioctl failed");
PRINTF ("\n");
scsi_request_sense ();
}

return (rc);

SMCIOC_INIT_ELEM_STAT_RANGE
This ioctl command issues the SCSI Initialize Element Status with Range command
and is used to audit specific elements in a library by specifying the starting
element address and number of elements. Use the SMCIOC_INIT_ELEM_STAT
ioctl to audit all elements.

The data structure is:
typedef struct {
ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
} element_range_t;

An example of the SMCIOC_INIT_ELEM_STAT_RANGE command is:
#include <sys/smc.h>
int rc;
element_range_t elem_range;
elem_range.element_address = (short)src;
elem_range.number_elements = (short)number;
if (!(rc = ioctl (dev_fd, SMCIOC_INIT_ELEM_STAT_RANGE, &elem_range))) {
PRINTF ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl succeeded.\n"); }
else {
PERROR ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl failed");
PRINTF ("\n");
scsi_request_sense ();
}

return (rc);

SMCIOC_READ_CARTRIDGE_LOCATION
The SMCIOC_READ_CARTIDGE_LOCATION ioctl is used to return the cartridge
location information for storage elements in the library. The element_address field
specifies the starting element address to return and the number_elements field
specifies how many storage elements will be returned. The data field is a pointer

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 109

to the buffer for return data. The buffer must be large enough for the number of
elements that will be returned. If the storage element contains a cartridge then the
ASCII identifier field in return data specifies the location of the cartridge.

Note: This ioctl is only supported on the TS3500 (3584) library.

The data structure is:
typedef struct
{

ushort address; /* element address */
uchar :4, /* reserved */

access:1, /* robot access allowed */
except:1, /* abnormal element state */
:1, /* reserved */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code */

/* qualifier */
uchar resvd2[3]; /* reserved */
uchar svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage elem addr */
uchar volume[36]; /* primary volume tag */
uchar :4, /* reserved */

code_set:4; /* code set */
uchar :4, /* reserved */

ident_type:4; /* identifier type */
uchar resvd3; /* reserved */
uchar ident_len; /* identifier length */
uchar identifier[24]; /* slot identification */

} cartridge_location_data_t;

typedef struct
{

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
cartridge_location_data_t *data; /* storage element pages */
char reserved[8]; /* reserved */

} read_cartridge_location_t;

An example of the SMCIOC_READ_CARTRIDGE_LOCATION command is:
#include <sys/smc.h>

int rc;
int available_slots=0;
cartridge_location_data_t *slot_devid;
read_cartridge_location_t slot_devids;

slot_devids.element_address = (ushort)element_address;
slot_devids.number_elements = (ushort)number_elements;

if (rc = ioctl(dev_fd,SMCIOC_ELEMENT_INFO,&element_info))
{
PERROR("SMCIOC_ELEMENT_INFO failed");
PRINTF("\n");
scsi_request_sense();
return (rc);
}

if (element_info.cell_count == 0)
{
printf("No slots found in element information...\n");
errno = EIO;

HP-UX Device Driver (ATDD)

110 IBM Tape Device Drivers: Programming Reference

return errno;
}

if ((slot_devids.element_address==0) && (slot_devids.number_elements==0))
{
slot_devids.element_address=element_info.cell_address;
slot_devids.number_elements=element_info.cell_count;
printf("Reading all locations...\n");
}

if ((element_info.cell_address > slot_devids.element_address)
(slot_devids.element_address >
(element_info.cell_address+element_info.cell_count-1)))

{
printf("Invalid slot address %d\n",element_address);
errno = EINVAL;
return errno;
}

available_slots = (element_info.cell_address+element_info.cell_count)
-slot_devids.element_address;

if (available_slots>slot_devids.number_elements)
available_slots=slot_devids.number_elements;
slot_devid = malloc(element_info.cell_count *
sizeof(cartridge_location_data_t));
if (slot_devid == NULL)

{
errno = ENOMEM;
return errno;
}

bzero((caddr_t)slot_devid,element_info.cell_count * sizeof(cartridge_location_data_t));
slot_devids.data = slot_devid;

rc = ioctl (dev_fd, SMCIOC_READ_CARTRIDGE_LOCATION, &slot_devids);

free(slot_devid);
return rc;

SCSI Tape Drive IOCTL Operations
A set of enhanced ioctl commands gives applications access to additional features
of IBM tape drives.

The following commands are supported:

STIOC_TAPE_OP
Performs standard tape drive operations.

STIOC_GET_DEVICE_STATUS
Return the status information about the tape drive.

STIOC_GET_DEVICE_INFO
Return the configuration information about the tape drive.

STIOC_GET_MEDIA_INFO
Return the information about the currently mounted tape.

STIOC_GET_POSITION
Return the information about the tape position.

STIOC_SET_POSITION
Set the physical position of the tape.

STIOC_GET_PARM
Return the current value of the working parameter for the tape
drive.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 111

STIOC_SET_PARM
Set the current value of the working parameter for the tape drive.

STIOC_DISPLAY_MSG
Display the messages on the tape drive console.

STIOC_SYNC_BUFFER
Flush the drive buffers to the tape.

STIOC_REPORT_DENSITY_SUPPORT
Return supported densities from the tape device.

STIOC_GET_DENSITY
Query the current write density format settings on the tape drive.
The current density code from the drive Mode Sense header, the
Read/Write Control Mode page default density and pending
density are returned.

STIOC_SET_DENSITY
Set a new write density format on the tape drive using the default
and pending density fields. The application can specify a new
write density for the current loaded tape only or as a default for all
tapes.

GET_ENCRYPTION_STATE
This ioctl can be used for application-, system-, and
library-managed encryption. It only allows a query of the
encryption status.

SET_ENCRYPTION_STATE
This ioctl can only be used for application-managed encryption. It
sets the encryption state for application-managed encryption.

SET_DATA_KEY
This ioctl can only be used for application-managed encryption. It
sets the data key for application-managed encryption.

CREATE_PARTITION
Create one or more tape partitions and format the media.

QUERY_PARTITION
Query tape partitioning information and current active partition.

SET_ACTIVE_PARTITION
Set the current active tape partition..

ALLOW_DATA_OVERWRITE
Set the drive to allow a subsequent data overwrite type command
at the current position or allow a CREATE_PARTITION ioctl when
data safe (append-only) mode is enabled.

READ_TAPE_POSITION
Read current tape position in either short, long or extended form.

SET_TAPE_POSITION
Set the current tape position to either a logical object or logical file
position.

QUERY_LOGICAL_BLOCK_PROTECTION
Query Logical Block Protection (LBP) support and its setup

SET_LOGICAL_BLOCK_PROTECTION
Enable/disable Logical Block Protection (LBP), set the protection
method, and how the protection information is transferred

HP-UX Device Driver (ATDD)

112 IBM Tape Device Drivers: Programming Reference

VERIFY_TAPE_DATA
Allows the drive to verify data from the tape to determine whether
it can be recovered or whether the protection information is
present and validates correctly on logical block on the medium.

These commands and associated data structures are defined in the st.h header file
in the /usr/include/sys directory that is installed with the ATDD package. Any
application program that issues these commands must include this header file.

STIOC_TAPE_OP
This command performs standard tape drive operations. It is similar to the
MTIOCTOP ioctl command defined in the /usr/include/sys/mtio.h system header file,
but the STIOC_TAPE_OP command uses the ST_OP opcodes and the data
structure defined in the /usr/include/sys/st.h system header file. Most
STIOC_TAPE_OP ioctl commands map to the MTIOCTOP ioctl command. See
“MTIOCTOP” on page 143.

For all space operations, the resulting tape position is at the end-of-tape side of the
record or filemark for forward movement and at the beginning-of-tape side of the
record or filemark for backward movement.

The following data structure is filled out and supplied by the caller:
/*from st.h */
Typedef struct {

short st_op; /* st operations defined below */
daddr_t st_count; /*how many of them */

} tape_op_t;

The st_op field is set to one of the following:

ST_OP_WEOF
Write st_count filemarks.

ST_OP_FSF Space forward st_count filemarks.

ST_OP_BSF Space backward st_count filemarks. Upon completion, the tape is
positioned at the beginning-of-tape side of the requested filemark.

ST_OP_FSR Space forward the st_count number of records.

ST_OP_BSR Space backward the st_count number of records.

ST_OP_REW Rewind the tape. The st_count parameter does not apply.

ST_OP_OFFL Rewind and unload the tape. The st_count parameter does not
apply.

ST_OP_NOP No tape operation is performed. The status is determined by
issuing the Test Unit Ready command. The st_count parameter does
not apply.

ST_OP_RETEN
Retension the tape. The st_count parameter does not apply.

ST_OP_ERASE
Erase the entire tape from the current position. The st_count
parameter does not apply.

ST_OP_EOD Space forward to the end of the data. The st_count parameter does
not apply.

ST_OP_NBSF Space backward st_count filemarks, then space backward before all
data records in that tape file. For a given ST_OP_NBSF operation

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 113

|
|
|
|

with st_count=n, the equivalent position can be achieved with
ST_OP_BSF and ST_OP_FSF, as follows:
ST_OP_BSF with mst_count = n + 1
ST_OP_FSF with st_count = 1

ST_OP_GRSZ Return the current record (block) size. The st_count parameter
contains the value.

ST_OP_SRSZ Set the working record (block) size to st_count.

ST_OP_RES Reserve the tape drive. The st_count parameter does not apply.

ST_OP_REL Release the tape drive. The st_count parameter does not apply.

ST_OP_LOAD
Load the tape in the drive. The st_count parameter does not apply.

ST_OP_UNLOAD
Unload the tape from the drive. The st_count parameter does not
apply.

An example of the STIOC_TAPE_OP command is:
#include <sys/st.h>

tape_op_t tape_op;

tape_op.st_op =st_op;
tape_op.st_count =st_count;

if (!(ioctl (dev_fd,STIOC_TAPE_OP,&tape_op))){
printf ("The STIOC_TAPE_OP ioctl succeeded.\n");

}
else {

perror ("The STIOC_TAPE_OP ioctl failed");
scsi_request_sense ();

}

STIOC_GET_DEVICE_STATUS
This command returns status information about the tape drive. It is similar to the
MTIOCGET ioctl command defined in the /usr/include/sys/mtio.h system header file.
The STIOC_GET_DEVICE_STATUS and MTIOCGET commands both use the data
structure mtget defined in the /usr/include/sys/mtio.h system header file. The
STIOC_GET_DEVICE_STATUS ioctl command maps to the MTIOCGET ioctl
command. The two ioctl commands are interchangeable. See “MTIOCGET” on page
144.

The following data structure is returned by the driver:
/* from st.h */
typedef struct mtget device_status_t;

The mt_flags field, which returns the type of automatic cartridge stacker or loader
installed on the tape drive, is set to one of the following values:

STF_ACL Automatic Cartridge Loader

STF_RACL Random Access Cartridge Facility

An example of the STIOC_GET_DEVICE_STATUS command is:
#include <sys/mtio.h>
#include <sys/st.h>

device_status_t device_status;

HP-UX Device Driver (ATDD)

114 IBM Tape Device Drivers: Programming Reference

if (!(ioctl (dev_fd, STIOC_GET_DEVICE_STATUS, &device_status))) {
printf ("The STIOC_GET_DEVICE_STATUS ioctl succeeded.\n");
printf ("\nThe device status data is:\n");
dump_bytes ((char *)&device_status, sizeof (device_status_t));

}

else {
perror ("The STIOC_GET_DEVICE_STATUS ioctl failed");
scsi_request_sense ();

}

STIOC_GET_DEVICE_INFO
This command returns configuration information about the tape drive. The
STIOC_GET_DEVICE_INFO command uses the following data structure defined in
the /usr/include/sys/st.h system header file.

The following data structure is returned by the driver:
/* from st.h */
struct mtdrivetype {

char name[64]; /* name */
char vid[25]; /* vendor ID, product ID */
char type; /* drive type */
int bsize; /* block size */
int options; /* drive options */
int max_rretries; /* maximum read retries */
int max_wretries; /* maximum write retries */

uchar default_density; /* default density chosen */
};

typedef struct mtdrivetype device_info_t;

An example of the STIOC_GET_DEVICE_INFO command is:
#include <sys/st.h>

device_info_t device_info;

if (!(ioctl (dev_fd, STIOC_GET_DEVICE_INFO, &device_info))) {
printf ("The STIOC_GET_DEVICE_INFO ioctl succeeded.\n");
printf ("\nThe device information is:\n");
dump_bytes ((char *)&device_info, sizeof (device_info_t));

}

else {
perror ("The STIOC_GET_DEVICE_INFO ioctl failed");
scsi_request_sense ();

}

STIOC_GET_MEDIA_INFO
This command returns information about the currently mounted tape.

The following data structure is filled out and returned by the driver.
typedef struct {

uint media_type; /* type of media loaded */
uint media_format; /* format of media loaded */
uchar write_protect; /* write protect (physical/logical) */

} media_info_t;

The media_type field, which returns the current type of media, is set to one of the
values in st.h.

The media_format field, which returns the current recording format, is set to one of
the values in st.h.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 115

The write_protect field is set to 1 if the currently mounted tape is physically or
logically write protected.

An example of the STIOC_GET_MEDIA_INFO command is:
#include <sys/st.h>

media_info_t media_info;

if (!(ioctl (dev_fd, STIOC_GET_MEDIA_INFO, &media_info))) {
printf ("The STIOC_GET_MEDIA_INFO ioctl succeeded.\n");
printf ("\nThe media information is:\n");
dump_bytes ((char *)&media_info, sizeof (media_info_t));

}

else {
perror ("The STIOC_GET_MEDIA_INFO ioctl failed");
scsi_request_sense ();

}

STIOC_GET_POSITION
This command returns information about the tape position.

The tape position is defined as where the next read or write operation occurs. The
STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or in conjunction with one another.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver):
typedef struct {

uchar block_type; /* block type (logical or physical) */
uchar bot; /* physical beginning of tape */
uchar eot; /* logical end of tape */
uchar partition; /* partition number */
uint position; /* current or new block ID */
uint last_block; /* last block written to tape */
uint block_count; /* blocks remaining in buffer */
uint byte_count; /* bytes remaining in buffer */

} position_data_t;

The block_type field is set to LOGICAL_BLK for standard SCSI logical tape
positions or PHYSICAL_BLK for composite tape positions used for high-speed
locate operations implemented by the tape drive. Only the IBM 3490E Magnetic
Tape Subsystem and the IBM TotalStorage Enterprise Virtual Tape Servers (VTS)
support the PHYSICAL_BLK type. All devices support the LOGICAL_BLK type.

The block_type is the only field that must be filled out by the caller. The other fields
are ignored. Tape positions can be obtained with the STIOC_GET_POSITION
command, saved, and used later with the STIOC_SET_POSITION command to
quickly return to the same location on the tape.

The position field returns the current position of the tape (physical or logical).

The last_block field returns the last block of data that was transferred physically to
the tape.

The block_count field returns the number of blocks of data remaining in the buffer.

The byte_count field returns the number of bytes of data remaining in the buffer.

HP-UX Device Driver (ATDD)

116 IBM Tape Device Drivers: Programming Reference

The bot and eot fields indicate if the tape is positioned at the beginning of tape or
the end of tape, respectively.

An example of the STIOC_GET_POSITION command is:
#include <sys/st.h>

position_data_t position_data;
position_data.block_type = type;

if (!(ioctl (dev_fd, STIOC_GET_POSITION, &position_data))) {
printf ("The STIOC_GET_POSITION ioctl succeeded.\n");
printf ("\nThe tape position data is:\n");
dump_bytes ((char *)&position_data, sizeof (position_data_t));

}

else {
perror ("The STIOC_GET_POSITION ioctl failed");
scsi_request_sense ();

}

STIOC_SET_POSITION
This command sets the physical position of the tape.

The tape position is defined as where the next read or write operation occurs. The
STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or in conjunction with one another.

The following data structure is filled out and supplied by the caller:
typedef struct {

uchar block_type; /* block type (logical or physical) */
uchar bot; /* physical beginning of tape */
uchar eot; /* logical end of tape */
uchar partition; /* partition number */
uint position; /* current or new block ID */
uint last_block; /* last block written to tape */
uint block_count; /* blocks remaining in buffer */
uint byte_count; /* bytes remaining in buffer */
} position_data_t;

The block_type field is set to LOGICAL_BLK for standard SCSI logical tape
positions or PHYSICAL_BLK for composite tape positions used for high-speed
locate operations implemented by the tape drive. Only the IBM 3490E Magnetic
Tape Subsystem or a virtual drive in a VTS support the PHYSICAL_BLK type. All
devices support the LOGICAL_BLK type.

The block_type and position fields must be filled out by the caller. The other fields
are ignored. The type of position specified in the position field must correspond
with the type specified in the block_type field. Tape positions can be obtained with
the STIOC_GET_POSITION command, saved, and used later with the
STIOC_SET_POSITION command to quickly return to the same location on the
tape. The IBM 3490E Magnetic Tape Subsystem drives in VTSs do not support
set_position to eot.

An example of the STIOC_SET_POSITION command is:
#include <sys/st.h>

position_data_t position_data;
position_data.block_type = type;
position_data.position = value;

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 117

if (!(ioctl (dev_fd, STIOC_SET_POSITION, &position_data))) {
printf ("The STIOC_SET_POSITION ioctl succeeded.\n");

}

else {
perror ("The STIOC_SET_POSITION ioctl failed");
scsi_request_sense ();

}

STIOC_GET_PARM
This command returns the current value of the working parameter for the specified
tape drive. This command is used in conjunction with the STIOC_SET_PARM
command.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver):
typedef struct {

uchar type; /* type of parameter to get or set */
uint value; /* current or new value of parameter */

} parm_data_t;

The value field returns the current value of the specified parameter, within the
ranges indicated for the specific type.

The type field, which is filled out by the caller, should be set to one of the
following values:

BLOCKSIZE Block Size (0–2097152 [2 MB])

A value of zero indicates variable block size. Only the IBM 3590
Tape System supports 2 MB maximum block size. All other devices
support 256 KB maximum block size.

COMPRESSION
Compression Mode (0 or 1)

If this mode is enabled, data is compressed by the tape device
before storing it on tape.

BUFFERING Buffering Mode (0 or 1)

If this mode is enabled, data is stored in hardware buffers in the
tape device and not immediately committed to tape, thus
increasing data throughput performance.

IMMEDIATE Immediate Mode (0 or 1)

If this mode is enabled, then a rewind command returns with the
status before the completion of the physical rewind operation by
the tape drive.

TRAILER Trailer Label Mode (0 or 1)

If this mode is enabled, then writing records past the early
warning mark on the tape is allowed. The first write operation to
detect EOM returns 0. This write operation won't complete
successfully. All subsequent write operations are allowed to
continue despite the check conditions that result from EOM. When
the end of the physical volume is reached, EIO is returned.

An application using the trailer label processing options should
stop normal data writing when LEOM (Logic End of Medium) is
reached, and perform end of volume processing. Such processing

HP-UX Device Driver (ATDD)

118 IBM Tape Device Drivers: Programming Reference

typically consists of writing a final data record, a filemark, a
"trailing" type label, and finally two more filemarks indicating the
end of data (EOD).

WRITEPROTECT
Write Protect Mode

This configuration parameter returns the current write protection
status of the mounted cartridge. The writeprotect is not applied to
the VTS with logical volumes only. The following values are
recognized:
v NO_PROTECT

The tape is not physically or logically write protected.
Operations that alter the contents of the media are permitted.
Setting the tape to this value resets the PERSISTENT and
ASSOCIATED logical write protection modes. It does not reset
the WORM logical or the PHYSICAL write protection modes.

v PHYS_PROTECT
The tape is physically write protected. The write protect switch
on the tape cartridge is in the protect position. This mode can
only be queried and cannot be altered through device driver
functions.

Note: Only IBM 3590 and MP 3570 Tape Subsystems recognize
the following values:

v WORM_PROTECT
The tape is logically write protected in WORM mode. When the
tape has been protected in this mode, it is permanently write
protected. The only method of returning the tape to a writable
state is to format the cartridge, erasing all data.

v PERS_PROTECT
The tape is logically write protected in PERSISTENT mode. A
tape that is protected in this mode is write protected for all uses
(across mounts). This logical write protection mode may be reset
using the NO_PROTECT value.

v ASSC_PROTECT
The tape is logically write protected in ASSOCIATED mode. A
tape that is protected in this mode is write protected only while
it is associated with a tape drive (mounted). When the tape is
unloaded from the drive, the associated write protection is reset.
This logical write protection mode may also be reset using the
NO_PROTECT value.

ACFMODE Automatic Cartridge Facility Mode

Note: NOTE: This mode is not supported for Ultrium devices.

This configuration parameter is read only. ACF modes can be
established only through the tape drive operator panel. The device
driver can only query the ACF mode; it cannot change it. The
ACFMODE parameter applies only to the IBM 3590 Tape System
and the IBM Magstar MP Tape Subsystem. The following values
are recognized:
v NO_ACF

There is no ACF attached to the tape drive.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 119

v SYSTEM_MODE
The ACF is in the System mode. This mode allows explicit load
and unloads to be issued through the device driver. An unload
or offline command causes the tape drive to unload the cartridge
and the ACF to replace the cartridge in its original magazine
slot. A subsequent load command causes the ACF to load the
cartridge from the next sequential magazine slot into the drive.

v RANDOM_MODE
The ACF is in the Random mode. This mode provides random
access to all of the cartridges in the magazine. The ACF operates
as a standard SCSI medium changer device.

v MANUAL_MODE
The ACF is in the Manual mode. This mode does not allow ACF
control through the device driver. Cartridge load and unload
operations can be performed only through the tape drive
operator panel. Cartridges are imported and exported through
the priority slot.

v ACCUM_MODE
The ACF is in the Accumulate mode. This mode is similar to
Manual mode. However, rather than cartridges being exported
through the priority slot, they are put away in the next available
magazine slot.

v AUTO_MODE
The ACF is in the Automatic mode. This mode causes cartridges
to be accessed sequentially under ACF control. When a tape has
finished processing, it is put back in its magazine slot and the
next tape is loaded without an explicit unload and load
command from the host.

v LIB_MODE
The ACF is in the Library mode. This mode is available only if
the tape drive is installed in an automated tape library that
supports the ACF (3495).

SCALING Capacity Scaling

Note: NOTE: This configuration is not supported for Ultrium
devices.

This configuration parameter sets the capacity or logical length of
the currently mounted tape. The SCALING parameter is not
supported on the IBM 3490E Magnetic Tape Subsystem nor in VTS
drives. The following values are recognized:
v SCALE_100

The current tape capacity is 100%.
v SCALE_75

The current tape capacity is 75%.
v SCALE_50

The current tape capacity is 50%.
v SCALE_25

The current tape capacity is 25%.
v Other values (0x00 - 0xFF)

For 3592 tape drive only.

HP-UX Device Driver (ATDD)

120 IBM Tape Device Drivers: Programming Reference

SILI Suppress Illegal Length Indication

If this mode is enabled, and a larger block of data is requested
than is actually read from the tape block, the tape device
suppresses raising a check condition. This eliminates error
processing normally performed by the device driver and results in
improved read performance for some situations.

DATASAFE data safe mode

This parameter queries the current drive setting for data safe
(append-only) mode or on a set operation changes the current data
safe mode setting on the drive. On a set operation a parameter
value of zero sets the drive to normal (non-data safe) mode and a
value of 1 sets the drive to data safe mode.

PEWSIZE Programmable early Warning

The PEW is a setting of the drive and not a specific tape.
Therefore, it is the same on each partition should partitions exists.
Once this setting has been made in the drive it will remain on until
the application sets the PEW size to zero at which point it will not
have a PEW zone until it is again set up by the application. The
size of the PEW is set in the parm_data_t structure with the
“value” parameter. The parameter establishes the programmable
early warning zone size. The value specifies how many MB before
the standard end-of-medium early warning zone to place the
programmable early warning indicator. The user application will
be warned that the tape is running out of space when the tape
head reaches the PEW location. ENOSPC is returned on the first
write operation to detect PEW.

Supported on 11iv3, however 11iv2 allows for auto blocking that
can return inaccurate results.

An example of the STIOC_GET_PARM command is:
#include <sys/st.h>

parm_data_t parm_data;
parm_data.type = type;

if (!(ioctl (dev_fd, STIOC_GET_PARM, &parm_data))) {
printf ("The STIOC_GET_PARM ioctl succeeded.\n");
printf ("\nThe parameter data is:\n");
dump_bytes ((char *)&parm_data.value, sizeof (int));

}

else {
perror ("The STIOC_GET_PARM ioctl failed");
scsi_request_sense ();

}

STIOC_SET_PARM
This command sets the current value of the working parameter for the specified
tape drive. This command is used in conjunction with the STIOC_GET_PARM
command.

The ATDD ships with default settings for all configuration parameters. Changing
the working parameters dynamically through this STIOC_SET_PARM command
affects the tape drive only during the current open session. The working
parameters revert back to the defaults when the tape drive is closed and reopened.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 121

||

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

To change the default configuration settings, see the IBM TotalStorage and System
Storage Tape Device Drivers: Installation and User’s Guide.

The following data structure is filled out and supplied by the caller:
typedef struct {

uchar type; /* type of parameter to get or set */
uint value; /* current or new value of parameter */

} parm_data_t;

The value field specifies the new value of the specified parameter, within the
ranges indicated for the specific type.

The type field, which is filled out by the caller, should be set to one of the
following values:

BLOCKSIZE Block Size (0–2097152 [2 MB])

A value of zero indicates variable block size. Only the IBM 3590
Tape System supports 2 MB maximum block size. All other devices
support 256 KB maximum block size.

COMPRESSION
Compression Mode (0 or 1)

If this mode is enabled, data is compressed by the tape device
before storing it on tape.

BUFFERING Buffering Mode (0 or 1)

If this mode is enabled, data is stored in hardware buffers in the
tape device and not immediately committed to tape, thus
increasing data throughput performance.

IMMEDIATE Immediate Mode (0 or 1)

If this mode is enabled, then a rewind command returns with the
status before the completion of the physical rewind operation by
the tape drive.

TRAILER Trailer Label Mode (0 or 1)

If this mode is enabled, then writing records past the early
warning mark on the tape is allowed. The first write operation to
detect EOM returns ENOSPC. This write operation won't complete
successfully. All subsequent write operations are allowed to
continue despite the check conditions that result from EOM. When
the end of the physical volume is reached, EIO is returned.

118

WRITEPROTECT
write protect Mode

This configuration parameter establishes the current write
protection status of the mounted cartridge. The IBM Virtual Tape
Server does not support the write_protect mode to a logical
cartridge. The parameter applies only to the IBM 3590 and MP
3570 Tape Subsystems. The following values are recognized:
v NO_PROTECT

The tape is not physically or logically write protected.
Operations that alter the contents of the media are permitted.
Setting the tape to this value resets the PERSISTENT and

HP-UX Device Driver (ATDD)

122 IBM Tape Device Drivers: Programming Reference

ASSOCIATED logical write protection modes. It does not reset
the WORM logical or the PHYSICAL write protection modes.

v WORM_PROTECT
The tape is logically write protected in WORM mode. When the
tape has been protected in this mode, it is permanently write
protected. The only method of returning the tape to a writable
state is to format the cartridge, erasing all data.

v PERS_PROTECT
The tape is logically write protected in PERSISTENT mode. A
tape that is protected in this mode is write protected for all uses
(across mounts). This logical write protection mode may be reset
using the NO_PROTECT value.

v ASSC_PROTECT
The tape is logically write protected in ASSOCIATED mode. A
tape that is protected in this mode is write protected only while
it is associated with a tape drive (mounted). When the tape is
unloaded from the drive, the associated write protection is reset.
This logical write protection mode may also be reset using the
NO_PROTECT value.

v PHYS_PROTECT
The tape is physically write protected. The write protect switch
on the tape cartridge is in the protect position. This mode is not
alterable through device driver functions.

ACFMODE Automatic Cartridge Facility Mode

Note: NOTE: This mode is not supported for Ultrium devices.

This configuration parameter is read only. ACF modes can be
established only through the tape drive operator panel. This type
value is not supported by the STIOC_SET_PARM ioctl.

SCALING Capacity Scaling

Note: NOTE: This configuration is not supported for Ultrium
devices.

This configuration parameter sets the capacity or logical length of
the currently mounted tape. The tape must be at BOT to change
this value. Changing the scaling value destroys all existing data on
the tape. The SCALING parameter is not supported on the IBM
3490E Magnetic Tape Subsystem or VTS drives. The following
values are recognized:
v SCALE_100

Sets the tape capacity to 100%.
v SCALE_75

Sets the tape capacity to 75%.
v SCALE_50

Sets the tape capacity to 50%.
v SCALE_25

Sets the tape capacity to 25%.
v Other values (0x00 - 0xFF)

For 3592 tape drive only.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 123

SILI Suppress Illegal Length Indication

If this mode is enabled and a larger block of data is requested than
is actually read from the tape block, the tape device suppresses
raising a check condition. This eliminates error processing normally
performed by the device driver and results in improved read
performance for some situations.

DATASAFE data safe mode

This parameter queries the current drive setting for data safe
(append-only) mode or on a set operation changes the current data
safe mode setting on the drive. On a set operation a parameter
value of zero sets the drive to normal (non-data safe) mode and a
value of 1 sets the drive to data safe mode.

An example of the STIOC_SET_PARM command is:
#include <sys/st.h>

parm_data_t parm_data;
parm_data.type = type;
parm_data.value = value;

if (!(ioctl (dev_fd, STIOC_SET_PARM, &parm_data))) {
printf ("The STIOC_SET_PARM ioctl succeeded.\n");

}

else {
perror ("The STIOC_SET_PARM ioctl failed");
scsi_request_sense ();

}

HP-UX Device Driver (ATDD)

124 IBM Tape Device Drivers: Programming Reference

STIOC_DISPLAY_MSG
This command displays and manipulates one or two messages on the tape drive
operator panel.

Note: NOTE: This command is not supported for Ultrium devices.

The message sent using this call does not always remain on the display. It depends
on the current drive activity.

Note: All messages must be padded to MSGLEN bytes (8). Otherwise, garbage
characters (meaningless data) are displayed in the message.

The following data structure is filled out and supplied by the caller:
typedef struct {

uchar function; /* message function code */
char msg_0[MSGLEN]; /* message 0 */
char msg_1[MSGLEN]; /* message 1 */

} msg_data_t;

The function field, which is filled out by the caller, is set by combining (using
logical OR), a Message Type flag and a Message Control flag.

Message Type Flags:

GENSTATUS (General Status Message)
Message 0, Message 1, or both are displayed according to the
Message Control flag until the drive next initiates tape motion or
the message is updated with a new message.

DMNTVERIFY (Demount/Verify Message)
Message 0, Message 1, or both are displayed according to the
Message Control flag until the current volume is unloaded. If the
volume is currently unloaded, the message display is not changed
and the command performs no operation.

MNTIMMED (Mount with Immediate Action Indicator)
Message 0, Message 1, or both are displayed according to the
Message Control flag until the volume is loaded. An attention
indicator is activated. If the volume is currently loaded, the
message display is not changed and the command performs no
operation.

DMNTIMMED (Demount/Mount with Immediate Action Indicator)
When the Message Control flag is set to a value of ALTERNATE,
Message 0 and Message 1 are displayed alternately until the
currently mounted volume, if any, is unloaded. When the Message
Control flag is set to any other value, Message 0 is displayed until
the currently mounted volume, if any, is unloaded. Message 1 is
displayed from the time the volume is unloaded (or immediately, if
the volume is already unloaded) until another volume is loaded.
An attention indicator is activated.

Message Control Flag:

DISPMSG0 Display message 0.

DISPMSG1 Display message 1.

FLASHMSG0 Flash message 0.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 125

FLASHMSG1 Flash message 1.

ALTERNATE Alternate flashing message 0 and message 1.

An example of the STIOC_DISPLAY_MSG command is:
#include <sys/st.h>

msg_data_t msg_data;
msg_data.function = GENSTATUS | ALTERNATE;
memcpy (msg_data.msg_0, "Hello ", 8);
memcpy (msg_data.msg_1, "World!!!", 8);

if (!(ioctl (dev_fd, STIOC_DISPLAY_MSG, &msg_data))) {
printf ("The STIOC_DISPLAY_MSG ioctl succeeded.\n");

}

else {
perror ("The STIOC_DISPLAY_MSG ioctl failed");
scsi_request_sense ();

}

STIOC_SYNC_BUFFER
This command immediately flushes the drive buffers to the tape (commits the data
to the media).

No data structure is required for this command.

An example of the STIOC_SYNC_BUFFER command is:
#include <sys/st.h>

if (!(ioctl (dev_fd, STIOC_SYNC_BUFFER, 0))) {
printf ("The STIOC_SYNC_BUFFER ioctl succeeded.\n");

}

else {
perror ("The STIOC_SYNC_BUFFER ioctl failed");
scsi_request_sense ();

}

STIOC_ REPORT_ DENSITY_ SUPPORT
This command issues the SCSI Report Density Support command to the tape
device and returns either all supported densities or supported densities for the
currently mounted media. The media field specifies which type of report is
requested. The number_reports field is returned by the device driver and indicates
how many density reports inthe reports array field were returned.

The data structures used with this ioctl are:
typedef struct density_report
{

uchar primary_density_code; /* primary density code */
uchar secondary_density_code; /* secondary densuty code */
uchar wrtok : 1, /* write ok, device can write this format */

dup : 1, /* zero if density only reported once */
deflt : 1, /* current density is default format */
res_1 : 5; /* reserved */

uchar reserved1[2]; /* reserved */
uchar bits_per_mm[3]; /* bits per mm */
uchar media_width[2]; /* media width in millimeters */
uchar tracks[2]; /* tracks */
uchar capacity[4]; /* capacity in megabytes */
char assigning_org[8]; /* assigning organization in ASCII */
char density_name[8]; /* density name in ASCII */

HP-UX Device Driver (ATDD)

126 IBM Tape Device Drivers: Programming Reference

char description[20]; /* description in ASCII */
} density_report_t;

typedef struct report_density_support
{

uchar media; /* report all or current media as defined above */
uchar number_reports; /* number of density reports returned in array */
struct density_report reports[MAX_DENSITY_REPORTS];

} rpt_dens_sup_t;

Examples of the STIOC_REPORT_DENSITY_SUPPORT command are:
static int st_report_density_support ()
{

int rc;
int i;
rpt_dens_sup_t density;

int bits_per_mm = 0;
int media_width = 0;
int tracks = 0;
int capacity = 0;

printf("Issuing Report Density Support for ALL supported media...\n");

density.media = ALL_MEDIA_DENSITY;
density.number_reports = 0;

if (!(rc = ioctl (dev_fd, STIOC_REPORT_DENSITY_SUPPORT, &density))) {
PRINTF ("STIOC_REPORT_DENSITY_SUPPORT succeeded.\n");
printf("Total number of densities reported: %d\n",density.number_reports);

}
else {

PERROR ("STIOC_REPORT_DENSITY_SUPPORT failed");
PRINTF ("\n");
scsi_request_sense ();

}

for (i = 0; i < density.number_reports; i++)
{

bits_per_mm = (int)density.reports[i].bits_per_mm[0] << 16;
bits_per_mm |= (int)density.reports[i].bits_per_mm[1] << 8;
bits_per_mm |= (int)density.reports[i].bits_per_mm[2];

media_width |= density.reports[i].media_width[0] << 8;
media_width |= density.reports[i].media_width[1];

tracks |= density.reports[i].tracks[0] << 8;
tracks |= density.reports[i].tracks[1];

capacity = density.reports[i].capacity[0] << 24;
capacity |= density.reports[i].capacity[1] << 16;
capacity |= density.reports[i].capacity[2] << 8;
capacity |= density.reports[i].capacity[3];

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 127

if (density.reports[i].wrtok)
printf(" Write OK..................... Yes\n");
else
printf(" Write OK..................... No\n");

if (density.reports[i].dup)
printf(" Duplicate.................... Yes\n");
else
printf(" Duplicate.................... No\n");

if (density.reports[i].deflt)
printf(" Default...................... Yes\n");
else

printf(" Default...................... No\n");

printf(" Bits per MM.................. %d\n",bits_per_mm);
printf(" Media Width.................. %d\n",media_width);
printf(" Tracks....................... %d\n",tracks);
printf(" Capacity (megabytes)......... %d\n",capacity);

if (interactive) {
printf ("\nHit <enter> to continue...");
getchar ();

}

} /* end for all media density*/

printf("\nIssuing Report Density Support for CURRENT media...\n");

density.media = CURRENT_MEDIA_DENSITY;
density.number_reports = 0;

if (!(rc = ioctl (dev_fd, STIOC_REPORT_DENSITY_SUPPORT, &density))) {
printf ("STIOC_REPORT_DENSITY_SUPPORT succeeded.\n");
printf("Total number of densities reported: %d\n",density.number_reports);

}
else {

perror ("STIOC_REPORT_DENSITY_SUPPORT failed");
printf ("\n");
scsi_request_sense ();

}

for (i = 0; i < density.number_reports; i++)
{

bits_per_mm = density.reports[i].bits_per_mm[0] << 16;
bits_per_mm |= density.reports[i].bits_per_mm[1] << 8;
bits_per_mm |= density.reports[i].bits_per_mm[2];

media_width |= density.reports[i].media_width[0] << 8;
media_width |= density.reports[i].media_width[1];

tracks |= density.reports[i].tracks[0] << 8;
tracks |= density.reports[i].tracks[1];

capacity = density.reports[i].capacity[0] << 24;
capacity |= density.reports[i].capacity[1] << 16;
capacity |= density.reports[i].capacity[2] << 8;
capacity |= density.reports[i].capacity[3];

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

HP-UX Device Driver (ATDD)

128 IBM Tape Device Drivers: Programming Reference

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..................... Yes\n");
else
printf(" Write OK..................... No\n");

if (density.reports[i].dup)
printf(" Duplicate.................... Yes\n");
else
printf(" Duplicate.................... No\n");

if (density.reports[i].deflt)
printf(" Default...................... Yes\n");
else
printf(" Default...................... No\n");

printf(" Bits per MM.................. %d\n",bits_per_mm);
printf(" Media Width.................. %d\n",media_width);
printf(" Tracks....................... %d\n",tracks);
printf(" Capacity (megabytes)......... %d\n",capacity);

if (interactive) {
printf ("\nHit <enter> to continue...");
getchar ();

}
}

return (rc);
}

STIOC_GET_DENSITY and STIOC_SET_DENSITY
The STIOC_GET_DENSITY ioctl is used to query the current write density format
settings on the tape drive. The current density code from the drive Mode Sense
header, the Read/Write Control Mode page default density and pending density
are returned.

The STIOC_SET_DENSITY ioctl is used to set a new write density format on the
tape drive using the default and pending density fields. The density code field is
not used and ignored on this ioctl. The application can specify a new write density
for the current loaded tape only or as a default for all tapes. Refer to the examples
below.

The application should get the current density settings first before deciding to
modify the current settings. If the application specifies a new density for the
current loaded tape only, then the application must issue another set density ioctl
after the current tape is unloaded and the next tape is loaded to either the default
maximum density or a new density to ensure the tape drive will use the correct
density. If the application specifies a new default density for all tapes, the setting
remains in effect until changed by another set density ioctl or the tape drive is
closed by the application.

Following is the structure for the STIOC_GET_DENSITY and
STIOC_SET_DENSITY ioctls:
struct density_data_t
{

char density_code; /* mode sense header density code */

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 129

char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

Notes:

1. These ioctls are only supported on tape drives that can write multiple density
formats. Refer to the Hardware Reference for the specific tape drive to
determine if multiple write densities are supported. If the tape drive does not
support these ioctls, errno EINVAL will be returned.

2. The device driver always sets the default maximum write density for the tape
drive on every open system call. Any previous STIOC_SET_DENSITY ioctl
values from the last open are not used.

3. If the tape drive detects an invalid density code or can not perform the
operation on the STIOC_SET_DENSITY ioctl, the errno will be returned and the
current drive density settings prior to the ioctl will be restored.

4. The "struct density_data_t" defined in the header file is used for both ioctls.
The density_code field is not used and ignored on the STIOC_SET_DENSITY
ioctl.

Examples:
struct density_data_t data;

/* open the tape drive */
/* get current density settings */
rc = ioctl(fd, STIOC_GET_DENSITY, &data);

/* set 3592 J1A density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x51;
rc = ioctl(fd, STIOC_SET_DENSITY, &data);

/* unload tape */
/* load next tape */
/* set 3592 E05 density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x52;
rc = ioctl(fd, STIOC_SET_DENSITY, &data);

/* unload tape */
/* load next tape */
/* set default maximum density for current loaded tape */
data.default_density = 0;
data.pending_density = 0;
rc = ioctl(fd, STIOC_SET_DENSITY, &data);

/* close the tape drive */
/* open the tape drive */
/* set 3592 J1A density format for current loaded and all subsequent tapes*/
data.default_density = 0x51;
data.pending_density = 0x51;
rc = ioctl(fd, STIOC_SET_DENSITY, &data);

GET_ENCRYPTION_STATE
This ioctl command queries the drive's encryption method and state.

The data structure used for this ioctl is as follows on all of the supported operating
systems:
typedef struct encryption_status {

uchar encryption_capable; /* Set this field as a boolean based on the
capability of the drive */

HP-UX Device Driver (ATDD)

130 IBM Tape Device Drivers: Programming Reference

/* encryption_method used for GET ioctl only */
uchar encryption_method; /* Set this field to one of the defines below */

#define METHOD_NONE 0 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_LIBRARY 1 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_SYSTEM 2 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_APPLICATION 3 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_CUSTOM 4 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_UNKNOWN 5 /* Only used in GET_ENCRYPTION_STATE */

uchar encryption_state; /* Set this field to one of the defines below */
#define STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_NA 2 /* Used in GET_ENCRYPTION_STATE */

uchar reserved[13];
} encryption_status_t;

An example of the GET_ENCRYPTION_STATE command is:
int qry_encryption_state (void) {

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(&encryption_status_t, 0, sizeof(struct encryption_status));
rc = ioctl (fd, GET_ENCRYPTION_STATE, &encryption_status_t);

if(rc == 0) {
if(encryption_status_t.encryption_capable)

printf("encryption capable......Yes\n");
else

printf("encryption capable......No\n");
switch(encryption_status_t.encryption_method) {

case METHOD_NONE:
printf("encryption method.......METHOD_NONE\n");
break;

case METHOD_LIBRARY:
printf("encryption method.......METHOD_LIBRARY\n");
break;

case METHOD_SYSTEM:
printf("encryption method.......METHOD_SYSTEM\n");
break;

case METHOD_APPLICATION:
printf("encryption method.......METHOD_APPLICATION\n");
break;

case METHOD_CUSTOM:
printf("encryption method.......METHOD_CUSTOM\n");
break;

case METHOD_UNKNOWN:
printf("encryption method.......METHOD_UNKNOWN\n");
break;

default:
printf("encryption method.......Error\n");

}

switch(encryption_status_t.encryption_state) {
case STATE_OFF:

printf("encryption state........OFF\n");
break;

case STATE_ON:
printf("encryption state........ON\n");
break;

case STATE_NA:
printf("encryption state........NA\n");
break;

default:
printf("encryption state......Error\n");

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 131

}
}

return rc;
}

SET_ENCRYPTION_STATE
This ioctl command only allows setting the encryption state for
application-managed encryption. Please note that on unload, some of the drive
settings may be reset to default. To set the encryption state, the application should
issue this ioctl after a tape is loaded and at BOP.

The data structure used for this ioctl is the same as the one for
GET_ENCRYPTION_STATE.

An example of the SET_ENCRYPTION_STATE command is:
int set_encryption_status(int option) {

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(&encryption_status_t, 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE, &encryption_status_t);
if(rc < 0) return rc;
if(option == 0)

encryption_status_t.encryption_state = STATE_OFF;
else if(option == 1)

encryption_status_t.encryption_state = STATE_ON;
else {

printf("Invalid parameter.\n");
return (EINVAL);

}

printf("Issuing set encryption status......\n");
rc = ioctl(fd, SET_ENCRYPTION_STATE, &encryption_status_t);

return rc;
}

SET_DATA_KEY
This ioctl command only allows setting the data key for application-managed
encryption.

The data structure used for this ioctl is as follows on all of the supported operating
systems:
struct data_key {

uchar data_key_index[12]; /* The DKi */
uchar data_key_index_length; /* The DKi length */
uchar reserved1[15];
uchar data_key[32]; /* The DK */
uchar reserved2[48];

};

An example of the SET_DATA_KEY command is:
int set_datakey(void) {

int rc = 0;
struct data_key encryption_data_key_t;

printf("Issuing set encryption data key......\n");
memset(&encryption_status_t, 0, sizeof(struct data_key));

HP-UX Device Driver (ATDD)

132 IBM Tape Device Drivers: Programming Reference

/* fill in your data key here, then issue the following ioctl*/
rc = ioctl(fd, SET_DATA_KEY, &encryption_status_t);
return rc;

}

QUERY_PARTITION
The QUERY_PARTITION ioctl is used to return partition information for the tape
drive and the current media in the tape drive including the current active partition
the tape drive is using for the media. The number_of partitions field is the current
number of partitions on the media and the max_partitions is the maximum
partitions that the tape drive supports. The size_unit field could be either one of
the defined values below or another value such as 8 and is used in conjunction
with the size array field value for each partition to specify the actual size partition
sizes. The partition_method field could be either Wrap-wise Partitioning or
Longitudinal Partitioning. Refer to “CREATE_PARTITION” on page 134for details.

The data structure used with this ioctl is:
The define for “partition_method”:
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */

The define for “size_unit”:
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

typedef struct query_partition
{

uchar max_partitions; /* Max number of supported partitions */
uchar active_partition; /* current active partition on tape */
uchar number_of_partitions; /* Number of partitions from 1 to max */
uchar size_unit; /* Size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method; /* partition type for 3592 E07 and */

/* later generations only */
char reserved [31];
} query_partition_t;

Example of the QUERY_PARTITION ioctl:
#include<sys/st.h>

int rc,i;
struct query_partition q_partition;

memset((char *)&q_partition, 0, sizeof(struct query_partition));

rc = ioctl(dev_fd, QUERY_PARTITION, &q_partition);
if(!rc)
{

printf("QUERY PARTITION ioctl succeed\n");
printf(" Partition Method = %d\n",q_partition.partition_method);
printf("Max partitions = %d\n",q_partition.max_partitions);
printf("Number of partitions = %d\n",q_partition.number_of_partitions);
{

printf("Size of Partition # %d = %d ",i,q_partition.size[i]);
switch(q_partition.size_unit)
{

case SIZE_UNIT_BYTES:

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 133

printf(" Bytes\n");
break;
case SIZE_UNIT_KBYTES:

printf(" KBytes\n");
break;
case SIZE_UNIT_MBYTES:

printf(" MBytes\n");
break;
case SIZE_UNIT_GBYTES:

printf(" GBytes\n");
break;
case SIZE_UNIT_TBYTES:

printf(" TBytes\n");
break;
default:

printf("Size unit 0x%d\n",q_partition.size_unit);
}

}
printf("Current active partition = %d\n",q_partition.active_partition);

} else {
printf("QUERY PARTITION ioctl failed\n");

}

return rc;

CREATE_PARTITION
The CREATE_PARTITION ioctl is used to format the current media in the tape
drive into 1 or more partitions. The number of partitions to create is specified in
the number_of_partitions field. When creating more than 1 partition the type field
specifies the type of partitioning, either FDP, SDP, or IDP. The tape must be
positioned at the beginning of tape (partition 0 logical block id 0) before using this
ioctl.

If the number_of_partitions field to create in the ioctl structure is 1 partition, all
other fields are ignored and not used. The tape drive formats the media using it's
default partitioning type and size for a single partition

When the type field in the ioctl structure is set to either FDP or SDP, the size_unit
and size fields in the ioctl structure are not used. When the type field in the ioctl
structure is set to IDP, the size_unit in conjunction with the size fields are used to
specify the size for each partition.

There are two partition types in 3592 E07: Wrap-wise Partitioning (Figure 5 on
page 135) same as LTO-5 optimized for streaming performance and Longitudinal
Partitioning (Figure 6 on page 135) optimized for random access performance.
Media is always partitioned into 1 by default or more than one partition where the
data partition will always exist as partition 0 and other additional index partition 1
to n could exist. A volume can be partitioned up to 4 partitions using Wrap-wise
partition on TS1140.

WORM media cannot be partitioned and the Format Medium commands are
rejected. Attempts to scale a partitioned media will be accepted but only if you use
= the correct FORMAT field setting, as part of scaling the volume will be set to a
single data partition cartridge.

HP-UX Device Driver (ATDD)

134 IBM Tape Device Drivers: Programming Reference

The following chart lists the maximum number of partitions that the tape drive
will support.

Table 4. Number of Supported Partitions

Drive type Maximum number of supported partitions

LTO-5 (TS2250 and TS2350) 2 in Wrap-wise Partitioning

3592 E07 (TS 1140) 4 in Wrap-wise Partitioning

2 in Longitudinal Partitioning

The data structure used with this ioctl is:
The define for “partition_method”:
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */

The define for “type”:
#define IDP_PARTITION 1 /* Initiator Defined Partition type */
#define SDP_PARTITION 2 /* Select Data Partition type */
#define FDP_PARTITION 3 /* Fixed Data Partition type */

The define for “size_unit”:
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

Partition 0

Partition 1

Partition 2

Partition 3

Guard wraps

a
2
5
0
0
2
8
3

Figure 5. Wrap-wise Partitioning

Partition 1Partition 0

a
2
5
0
0
2
8
4

Guard gap

Figure 6. Longitudinal Partitioning

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 135

typedef struct tape_partition
{

uchar type; /* Type of tape partition to create */
uchar number_of_partitions; /* Number of partitions to create */
uchar size_unit; /* IDP size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method; /* partitioning type for the 3592 E07 and */

/* later generations only */
char reserved [31];
} tape_partition_t;

Examples of the CREATE_PARTITION ioctl:
#include<sys/st.h>

struct tape_partition partition;

/* create 2 SDP partitions for LTO-5*/
partition.type = SDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = UNKNOWN_TYPE;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* create 2 IDP partitions with partition 1 for 37 gigabytes and partition 0
for the remaining capacity on LTO-5*/
partition.type = IDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = UNKNOWN_TYPE;
partition.size_unit = SIZE_UNIT_GBYTES;
partition.size[0] = 0xFFFF;
partition.size[1] = 37;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* format the tape into 1 partition */
partition.number_of_partitions = 1;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* create 4 IDP partitions on 3592 JC volume in Wrap-wise partitioning
with partition 0 and 2 for 94.11 gigabytes (minimum size) and partition 1 and 3
to use the remaining capacity
equally around 1.5 TB on 3592 E07 */
partition.type = IDP_PARTITION;
partition.number_of_partitions = 4;
partition.partition_method = WRAP_WISE_PARTITION;
partition.size_unit = 8; /* 100 megabytes */
partition.size[0] = 0x03AD;
partition.size[1] = 0xFFFF;
partition.size[2] = 0x03AD;
partition.size[3] = 0x3AD2;
ioctl(dev_fd, CREATE_PARTITION, &partition);

SET_ACTIVE_PARTITION
The SET_ACTIVE_PARTITION ioctl is used to position the tape to a specific
partition which will become the current active partition for subsequent commands
and a specific logical bock id in the partition. To position to the beginning of the
partition the logical_block_id field should be set to 0.

The data structure used with this ioctl is:
struct set_active_partition {

uchar partition_number; /* Partition number 0-n to change to */
ullong logical_block_id; /* Blockid to locate to within partition */
char reserved[32];
};

HP-UX Device Driver (ATDD)

136 IBM Tape Device Drivers: Programming Reference

Examples of the SET_ACTIVE_PARTITION ioctl:
#include<sys/st.h>

struct set_active_partition partition;

/* position the tape to partition 1 and logical block id 12 */
partition.partition_number = 1;
partition.logical_block_id = 12;
ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition);

/* position the tape to the beginning of partition 0 */
partition.partition_number = 0;
partition.logical_block_id = 0;
ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition);

ALLOW_DATA_OVERWRITE
The ALLOW_DATA_OVERWRITE ioctl is used to set the drive to allow a
subsequent data write type command at the current position or allow a
CREATE_PARTITION ioctl when data safe (append-only) mode is enabled.

For a subsequent write type command the allow_format_overwrite field must be
set to 0 and the partition_number and logical_block_id fields must be set to the
current partition and position within the partition where the overwrite will occur.

For a subsequent CREATE_PARTITION ioctl the allow_format_overwrite field
must be set to 1. The partition number and logical_block_id fields are not used but
the tape must be at the beginning of tape (partition 0 logical block id 0) prior to
issuing the Create Partition ioctl.

The data structure used with this ioctl is:
struct allow_data_overwrite{

uchar partition_number; /* Partition number 0-n to overwrite */
ullong logical_block_id; /* Blockid to overwrite to within partition */
uchar allow_format_overwrite; /* allow format if in data safe mode */
char reserved[32];
};

Examples of the ALLOW_DATA_OVERWRITE ioctl:
#include <sys/st.h>

struct read_tape_position rpos;
struct allow_data_overwrite data_overwrite;
struct set_active_partition partition;

/* set the allow_data_overwrite fields with the current position
for the next write type command */
data_overwrite.partition_number = rpos.rp_data.rp_long.active_partition;
data_overwrite.logical_block_id = rpos.rp_data.rp_long.logical_obj_number;
data_overwrite.allow_format_overwrite = 0;
ioctl (dev_fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

/* set the tape position to the beginning of tape and */
/* prepare a format overwrite for the CREATE_PARTITION ioctl */
partition.partition_number = 0;
partition.logical_block_id = 0;
if (ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition) <0)

return errno;

data_overwrite.allow_format_overwrite = 1;
ioctl (dev_fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 137

READ_TAPE_POSITION
The READ_TAPE_POSITION ioctl is used to return Read Position command data
in either the short, long, or extended form. The type of data to return is specified
by setting the data_format field to either RP_SHORT_FORM, RP_LONG_FORM, or
RP_EXTENDED_FORM..

The data structures used with this ioctl are:
#define RP_SHORT_FORM 0x00
#define RP_LONG_FORM 0x06
#define RP_EXTENDED_FORM 0x08

struct short_data_format {
uchar bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */
svd :1,
lolu:1, /* 1 means the first and last logical obj position fields

are unknown */
err: 1, /* 1 means the position fields have overflowed and can not

be reported */
bpew :1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
char reserved[2];
uint first_logical_obj_position; /* current logical object position */
uint last_logical_obj_position; /* next logical object to be transferred to tape */
uint num_buffer_logical_obj; /* number of logical objects in buffer */
uint num_buffer_bytes; /* number of bytes in buffer */
char reserved1;
};

struct long_data_format {
uchar bop:1, /* beginning of partition */

eop:1, /* end of partition */
rsvd1:2,

mpu:1, /* 1 means the logical file id field in unknown */
lonu:1, /* 1 means either the partition number or logical obj number

field are unknown */
rsvd2:1,
bpew :1; /* beyond programmable early warning */

char reserved[6];
uchar active_partition; /* current active partition */
ullong logical_obj_number; /* current logical object position */
ullong logical_file_id; /* number of filemarks from bop and current
logical position */
ullong obsolete;
};

struct extended_data_format {
uchar bop : 1, /* beginning of partition */

eop : 1, /* end of partition */
locu : 1, /* 1 means num_buffer_logical_obj field */

/* is unknown */
bycu : 1, /* 1 means the num_buffer_bytes field is */

/* unknown */
rsvd : 1,
lolu : 1, /* 1 means the first and last logical */

/* obj position fields are unknown */
perr : 1, /* 1 means the position fields have */

/* overflowed and can not be reported */
bpew : 1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
ushort additional_length;
uint num_buffer_logical_obj; /* number of logical objects in buffer */

HP-UX Device Driver (ATDD)

138 IBM Tape Device Drivers: Programming Reference

ullong first_logical_obj_position;/* current logical object position */
ullong last_logical_obj_position; /* next logical object to be transferred */

/* to tape */
ullong num_buffer_bytes; /* number of bytes in buffer */
char reserved;

} extended_data_format_t;

typedef struct read_tape_position
{
uchar data_format; /* IN: Specifies the return data format */

/* either short, long or extended */
union /* OUT: position data */
{
short_data_format_t rp_short;
long_data_format_t rp_long;
extended_data_format_t rp_extended;
char reserved[64];
} rp_data;
} read_tape_position_t ;

Example of the READ_TAPE_POSITION ioctl:
#include <sys/st.h>

struct read_tape_position rpos;

printf("Reading tape position long form....\n");
rpos.data_format = RP_LONG_FORM;
if (ioctl (dev_fd, READ_TAPE_POSITION, &rpos) <0)

return errno;

if (rpos.rp_data.rp_long.bop)
printf(" Beginning of Partition Yes\n");

else
printf(" Beginning of Partition No\n");

if (rpos.rp_data.rp_long.eop)
printf(" End of Partition Yes\n");

else
printf(" End of Partition No\n");
if (rpos.rp_data.rp_long.bpew)
printf(" Beyond Early Warning Yes\n");

else
printf(" Beyond Early Warning No\n");
if (rpos.rp_data.rp_long.lonu)
{
printf(" Active Partition UNKNOWN \n");
printf(" Logical Object Number UNKNOWN \n");
}

else
{
printf(" Active Partition %u \n",

rpos.rp_data.rp_long.active_partition);
printf(" Logical Object Number %llu \n",

rpos.rp_data.rp_long.logical_obj_number);
}

if (rpos.rp_data.rp_long.mpu)
printf(" Logical File ID UNKNOWN \n");

else
printf(" Logical File ID %llu \n",

rpos.rp_data.rp_long.logical_file_id);

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 139

SET_TAPE_POSITION
The SET_TAPE_POSITION ioctl is used to position the tape in the current active
partition to either a logical block id or logical filemark. The logical_id_type field in
the ioctl structure specifies either a logical block or logical filemark.

The data structure used with this ioctl is:
#define LOGICAL_ID_BLOCK_TYPE 0x00
#define LOGICAL_ID_FILE_TYPE 0x01

struct set_tape_position{
uchar logical_id_type; /* Block or file as defined above */
ullong logical_id; /* logical object or logical file to position to */
char reserved[32];
};

Examples of the SET_TAPE_POSITION ioctl:
#include <sys/st.h>

struct set_tape_position setpos;

/* position to logical block id 10 */
setpos.logical_id_type = LOGICAL_ID_BLOCK_TYPE
setpos.logical_id = 10;
ioctl(dev_fd, SET_TAPE_POSITION, &setpos);

/* position to logical filemark 4 */
setpos.logical_id_type = LOGICAL_ID_FILE_TYPE
setpos.logical_id = 4;
ioctl(dev_fd, SET_TAPE_POSITION, &setpos);

QUERY_LOGICAL_BLOCK_PROTECTION
The ioctl queries whether the drive is capable of supporting this feature, what lbp
method is used, and where the protection information is included.

The lbp_capable field indicates whether or not the drive has the logical block
protection (LBP) capability. The lbp_method field displays if LBP is enabled and
what the protection method is. The LBP information length is shown in the
lbp_info_length field. The fields of lbp_w, lbp_r, and rbdp present that the
protection information is included in write, read or recover buffer data.

The data structure used with this ioctl is:
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

Examples of the QUERY_LOGICAL_BLOCK_PROTECTION ioctl:
#include <sys/st.h>

int rc;
struct logical_block_protection lbp_protect;

HP-UX Device Driver (ATDD)

140 IBM Tape Device Drivers: Programming Reference

printf("Querying Logical Block Protection....\n");

if (rc=ioctl(dev_fd, QUERY_LOGICAL_BLOCK_PROTECTION, &lbp_protect))
return rc;

printf(" Logical Block Protection capable...... %d\n",lbp_protect.lbp_capable);
printf(" Logical Block Protection method........ %d\n",lbp_protect.lbp_method);
printf(" Logical Block Protection Info Length.. %d\n",lbp_protect.lbp_info_length);
printf(" Logical Block Protection for Write...... %d\n",lbp_protect.lbp_w);
printf(" Logical Block Protection for Read...... %d\n",lbp_protect.lbp_r);
printf(" Logical Block Protection for RBDP..... %d\n",lbp_protect.rbdp);

SET_LOGICAL_BLOCK_PROTECTION
The ioctl enables or disables Logical Block Protection, sets up what method is used,
and where the protection information is included.

The lbp_capable field is ignored in this ioctl by the IBMtape driver. If the
lbp_method field is 0 (LBP_DISABLE), all other fields are ignored and not used.
When the lbp_method field is set to a valid non-zero method, all other fields are
used to specify the setup for LBP.

The data structure used with this ioctl is:
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

Examples of the SET_LOGICAL_BLOCK_PROTECTION ioctl:
#include <sys/st.h>

int rc;
struct logical_block_protection lbp_protect;

printf("Setting Logical Block Protection....\n\n");

printf ("Enter Logical Block Protection method: ");
gets (buf);
lbp_protect.lbp_method= atoi(buf);
printf ("Enter Logical Block Protection Info Length: ");
gets (buf);
lbp_protect.lbp_info_length= atoi(buf);
printf ("Enter Logical Block Protection for Write: ");
gets (buf);
lbp_protect.lbp_w= atoi(buf);
printf ("Enter Logical Block Protection for Read: ");
gets (buf);
lbp_protect.lbp_r= atoi(buf);
printf ("Enter Logical Block Protection for RBDP: ");
gets (buf);
lbp_protect.rbdp= atoi(buf);

rc = ioctl(dev_fd, SET_LOGICAL_BLOCK_PROTECTION, &lbp_protect);

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 141

if (rc)
printf ("Set Logical Block Protection Fails (rc %d)",rc);

else
printf ("Set Logical Block Protection Succeeds");

Notes:

1. The drive always expects a CRC attached with a data block when LBP is
enabled for lbp_r and lbp_w. Without the CRC bytes attachment, the drive will
fail the Read and Write command. To prevent the CRC block transfer between
the drive and application, the maximum block size limit should be determined
by application.

2. The LBP setting is controlled by the application and not the device driver. If an
application enables LBP, it should also disable LBP when it closes the drive, as
this is not performed by the device driver.

VERIFY_TAPE_DATA
All parameters are INPUT parameters (specified by the programmer).

vte: verify to end of data
vlbpm: verify logical block protection information
vbf: verify by filemark
immed: return immediately, do not wait for command to complete
bytcmp: unused
fixed: verify the length of each logical block

Upon receiving this IOCTL, the tape drive will perform the type of verification
specified by the parameters and return SUCCESS if data is correct or appropriate
sense data if the data is not correct.
typedef struct verify_data
{

uchar : 2, /* reserved */
vte : 1, /* [IN] verify to end-of-data */
vlbpm : 1, /* [IN] verify logical block

protection information */
vbf : 1, /* [IN] verify by filemarks */
immed : 1, /* [IN] return SCSI status immediately */
bytcmp : 1, /* No use currently */
fixed : 1; /* [IN] set Fixed bit to verify the

length of each logical block */
uchar reseved[15];
uint verify_length; /* [IN] amount of data to be verified */

} verify_data_t;

#include <sys/st.h>
int rc;
verify_data_t vrf_data;
memset(&vrf_data,0,sizeof(verify_data_t));

vrf_data.vte=1;
vrf_data.vlbpm=1;
vrf_data.vbf=0;
vrf_data.immed=0;
vrf_data.fixed=0;
vrf_data.verify_length=0;

printf("Verify Tape Data command\n");
rc=ioctl(fd,VERIFY_TAPE_DATA, &vrf_data);
if (rc)

printf ("Verify Tape Data failed (rc %d)",rc);
else

printf ("Verify Tape Data Succeeded!");

HP-UX Device Driver (ATDD)

142 IBM Tape Device Drivers: Programming Reference

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Base Operating System Tape Drive IOCTL Operations
The set of native magnetic tape ioctl commands available through the HP-UX base
operating system is provided for compatibility with existing applications.

The following commands are supported:

MTIOCTOP Perform the magnetic tape drive operations.

MTIOCGET Return the status information about the tape drive.

These commands and associated data structures are defined in the mtio.h system
header file in the /usr/include/sys directory. Any application program that issues
these commands must include this header file.

MTIOCTOP
This command performs the magnetic tape drive operations. It is defined in the
/usr/include/sys/mtio.h header file. The MTIOCTOP commands use the MT opcodes
and the data structure defined in the mtio.h system header file.

Note: To compile the application code with the mtio.h and st.h on HP-UX 10.20, the
patch PHKL_22286 or later is requested.

For all space operations, the resulting tape position is at the end-of-tape side of the
record or filemark for forward movement and at the beginning-of-tape side of the
record or filemark for backward movement.

The following data structure is filled out and supplied by the caller:
/*from mtio.h */
struct mtop {
short mt_op; /*operations (defined below)*/
daddr_t mt_count; /*how many to perform */
};

The mt_op field is set to one of the following:

MTWEOF Write mt_count filemarks

MTFSF Space forward mt_count filemarks.

MTBSF Space backward mt_count filemarks. Upon
completion, the tape is positioned at the
beginning-of-tape side of the requested filemark.

MTFSR Space forward the mt_count number of records.

MTBSR Space backward the mt_count number of records.

MTREW Rewind the tape. The mt_count parameter does not
apply.

MTOFFL Rewind and unload the tape. The mt_count
parameter does not apply.

MTNOP No tape operation is performed. The status is
determined by issuing the Test Unit Ready
command. The mt_count parameter does not apply.

MTEOD Space forward to the end of the data. The mt_count
parameter does not apply.

MTRES Reserve the tape drive. The mt_count parameter
does not apply.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 143

|

MTREL Release the tape drive. The mt_count parameter
does not apply.

MTERASE Erase the tape media. The mt_count parameter does
not apply.

MTIOCGET
This command returns status information about the tape drive. It is identical to the
STIOC_GET_DEVICE_STATUS ioctl command defined in the /usr/include/sys/st.h
header file. The STIOC_GET_DEVICE_STATUS and MTIOCGET commands both
use the data structure defined in the /usr/include/sys/mtio.h system header file. The
two ioctl commands are interchangeable. See “STIOC_GET_DEVICE_STATUS” on
page 114.

An example of the MTIOCGET command is:
#include <sys/mtio.h>
mtget mtget;

if (!(ioctl (dev_fd, MTIOCGET, &mtget))) {
printf ("The MTIOCGET ioctl succeeded.\n");
printf ("\nThe device status data is:\n");
dump_bytes ((char *)&mtget, sizeof (mtget));

} else {
perror ("The MTIOCGET ioctl failed");
scsi_request_sense ();

}

Service Aid IOCTL Operations
A set of service aid ioctl commands gives applications access to serviceability
operations for IBM tape subsystems.

The following commands are supported:

STIOC_DEVICE_SN Query the serial number of the device.

STIOC_FORCE_DUMP Force the device to perform a diagnostic dump.

STIOC_STORE_DUMP Force the device to write the diagnostic dump to
the currently mounted tape cartridge.

STIOC_READ_BUFFER Read data from the specified device buffer.

STIOC_WRITE_BUFFER Write data to the specified device buffer.

STIOC_QUERY_PATH Return the primary path and information for the
first alternate path.

STIOC_DEVICE_PATH Return the primary path and all the alternate paths
information.

STIOC_ENABLE_PATH Enable a path from the disabled state.

STIOC_DISABLE_ PATH Disable a path from the enabled state.

These commands and associated data structures are defined in the svc.h header file
in the /usr/include/sys directory that is installed with the ATDD. Any application
program that issues these commands must include this header file.

STIOC_DEVICE_SN
This command queries the serial number of the device used by the IBM 3494 Tape
Library and the IBM TotalStorage Enterprise Virtual Tape Server.

HP-UX Device Driver (ATDD)

144 IBM Tape Device Drivers: Programming Reference

||
|

|
|

The following data structure is filled out and returned by the driver.
typedef uint device_sn_t;

An example of the STIOC_DEVICE_SN command is:
#include <sys/svc.h>

device_sn_t device_sn;

if (!(ioctl (dev_fd, STIOC_DEVICE_SN, &device_sn))) {
printf ("Tape device %s serial number: %x\n", dev_name, device_sn);

}

else {
perror ("Failure obtaining tape device serial number");
scsi_request_sense ();

}

STIOC_FORCE_DUMP
This command forces the device to perform a diagnostic dump. The IBM 3490E
Magnetic Tape Subsystem and the IBM TotalStorage Enterprise VTS do not support
this command.

No data structure is required for this command.

An example of the STIOC_FORCE_DUMP command is:
#include <sys/svc.h>

if (!(ioctl (dev_fd, STIOC_FORCE_DUMP, 0))) {
printf ("Dump completed successfully.\n");

}

else {
perror ("Failure performing device dump");
scsi_request_sense ();

}

STIOC_STORE_DUMP
This command forces the device to write the diagnostic dump to the currently
mounted tape cartridge. The IBM 3490E Magnetic Tape Subsystem and the IBM
TotalStorage Enterprise VTS do not support this command.

No data structure is required for this command.

An example of the STIOC_STORE_DUMP command is:
#include <sys/svc.h>

if (!(ioctl (dev_fd, STIOC_STORE_DUMP, 0))) {
printf ("Dump store on tape successfully.\n");

}

else {
perror ("Failure storing dump on tape");
scsi_request_sense ();

}

STIOC_READ_BUFFER
This command reads data from the specified device buffer.

The following data structure is filled out and supplied by the caller:

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 145

typedef struct {
uchar mode; /* transfer mode */
uchar id; /* device buffer id */
uint offset; /* buffer offset */
uint size; /* byte count */
uchar *buffer; /* data buffer */

} buffer_io_t;

The mode field should be set to one of the following values:

VEND_MODE Vendor specific mode

DSCR_MODE Descriptor mode

DNLD_MODE Download mode

The id field should be set to one of the following values:

ERROR_ID Diagnostic dump buffer

UCODE_ID Microcode buffer

An example of the STIOC_READ_BUFFER command is:
#include <sys/svc.h>

buffer_io_t buffer_io;

if (!(ioctl (dev_fd, STIOC_READ_BUFFER, &buffer_io))) {
printf ("Buffer read successfully.\n");

}

else {
perror ("Failure reading buffer");
scsi_request_sense ();

}

STIOC_WRITE_BUFFER
This command writes data to the specified device buffer.

The following data structure is filled out and supplied by the caller:
typedef struct {

uchar mode; /* transfer mode */
uchar id; /* device buffer id */
uint offset; /* buffer offset */
uint size; /* byte count */
uchar *buffer; /* data buffer */

} buffer_io_t;

The mode field should be set to one of the following values:

VEND_MODE Vendor-specific mode

DSCR_MODE Descriptor mode

DNLD_MODE Download mode

The id field should be set to one of the following values:

ERROR_ID Diagnostic dump buffer

UCODE_ID Microcode buffer

An example of the STIOC_WRITE_BUFFER command is:

HP-UX Device Driver (ATDD)

146 IBM Tape Device Drivers: Programming Reference

#include <sys/svc.h>

buffer_io_t buffer_io;

if (!(ioctl (dev_fd, STIOC_WRITE_BUFFER, &buffer_io))) {
printf ("Buffer written successfully.\n");

}

else {
perror ("Failure writing buffer");
scsi_request_sense ();

}

STIOC_QUERY_PATH
This ioctl returns the primary path and information for the first alternate path.

The data structure is:
typedef struct scsi_path_type
{

char primary_name[15]; /* primary logical device name */
char primary_parent[15]; /* primary SCSI parent name, "Host" name */
uchar primary_id; /* primary target address of device, "Id" value*/
uchar primary_lun; /* primary logical unit of device, "lun" value */
uchar primary_bus; /* primary SCSI bus for device, "Channel" value*/
unsigned long long primary_fcp_scsi_id; /* primary FCP SCSI id of device */
unsigned long long primary_fcp_lun_id; /* primary FCP logical unit of device */
unsigned long long primary_fcp_ww_name; /* primary FCP world wide name */
uchar primary_enabled; /* primary path enabled */
uchar primary_id_valid; /* primary id/lun/bus fields valid */
uchar primary_fcp_id_valid; /* primary FCP scsi/lun/id fields */
uchar alternate_configured; /* alternate path configured */
char alternate_name[15]; /* alternate logical device name */
char alternate_parent[15]; /* alternate SCSI parent name */
uchar alternate_id; /* alternate target address of device */
uchar alternate_lun; /* alternate logical unit of device */
uchar alternate_bus; /* alternate SCSI bus for device */
unsigned long long alternate_fcp_scsi_id; /* alternate FCP SCSI id of device */
unsigned long long alternate_fcp_lun_id; /* alternate FCP logical unit of device */
unsigned long long alternate_fcp_ww_name; /* alternate FCP world wide name */
uchar alternate_enabled; /* alternate path enabled */
uchar alternate_id_valid; /* alternate id/lun/bus fields valid */
uchar alternate_fcp_id_valid; /* alternate FCP scsi/lun/id fields */
uchar primary_drive_port_valid; /* primary drive port field valid */
uchar primary_drive_port; /* primary drive port number */
uchar alternate_drive_port_valid; /* alternate drive port field valid */
uchar alternate_drive_port; /* alternate drive port */
char persistent_dsf[30]; /* persistent logical device name on 11i v3 */
char reserved[30];

} scsi_path_t;

An example of the STIOC_QUERY_PATH command is:
#include <sys/svc.h>

scsi_path_t path;
memset(&path, 0, sizeof(scsi_path_t));
printf("Querying SCSI paths...\n");
rc = ioctl(dev_fd, STIOC_QUERY_PATH, &path);
if(rc == 0)

show_path(&path);

STIOC_DEVICE_PATH
This ioctl returns the primary path and all of the alternate paths information for a
physical device. This ioctl is only supported for a medium changer device.

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 147

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

The data structure is:
struct device_path_type
{
char name[30]; /* logical device name */
char parent[30]; /* logical parent name */
uchar id_valid; /* SCSI id/lun/bus fields valid */
uchar id; /* SCSI target address of device */
uchar lun; /* SCSI logical unit of device */
uchar bus; /* SCSI bus for device */
uchar fcp_id_valid; /* FCP scsi/lun/id fields valid */
unsigned long long fcp_scsi_id; /* FCP SCSi id of device */
unsigned long long fcp_lun_id; /* FCP logical unit of device */
unsigned long long fcp_ww_name; /* FCP world wide name */
uchar enabled; /* path enabled */
uchar drive_port_valid; /* drive port field valid */
uchar drive_port; /* drive port number */
uchar fenced; /* path fenced by disable path ioctl */
uchar host; /* host bus adapter id */
char reserved[62];
};

#define MAX_SCSI_FAILOVER_PATH_DISPLAY 16

typedef struct device_paths
{
int number_paths; /* number of paths configured */

int cur_path; /* current active path */
device_path_t device_path[MAX_SCSI_FAILOVER_PATH_DISPLAY];

};

An example of the STIOC_DEVICE_PATH command is:
#include “svc.h"
int rc = 0;

struct device_paths paths;
int i;

PRINTF("Querying device paths...\n”);

if(!(rc = ioctl(dev_fd, STIOC_DEVICE_PATH, &paths)))
{

PRINTF(“\n”);
for (i=0; i < paths.number_paths; i++)

{
if (i == 0)

{
PRINTF("Primary Path Number 1\n");

}
else

{
PRINTF("Alternate Path Number %d\n", i+1);
PRINTF(" Logical Device....... %s\n",paths.device_path[i].name);
PRINTF(" Host Bus Adapter..... %s\n",paths.device_path[i].parent);

}
if (paths.device_path[i].id_valid)

{
PRINTF(" SCSI Channel......... %d\n",paths.device_path[i].bus);
PRINTF(" Target ID............ %d\n",paths.device_path[i].id);
PRINTF(" Logical Unit......... %d\n",paths.device_path[i].lun);

}

if (paths.device_path[i].enabled)
{

PRINTF(" Path Enabled................... Yes\n");
}

else

HP-UX Device Driver (ATDD)

148 IBM Tape Device Drivers: Programming Reference

|

{
PRINTF(" Path Enabled................... No \n");

}
if (paths.device_path[i].fenced)

{
PRINTF(" Path Manually Disabled......... Yes\n");

}
else

{
PRINTF(" Path Manually Disabled......... No \n");

}

PRINTF("\n");
}

PRINTF("Total paths configured.. %d\n",paths.number_paths);
}

return rc;

STIOC_ENABLE_PATH
This ioctl enables the path specified by the path special file. This ioctl is only
supported for a medium changer device.

An example of the STIOC_ENABLE_PATH command is:
#include "svc.h"
if (stat(path_name, &statbuf)!=0)
{

printf("Unable to stat path.\n");
return -1;

}

if ((statbuf.st_rdev)&0xF00)
{

dev_t tempdev=(statbuf.st_rdev)&0xE00;
tempdev>>=1; // this is the same as shift left 1 and 0xF00
(statbuf.st_rdev)&=0xFFFFF0FF;
(statbuf.st_rdev)|=tempdev;

}

devt=statbuf.st_rdev;

if(!(rc = ioctl(dev_fd, STIOC_ENABLE_PATH, &devt)))
{

PRINTF("SCSI path enabled. \n");
}

else
{

PRINTF("Unabled to enable SCSI path, make sure this path is to the
same library as the opened path. \n Run Display Paths to see what paths
are connected to the opened path.\n");
}

STIOC_DISABLE_PATH
This ioctl disables the path specified by the path special file. This ioctl is only
supported for a medium changer device.

An example of the STIOC_DISABLE_PATH command is:
#include "svc.h"

if (stat(path_name, &statbuf)!=0)
{

printf("Unable to stat path.\n");
return -1;

}

HP-UX Device Driver (ATDD)

Chapter 3. HP-UX Tape and Medium Changer Device Driver 149

|

|

if ((statbuf.st_rdev)&0xF00)
{

dev_t tempdev=(statbuf.st_rdev)&0xE00;
tempdev>>=1; // this is the same as shift left 1 and 0xF00
(statbuf.st_rdev)&=0xFFFFF0FF;
(statbuf.st_rdev)|=tempdev;

}
devt=statbuf.st_rdev;

if(!(rc = ioctl(dev_fd, STIOC_DISABLE_PATH, &devt)))
{

PRINTF("SCSI path disabled. \n");
}

else
{

PRINTF("Unabled to enable SCSI path, make sure this path is to the
same library as the opened path. \n Run Display Paths to see what paths
are connected to the opened path.\n");
}

HP-UX Device Driver (ATDD)

150 IBM Tape Device Drivers: Programming Reference

Chapter 4. Linux Tape and Medium Changer Device Driver

IBM supplies a tape drive and medium changer device driver for the Linux
platform called IBMtape. IBM also supplies an open source device driver for Linux
called lin_tape. Both IBMtape and lin_tape have the same programming reference as
documented in this manual.

Software Interface

Entry Points
IBMtape supports the following Linux-defined entry points:
v open

v close

v read

v write

v ioctl

open
This entry point is driven by the open system call.

The programmer can access IBMtape devices with one of three access modes: write
only, read only, or read and write.

IBMtape also support the append open flag. When the open function is called with
the append flag set to TRUE, IBMtape attempts to rewind and seek two consecutive
filemarks and place the initial tape position between them. Open append fails [errno:
EIO] if no tape is loaded or there are not two consecutive filemarks on the loaded
tape. Open append does not automatically imply write access. Therefore, an access
mode must accompany the append flag during the open operation.

The open function issues a SCSI reserve command to the target device. If the reserve
command fails, open fails and errno EBUSY is returned.

close
This entry point is driven explicitly by the close system call and implicitly by the
operating system at application program termination.

For non-rewinding special files, such as /dev/IBMtape0n, if the last command before
the close function was a successful write, IBMtape writes two consecutive filemarks
marking the end of data. It then sets the tape position between the two consecutive
filemarks. If the last command before the close function successfully wrote one
filemark, then one additional filemark is written marking the end of data and the
tape position is set between the two consecutive filemarks.

For non-rewinding special files, if the last tape command before the close function
is write, but the write fails with sense key 6 (Unit Attention) and ASC/ASCQ 29/00
(Power On, Reset, or Bus Device Reset Occurred) or sense key 6 and ASC/ASCQ
28/00 (Not Ready to Ready Transition, Medium May Have Changed), IBMtape
will not write two consecutive tape file marks marking the end of data during close
processing. If the last tape command before the close function is write one file mark

© Copyright IBM Corp. 1999, 2012 151

and that command fails with one of the above two errors, IBMtape will not write
one additional file mark marking the end of data during close processing.

For rewind devices, such as /dev/IBMtape0, if the last command before the close
function was a successful write, IBMtape writes two consecutive filemarks marking
the end of data and issues a rewind command. If the last command before the close
function successfully wrote one filemark, one additional filemark is written
marking the end of data, and the rewind command is issued. If the write filemark
command fails, no rewind command is issued.

The application writers need to be aware that a Unit Attention sense data being
presented means that the tape medium may be in an indeterminate condition, and
no assumptions should be made about current tape positioning or whether the
medium that was previously in the drive is still in the drive. Consequently, IBM
suggests that after a Unit Attention is presented, the tape special file be closed and
reopened, label processing/verification be performed (to determine that the correct
medium is mounted), and explicit commands be executed to locate to the desired
location. Additional processing may also be needed for particular applications.

If an SIOC_RESERVE ioctl has been issued from an application before close, the
close function does not release the device; otherwise, it issues the SCSI release
command. In both situations, the close function attempts to deallocate all resources
allocated for the device. If, for some reason, IBMtape is not able to close, an error
code is returned.

Note: The return code for close should always be checked. If close is unsuccessful,
retry is recommended.

read
This entry point is driven by the read system call. The read operation can be
performed when there is a tape loaded in the device.

IBMtape supports two modes of read operation. If the read_past_filemark flag is set
to TRUE (using the STIOCSETP input/output control [ioctl]), then when a read
operation encounters a filemark, it returns the number of bytes read before
encountering the filemark and sets the tape position after the filemark. If the
read_past_filemark flag is set to FALSE (by default or using STIOCSETP ioctl), then
when a read operation encounters a filemark, if data was read, the read function
returns the number of bytes read, and positions the tape before the filemark. If no
data was read, then read returns 0 bytes read and positions the tape after the
filemark.

If the read function reaches end of the data on the tape, input/output error (EIO) is
returned and ASC, ASCQ keys (obtained by request sense ioctls) indicate the end of
data. IBMtape also conforms to all SCSI standard read operation rules, such as
fixed block versus variable block.

write
This entry point is driven by the write system call. The write operation can be
performed when there is a tape loaded in the device.

IBMtape supports early warning processing. When the trailer_labels flag is set to
TRUE (by default or using STIOCSETP ioctl call), IBMtape fails with errno
ENOSPACE only when a write operation first encounters the early warning zone
for end of tape. After the ENOSPACE error code is returned, IBMtape suppresses
all warning messages from the device generated by subsequent write commands,

Linux Device Driver (IBMtape)

152 IBM Tape Device Drivers: Programming Reference

effectively allowing write and write filemark commands in the early warning zone.
When physical end of tape is reached, error code EIO is returned, and the ASC and
ASCQ keys (obtained by the request sense ioctl) confirm the end of physical
medium condition. When the trailer_labels flag is set to FALSE (using STIOCSETP
ioctl call), IBMtape returns the ENOSPACE errno when attempting any write
command in the early warning zone.

ioctl
IBMtape conforms to all SCSI standard ioctl operation rules (such as fixed block
versus variable block).

This entry point provides a set of tape and SCSI specific functions. It allows Linux
applications to access and control the features and attributes of the tape device
programmatically.

Medium Changer Devices
IBMtape supports the following Linux entry points for the medium changer
devices:
v open

v close

v ioctl

open
This entry point is driven by the open system call. The open function attempts a
SCSI reserve command to the target device. If the reserve command fails, open fails
with errno EBUSY.

close
This entry point is driven explicitly by the close system call and implicitly by the
operating system at program termination. If an SIOC_RESERVE ioctl has been
issued from an application before close, the close function does not release the
device; otherwise, it issues the SCSI release command. In both situations, the close
function attempts to deallocate all resources allocated for the device. If, for some
reason, IBMtape is not able to close, an error code is returned.

ioctl
This entry point provides a set of medium changer and SCSI specific functions. It
allows Linux applications to access and control the features and attributes of the
robotic device programmatically.

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 153

General IOCTL Operations
This chapter describes the ioctl commands that provide access and control to the
tape and medium changer devices.

These commands are available for all tape and medium changer devices. They can
be issued to any one of the IBMtape special files.

Overview
The following ioctl commands are supported:

SIOC_INQUIRY Return the inquiry data.

SIOC_REQSENSE Return the sense data.

SIOC_RESERVE Reserve the device.

SIOC_RELEASE Release the device.

SIOC_TEST_UNIT_READY Issue the SCSI Test Unit Ready command.

SIOC_LOG_SENSE_PAGE Return the log sense data.

SIOC_LOG_SENSE10_PAGE Return the log sense data using a ten-byte CDB
with optional subpage.

SIOC_MODE_SENSE_PAGE Return the mode sense data.

SIOC_MODE_SENSE Return the mode sense data with optional subpage.

SIOC_INQUIRY_PAGE Return the inquiry data for a specific page.

SIOC_PASS_THROUGH Pass through custom built SCSI commands.

SIOC_QUERY_PATH Return the primary path and information for the
first alternate path.

SIOC_DEVICE_PATHS Return the primary path and information for all
the alternate paths.

SIOC_ENABLE_PATH Enable a path from the disabled state.

SIOC_DISABLE_PATH Disable a path.

These ioctl commands and their associated structures are defined in the IBM_tape.h
header file, which can be found in /usr/include/sys after installing IBMtape. The
IBM_tape.h header file should be included in the corresponding C programs that
call functions provided by IBMtape.

All ioctl commands require a file descriptor of an open file. Use the open command
to open a device and obtain a valid file descriptor.

The last four ioctls, SIOC_QUERY_PATH, SIOC_DEVICE_PATHS,
SIOC_ENABLE_PATH, and SIOC_DISABLE_PATH are available in the IBMtape
version 1.5.3 or higher, which supports data path failover for the 3592 tape drives.

SIOC_INQUIRY
This ioctl command collects the inquiry data from the device.

The data structure is:
struct inquiry_data {

uint qual :3, /* peripheral qualifier */
type :5; /* device type */

Linux Device Driver (IBMtape)

154 IBM Tape Device Drivers: Programming Reference

||
|

|

uint rm :1, /* removable medium */
mod :7; /* device type modifier */

uint iso :2, /* ISO version */
ecma :3, /* EMCA version */
ansi :3; /* ANSI version */

uint aenc :1, /* asynchronous event notification */
trmiop :1, /* terminate I/O process message */

:2, /* reserved */
rdf :4; /* response data format */

unchar len; /* additional length */
unchar resvd1; /* reserved */

uint :4, /* reserved */
mchngr :1, /* medium changer mode (SCSI-3 only) */

:3; /* reserved */
uint reladr :1, /* relative addressing */

wbus32 :1, /* 32-bit wide data transfers */
wbus16 :1, /* 16-bit wide data transfers */
sync :1, /* synchronous data transfers */
linked :1, /* linked commands */

:1, /* reserved */
cmdque :1, /* command queueing */
sftre :1; /* soft reset */
unchar vid[8]; /* vendor ID */
unchar pid[16]; /* product ID */
unchar revision[4]; /* product revision level */
unchar vendor1[20]; /* vendor specific */
unchar resvd2[40]; /* reserve */
unchar vendor2[31]; /* vendor specific (padded to 127) */

};

An example of the SIOC_INQUIRY command is:
#include <sys/IBM_tape.h>
char vid[9];
char pid[17];
char revision[5];
struct inquiry_data inqdata;
printf("Issuing inquiry...\n");
memset(&inqdata, 0, sizeof(struct inquiry_data));
if (!ioctl (fd, SIOC_INQUIRY, &inqdata)) {

printf ("The SIOC_INQUIRY ioctl succeeded\n");
printf ("\nThe inquiry data is:\n");
/*-
* Just a dump byte won’t work because of the compiler
* bit field mapping
-*/
/* print out structure data field */
printf("\nInquiry Data:\n");
printf("Peripheral Qualifer-----------------0x%02x\n", inqdata.qual);
printf("Peripheral Device Type--------------0x%02x\n", inqdata.type);
printf("Removal Medium Bit------------------%d\n", inqdata.rm);
printf("Device Type Modifier----------------0x%02x\n", inqdata.mod);
printf("ISO version-------------------------0x%02x\n", inqdata.iso);
printf("ECMA version------------------------0x%02x\n", inqdata.ecma);
printf("ANSI version------------------------0x%02x\n", inqdata.ansi);
printf("Asynchronous Event Notification Bit-%d\n", inqdata.aenc);
printf("Terminate I/O Process Message Bit---%d\n", inqdata.trmiop);
printf("Response Data Format----------------0x%02x\n", inqdata.rdf);
printf("Additional Length-------------------0x%02x\n", inqdata.len);
printf("Medium Changer Mode-----------------0x%02x\n", inqdata.mchngr);
printf("Relative Addressing Bit-------------%d\n", inqdata.reladr);
printf("32 Bit Wide Data Transfers Bit------%d\n", inqdata.wbus32);
printf("16 Bit Wide Data Transfers Bit------%d\n", inqdata.wbus16);
printf("Synchronous Data Transfers Bit------%d\n", inqdata.sync);
printf("Linked Commands Bit-----------------%d\n", inqdata.linked);
printf("Command Queueing Bit----------------%d\n", inqdata.cmdque);
printf("Soft Reset Bit----------------------%d\n", inqdata.sftre);

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 155

strncpy(vid, inqdata.vid, 8);
vid[8] = ’\0’;

strncpy(pid, inqdata.pid, 16);
pid[16] = ’\0’;

strncpy(revision, inqdata.revision, 4);
revision[4] = ’\0’;

printf("Vendor ID-----------------------------%s\n", vid);
printf("Product ID----------------------------%s\n", pid);
printf("Product Revision Level----------------%s\n", revision);

dump_bytes(inqdata.vendor1, 20, "vendor1");
dump_bytes(inqdata.vendor2, 31, "vendor2");

}
else {

perror ("The SIOC_INQUIRY ioctl failed");
sioc_request_sense();

}

SIOC_REQSENSE
This ioctl command returns the device sense data. If the last command resulted in
an error, then the sense data is returned for the error. Otherwise, a new sense
command is issued to the device.

The data structure is:
struct request_sense {

uint valid :1, /* sense data is valid */
err_code :7; /* error code */

unchar segnum; /* segment number */
uint fm :1, /* filemark detected */

eom :1, /* end of medium */
ili :1, /* incorrect length indicator */
resvd1 :1, /* reserved */
key :4; /* sense key */

int info; /* information bytes */
unchar addlen; /* additional sense length */
uint cmdinfo; /* command specific information */
unchar asc; /* additional sense code */
unchar ascq; /* additional sense code qualifier */
unchar fru; /* field replaceable unit code */
uint sksv :1, /* sense key specific valid */

cd :1, /* control/data */
resvd2 :2, /* reserved */
bpv :1, /* bit pointer valid */
sim :3; /* system information message */

unchar field[2]; /* field pointer */
unchar vendor[109]; /* vendor specific (padded to 127) */

};

An example of the SIOC_REQSENSE command is:
#include <sys/IBM_tape.h>

struct request_sense sense_data;
int rc;
printf("Issuing request sense...\n");
memset(&sense_data, 0, sizeof(struct request_sense));
rc = ioctl(fd, SIOC_REQSENSE, &sense_data);
if (rc == 0)
{

if(!sense_data.err_code)
printf("No valid sense data returned.\n");

else
{

/* print out data fields */

Linux Device Driver (IBMtape)

156 IBM Tape Device Drivers: Programming Reference

printf("Information Field Valid Bit-----%d\n", sense_data.valid);
printf("Error Code----------------------0x%02x\n", sense_data.err_code);
printf("Segment Number------------------0x%02x\n", sense_data.segnum);
printf("filemark Detected Bit----------%d\n", sense_data.fm);
printf("End Of Medium Bit---------------%d\n", sense_data.eom);
printf("Illegal Length Indicator Bit----%d\n", sense_data.ili);
printf("Sense Key-----------------------0x%02x\n", sense_data.key);
if(sense_data.valid)

printf("Information Bytes-------------0x%02x 0x%02x 0x%02x 0x%02x\n",
sense_data.info >> 24, sense_data.info >> 16,
sense_data.info >> 8, sense_data.info & 0xFF);

printf("Additional Sense Length---------0x%02x\n", sense_data.addlen);
printf("Command Specific Information----0x%02x 0x%02x 0x%02x 0x%02x\n",

sense_data.cmdinfo >> 24, sense_data.cmdinfo >> 16,
sense_data.cmdinfo >> 8, sense_data.cmdinfo & 0xFF);

printf("Additional Sense Code-----------0x%02x\n", sense_data.asc);
printf("Additional Sense Code Qualifier-0x%02x\n", sense_data.ascq);
printf("Field Replaceable Unit Code-----0x%02x\n", sense_data.fru);
printf("Sense Key Specific Valid Bit----%d\n", sense_data.sksv);
if(sense_data.sksv)

{
printf("Command Data Block Bit--%d\n", sense_data.cd);
printf("Bit Pointer Valid Bit---%d\n", sense_data.bpv);
if(sense_data.bpv)

printf("System Information Message-0x%02x\n", sense_data.sim);
printf("Field Pointer----------------0x%02x%02x\n",

sense_data.field[0], sense_data.field[1]);
}

dump_bytes(sense_data.vendor, 109, "Vendor");
}

}
return rc;

SIOC_RESERVE
This ioctl command explicitly reserves the device and prevents it from being
released after a close operation.

The device is not released until an SIOC_RELEASE ioctl command is issued.

The ioctl command can be used for applications that require multiple open and
close processing in a host-sharing environment.

There are no arguments for this ioctl command.

An example of the SIOC_RESERVE command is:
#include <sys/IBM_tape.h>
if (!ioctl (fd, SIOC_RESERVE, NULL)) {

printf ("The SIOC_RESERVE ioctl succeeded\n");
}
else {

perror ("The SIOC_RESERVE ioctl failed");
sioc_request_sense();

}

SIOC_RELEASE
This ioctl command explicitly releases the device and allows other hosts to access
it. The ioctl command is used with the SIOC_RESERVE ioctl command for
applications that require multiple open and close processing in a host-sharing
environment.

There are no arguments for this ioctl command.

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 157

An example of the SIOC_RELEASE command is:
#include <sys/IBM_tape.h>
if (!ioctl (fd, SIOC_RELEASE, NULL)) {

printf ("The SIOC_RELEASE ioctl succeeded\n");
}
else {

perror ("The SIOC_RELEASE ioctl failed");
sioc_request_sense();

}

SIOC_TEST_UNIT_READY
This ioctl command issues the SCSI Test Unit Ready command to the device.

There are no arguments for this ioctl command.

An example of the SIOC_TEST_UNIT_READY command is:
#include <sys/IBM_tape.h>
if (!ioctl (fd, SIOC_TEST_UNIT_READY, NULL)) {

printf ("The SIOC_TEST_UNIT_READY ioctl succeeded\n");
}
else {

perror ("The SIOC_TEST_UNIT_READY ioctl failed");
sioc_request_sense();

}

SIOC_LOG_SENSE_PAGE and SIOC_LOG_SENSE10_PAGE
This ioctl command returns a log sense page from the device. The desired page is
selected by specifying the page_code in the log_sense_page structure. Optionally, a
specific parm pointer, also known as a parm code, and the number of parameter
bytes can be specified with the command.

To obtain the entire log page, the len and parm_pointer fields should be set to zero.
To obtain the entire log page starting at a specific parameter code, set the
parm_pointer field to the desired code and the len field to zero. To obtain a specific
number of parameter bytes, set the parm_pointer field to the desired code and set
the len field to the number of parameter bytes plus the size of the log page header
(four bytes). The first four bytes of returned data are always the log page header.
See the appropriate device manual to determine the supported log pages and
content.

The data structures are:
struct log_sense_page {

unchar page_code;
unsigned short len;
unsigned short parm_pointer;
char data[LOGSENSEPAGE];

};

struct log_sense10_page {
unchar page_code;
unchar subpage_code;
unchar reserved[2];
unsigned short len;
unsigned short parm_pointer;
char data[LOGSENSEPAGE];

};

The IOCTLs are identical, except that if a specific subpage is desired,
log_sense10_page should be used and subpage_code should be assigned by the
user application.

Linux Device Driver (IBMtape)

158 IBM Tape Device Drivers: Programming Reference

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

An example of the SIOC_LOG_SENSE_PAGE command is:
#include <sys/IBM_tape.h>
struct log_sense_page log_page;
int temp;
/* get log page 0, list of log pages */
log_page.page_code = 0x00;
log_page.len = 0;
log_page.parm_pointer = 0;
if (!ioctl (fd, SIOC_LOG_SENSE_PAGE, &log_page)) {

printf ("The SIOC_LOG_SENSE_PAGE ioctl succeeded\n");
dump_bytes(log_page.data, LOGSENSEPAGE);

}
else {

perror ("The SIOC_LOG_SENSE_PAGE ioctl failed");
sioc_request_sense();

}
/* get fraction of volume traversed */
log_page.page_code = 0x38;
log_page.len = 0;
log_page.parm_pointer = 0x000F;
if (!ioctl (fd, SIOC_LOG_SENSE_PAGE, &log_page)) {

temp = log_page.data[sizeof(log_page_header) + 4)];
printf ("The SIOC_LOG_SENSE_PAGE ioctl succeeded\n");
printf ("Fractional Part of Volume Traversed %x\n",temp);

}
else {

perror ("The SIOC_LOG_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

SIOC_MODE_SENSE_PAGE and SIOC_MODE_SENSE
This ioctl command returns a mode sense page from the device. The desired page
is selected by specifying the page_code in the mode_sense_page structure. See the
appropriate device manual to determine the supported mode pages and content.

The data structures are:
struct mode_sense_page {

unchar page_code;
char data[MAX_MDSNS_LEN];

};

struct mode_sense {
unchar page_code;
unchar subpage_code;
unchar reserved[6];
unchar cmd_code;
char data[MAX_MDSNS_LEN];

};

The IOCTLs are identical, except that if a specific subpage is desired, mode_sense
should be used and subpage_code should be assigned by the user application.
Under the current implementation, cmd_code is not assigned by the user and
should be left with a value 0.

An example of the SIOC_MODE_SENSE_PAGE command is:
#include <sys/IBM_tape.h>
struct mode_sense_page mode_page;
/* get medium changer mode */
mode_page.page_code = 0x20;
if (!ioctl (fd, SIOC_MODE_SENSE_PAGE, &mode_page)) {

printf ("The SIOC_MODE_SENSE_PAGE ioctl succeeded\n");
if (mode_page.data[2] == 0x02)

printf ("The library is in Random mode.\n");

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 159

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

else if (mode_page.data[2] == 0x05)
printf ("The library is in Automatic (Sequential) mode.\n");

}
else {

perror ("The SIOC_MODE_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

SIOC_INQUIRY_PAGE
This ioctl command returns an inquiry page from the device. The desired page is
selected by specifying the page_code in the inquiry_page structure. See the
appropriate device manual to determine the supported inquiry pages and content.

The data structure is:
struct inquiry_page {

char page_code;
char data[INQUIRYPAGE];

};

An example of the SIOC_INQUIRY_PAGE command is:
#include <sys/IBM_tape.h>
struct inquiry_page inq_page;
/* get inquiry page x83 */
inq_page.page_code = 0x83;
if (!ioctl (fd, SIOC_INQUIRY_PAGE, &inq_page)) {

printf ("The SIOC_INQUIRY_PAGE ioctl succeeded\n");
dump_bytes(inq_page.data, INQUIRYPAGE);

}
else {

perror ("The SIOC_INQUIRY_PAGE ioctl failed");
sioc_request_sense();

}

SCSI_PASS_THROUGH
This ioctl command passes the built command data block structure with I/O buffer
pointers to the lower SCSI layer. Status is returned from the lower SCSI layer to
the caller via the ASC and ASCQ values and SenseKey fields. The ASC and ASCQ
and sense key fields are only valid when the SenseDataValid field is true.

The data structure is:
#define SCSI_PASS_THROUGH _IOWR(’P’,0x01,SCSIPassThrough) /* Pass Through */

typedef struct _SCSIPassThrough
{

unchar CDB[12]; /* Command Data Block */
unchar CommandLength; /* Command Length */
unchar * Buffer ; /* Command Buffer */
ulong BufferLength; /* Buffer Length */
unchar DataDirection; /* Data Transfer Direction */
ushort TimeOut; /* Time Out Value */
unchar TargetStatus; /* Target Status */
unchar MessageStatus; /* Message from host adapter */
unchar HostStatus; /* Host status */
unchar DriverStatus; /* Driver status */
unchar SenseDataValid; /* Sense Data Valid */
unchar ASC; /* ASC key if the SenseDataValid is True */
unchar ASCQ; /* ASCQ key if the SenseDataValid is True */
unchar SenseKey; /* Sense key if the SenseDataValid is True */

} SCSIPassThrough, *PSCSIPassThrough;
#define SCSI_DATA_OUT 1
#define SCSI_DATA_IN 2
#define SCSI_DATA_NONE 3

Linux Device Driver (IBMtape)

160 IBM Tape Device Drivers: Programming Reference

SCSI_DATA_OUT indicates sending data out of the initiator (host bus adapter),
also known as write mode. SCSI_DATA_IN indicates receiving data into the
initiator (host bus adapter), also known as read mode. SCSI_DATA_NONE
indicates no data are transferred.

An example of the SCSI_PASS_THROUGH command is:
#include <sys/IBM_tape.h>
SCSIPassThrough PassThrough;
memset(&PassThrough, 0, sizeof(SCSIPassThrough);
/* Issue test unit ready command */
PassThrough.CDB[0] = 0x00;
PassThrough.CommandLength = 6;
PassThrough.DataDirection = SCSI_DATA_NONE;
if (!ioctl (fd, SCSI_PASS_THROUGH, &PassThrough)) {

printf ("The SCSI_PASS_THROUGH ioctl succeeded\n");
if((PassThrough.TargetStatus == STATUS_SUCCESS) &&

(PassThrough.MessageStatus == STATUS_SUCCESS) &&
(PassThrough.HostStatus == STATUS_SUCCESS) &&
(PassThrough.DriverStatus == STATUS_SUCCESS))
printf(" Test Unit Ready returns success\n");

else {
printf(" Test Unit Ready failed\n");
if(PassThrough.SenseDataValid)

printf("Sense Key %02x, ASC %02x, ASCQ %02x\n",
PassThrough.SenseKey, PassThrough.ASC,
PassThrough.ASCQ);

}
}
else {

perror ("The SIOC SCSI_PASS_THROUGH ioctl failed");
sioc_request_sense();

}

SIOC_QUERY_PATH
This ioctl command returns the primary path and the first alternate path
information for a physical device. It supports the 3592 tape drives

The data structure is:
struct scsi_path
{

char primary_name[30]; /* primary logical device name */
char primary_parent[30]; /* primary SCSI parent name, "Host" name */
unchar primary_id; /* primary target address of device, "Id" value*/
unchar primary_lun; /* primary logical unit of device, "lun" value */
unchar primary_bus; /* primary SCSI bus for device, "Channel" value*/
unsigned long long primary_fcp_scsi_id; /* not supported */
unsigned long long primary_fcp_lun_id; /* not supported */
unsigned long long primary_fcp_ww_name; /* not supported */
unchar primary_enabled; /* primary path enabled */
unchar primary_id_valid; /* primary id/lun/bus fields valid */
unchar primary_fcp_id_valid; /* not supported */
unchar alternate_configured; /* alternate path configured */
char alternate_name[30]; /* alternate logical device name */
char alternate_parent[30]; /* alternate SCSI parent name */
unchar alternate_id; /* alternate target address of device */
unchar alternate_lun; /* alternate logical unit of device */
unchar alternate_bus; /* alternate SCSI bus for device */
unsigned long long alternate_fcp_scsi_id; /* not supported */
unsigned long long alternate_fcp_lun_id; /* not supported */
unsigned long long alternate_fcp_ww_name; /* not supported */
unchar alternate_enabled; /* alternate path enabled */
unchar alternate_id_valid; /* alternate id/lun/bus fields valid */
unchar alternate_fcp_id_valid; /* not supported */

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 161

unchar primary_drive_port_valid; /* not supported */
unchar primary_drive_port; /* not supported */
unchar alternate_drive_port_valid; /* not supported */
unchar alternate_drive_port; /* not supported */
unchar primary_fenced; /* primary fenced by disable path ioctl */
unchar alternate_fenced; /* alternate fenced by disable path ioctl */
unchar primary_host; /* primary host bus adapter id */
unchar alternate_host; /* alternate host bus adapter id */
char reserved[56];

};

An example of the SIOC_QUERY_PATH command is:
#include <sys/IBM_tape.h>
struct scsi_path path;
memset(&path, 0, sizeof(struct scsi_path));
printf("Querying SCSI paths...\n");
rc = ioctl(fd, SIOC_QUERY_PATH, &path);
if(rc == 0)

show_path(&path);

SIOC_DEVICE_PATHS
This ioctl command returns the primary path and all of the alternate paths
information for a physical device. This ioctl only supports the 3592 tape drives. The
data structure for this ioctl command is:
struct device_path_t
{

char name[30]; /* logical device name */
char parent[30]; /* logical parent name */
unchar id_valid; /* SCSI id/lun/bus fields valid */
unchar id; /* SCSI target address of device */
unchar lun; /* SCSI logical unit of device */
unchar bus; /* SCSI bus for device */
unchar fcp_id_valid; /* not supported */
unsigned long long fcp_scsi_id; /* not supported */
unsigned long long fcp_lun_id; /* not supported */
unsigned long long fcp_ww_name; /* not supported */
unchar enabled; /* path enabled */
unchar drive_port_valid; /* not supported */
unchar drive_port; /* not supported */
unchar fenced; /* path fenced by diable path ioctl */
unchar host; /* host bus adapter id */
char reserved[62];

};

struct device_paths
{

int number_paths; /* number of paths configured */
struct device_path_t path[MAX_SCSI_PATH];

};

An example of this ioctl command is:
#include <sys/IBM_tape.h>
struct device_paths device_path;
memset(%device_path, 0, sizeof(struct device_paths));
printf("Querying device paths...\n");
rc = ioctl(fd, SIOC_DEVICE_PATHS, &device_path);
if(rc == 0)

{
printf("\n");
for (i=0; i < device_path.number_paths; i++)

{
if (i == 0)

printf("Primary Path Number 1\n");
else

Linux Device Driver (IBMtape)

162 IBM Tape Device Drivers: Programming Reference

printf("Alternate Path Number %d\n", i+1);
printf(" Logical Device............ %s\n",device_path.path[i].name);
printf(" Host Bus Adapter.......... %s\n",device_path.path[i].parent);

if (device_path.path[i].id_valid)
{

printf(" SCSI Host ID.............. %d\n",device_path.path[i].host);
printf(" SCSI Channel.............. %d\n",device_path.path[i].bus);
printf(" Target ID................. %d\n",device_path.path[i].id);
printf(" Logical Unit.............. %d\n",device_path.path[i].lun);

}

if (device_path.path[i].enabled)
printf(" Path Enabled................... Yes\n");

else
printf(" Path Enabled................... No \n");

if (device_path.path[i].fenced)
printf(" Path Manually Disabled......... Yes\n");

else
printf(" Path Manually Disabled......... No \n");

printf("\n");
}

printf("Total paths configured...... %d\n",device_path.number_paths);
}

SIOC_ENABLE_PATH
This ioctl enables the path specified by the path number. This command only
supports the 3592 tape drives.

An example of this ioctl command is:
#include <sys/IBM_tape.h>
if (path == PRIMARY_SCSI_PATH)

printf("Enabling primary SCSI path 1...\n");
else

printf("Enabling alternate SCSI path %d...\n",path);

rc = ioctl(fd, SIOC_ENABLE_PATH, path);

SIOC_DISABLE_PATH
This ioctl disables the path specified by the path number. This command only
supports the 3592 tape drives.

An example of this ioctl command is:
#include <sys/IBM_tape.h>
if (path == PRIMARY_SCSI_PATH)

printf("Disabling primary SCSI path 1...\n");
else

printf("Disabling alternate SCSI path %d...\n",path);
rc = ioctl(fd, SIOC_DISABLE_PATH, path);

Tape Drive IOCTL Operations
The device driver supports the set of tape ioctl commands that is available with the
base Linux operating system in addition to a set of expanded tape ioctl commands
that gives applications access to additional features and functions of the tape
drives.

Overview
The following ioctl commands are supported:

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 163

STIOCTOP Perform the basic tape operations.

STIOCQRYP Query the tape device, device driver, and media parameters.

STIOCSETP Change the tape device, device driver, and media parameters.

STIOCSYNC Synchronize the tape buffers with the tape.

STIOCDM Displays and manipulates one or two messages.

STIOCQRYPOS
Query the tape position and the buffered data.

STIOCSETPOS
Set the tape position.

STIOCQRYSENSE
Query the sense data from the tape device.

STIOCQRYINQUIRY
Return the inquiry data.

STIOC_LOCATE
Locate to a certain tape position.

STIOC_READ_POSITION
Read the current tape position.

STIOC_RESET_DRIVE
Issue a SCSI Send Diagnostic command to reset the tape drive.

STIOC_PREVENT_MEDIUM_REMOVAL
Prevent medium removal by an operator.

STIOC_ALLOW_MEDIUM_REMOVAL
Allow medium removal by an operator.

STIOC_REPORT_DENSITY_SUPPORT
Return supported densities from the tape device.

MTDEVICE Returns the device number used for communicating with an
Enterprise Tape Library 3494.

STIOC_GET_DENSITY
Query the current write density format settings on the tape drive.
The current density code from the drive Mode Sense header, the
Read/Write Control Mode page default density, and the pending
density are returned.

STIOC_SET_DENSITY
Set a new write density format on the tape drive using the default
and pending density fields. The application can specify a new
write density for the currently loaded tape only; or, it can specify a
new write density as a default for all tapes.

GET_ENCRYPTION_STATE
This ioctl can be used for application-, system-, and
library-managed encryption. It only allows a query of the
encryption status.

SET_ENCRYPTION_STATE
This ioctl can only be used for application-managed encryption. It
sets the encryption state for application-managed encryption.

Linux Device Driver (IBMtape)

164 IBM Tape Device Drivers: Programming Reference

SET_DATA_KEY
This ioctl can only be used for application-managed encryption. It
sets the data key for application-managed encryption.

STIOC_QUERY_PARTITION
This ioctl queries for partition information on applicable tapes. It
displays max number of possible partitions, number of partitions
currently on tape, the active partition, the size unit (bytes,
kilobytes, etc.) and the sizes of each partition.

STIOC_CREATE_PARTITION
This ioctl creates partitions on applicable tapes. The user is allowed
to specify the number and type of partitions and the size of each
partition.

STIOC_SET_ACTIVE_PARTITION
This ioctl allows the user to set the partition on which to perform
tape operations.

STIOC_ALLOW_DATA_OVERWRITE
This ioctl allows tape data to be overwritten when in data safe
mode.

STIOC_READ_POSITION_EX
This ioctl reads the tape position and includes support for the long
and extended formats.

STIOC_LOCATE_16
This ioctl sets the tape position using a long tape format.

STIOC_QUERY_BLK_PROTECTION
This ioctl queries the current capability and status of Logical Block
Protection in the drive

STIOC_SET_BLK_PROTECTION
This ioctl sets the current status of Logical Block Protection in the
drive

STIOC_VERIFY_TAPE_DATA
This ioctl instructs the tape drive to scan the data on its current
tape to check for errors.

These ioctl commands and their associated structures are defined in the IBM_tape.h
header file which can be found in the lin_tape source rpm package. This header
should be included in the corresponding C program using the ioctl commands.

STIOCTOP
This ioctl command performs basic tape operations. The st_count variable is used
for many of its operations. Normal error recovery applies to these operations. The
device driver can issue several tries to complete them. For all forward movement
space operations, the tape position finishes on the end-of-tape side of the record or
filemark, and on the beginning-of-tape side of the record or filemark for backward
movement.

The input data structure is:
struct stop {

short st_op; /* operations defined below */
daddr_t st_count; /* how many of them to do (if applicable) */

};

The st_op variable is set to one of the following operations:

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 165

|
|
|

STOFFL
Unload the tape. The st_count parameter does not apply.

STREW
Rewind the tape. The st_count parameter does not apply.

STERASE
Erase the entire tape. The st_count parameter does not apply.

STRETEN
Perform the rewind operation. The tape devices perform the retension
operation automatically when needed.

STWEOF
Write st_count number of filemarks.

STFSF Space forward the st_count number of filemarks.

STRSF
Space backward the st_count number of filemarks.

STFSR
Space forward the st_count number of records.

STRSR
Space backward the st_count number of records.

STTUR
Issue the Test Unit Ready command. The st_count parameter does not
apply.

STLOAD
Issue the SCSI Load command. The st_count parameter does not apply. The
operation of the SCSI Load command varies depending on the type of
device. See the appropriate hardware reference manual.

STSEOD
Space forward to the end of the data. The st_count parameter does not
apply.

STEJECT
Unload the tape. The st_count parameter does not apply.

STINSRT
Issue the SCSI Load command. The st_count parameter does not apply. The
operation of the SCSI Load command varies depending on the type of
device. See the appropriate hardware reference manual.

Note: If zero is used for operations that require the st_count parameter, then the
command is not issued to the device, and the device driver returns a
successful completion.

An example of the STIOCTOP command is:
#include <sys/IBM_tape.h>

struct stop stop;
stop.st_op=STWEOF;
stop.st_count=3;
if (ioctl(tapefd,STIOCTOP,&stop)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}

Linux Device Driver (IBMtape)

166 IBM Tape Device Drivers: Programming Reference

STIOCQRYP or STIOCSETP
The STIOCQRYP command allows the program to query the tape device, device
driver, and the media parameters. The STIOCSETP command allows the program
to change the tape device, the device driver, and the media parameters.

Before issuing the STIOCSETP command, use the STIOCQRYP command to query
and fill the fields of the data structure you do not want to change. Then issue the
STIOCSETP command to change the selected fields. Changing certain fields, such
as buffered_mode, impacts performance. If the buffered_mode field is FALSE, each
record written to the tape is immediately transferred to the tape. This operation
guarantees that each record is on the tape, but it impacts performance.

Unchangeable Parameters: The following parameters returned by the
STIOCQRYP command cannot be changed by the STIOCSETP command.

hkwrd
This parameter is accepted but ignored.

logical_write_protect
This parameter sets the thpe of logical write protection for the tape loaded
in the drive.

write_protect
If the currently mounted tape is write protected, this field is set to TRUE.
Otherwise, it is set to FALSE.

min_blksize
This parameter is the minimum block size for the device. The driver gets
this field by issuing the SCSI Read Block Limits command to the device.

max_blksize
This parameter is the maximum block size for the device. The driver gets
this field by issuing the SCSI Read Block Limits command to the device.

retain_reservation
This parameter is accepted but ignored.

medium_type
This parameter is the media type of the currently loaded tape. Some tape
devices support multiple media types and report different values in this
field. See the hardware reference guide for the specific tape device to
determine the possible values.

capacity_scaling
This parameter sets the capacity or logical length of the current tape. By
reducing the capacity of the tape, the tape drive can access data faster.
Capacity Scaling is not currently supported in IBMtape.

density_code
This parameter is the density setting for the currently loaded tape. Some
tape devices support multiple densities and report the current setting in
this field. See the hardware reference guide for the specific tape device to
determine the possible values.

volid This field is always set to zero.

emulate_autoloader
This parameter is accepted but ignored.

record_space_mode
Only SCSI_SPACE_MODE is supported.

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 167

read_sili_bit
This parameter is accepted but ignored. SILI bit is currently not supported
due to Linux system environment limitations.

Changeable Parameters: The following parameters can be changed using the
STIOCSETP ioctl command:

trace This parameter turns the trace for the tape device On or Off.

blksize
This parameter specifies the new effective block size for the tape device.
Use 0 for variable block mode.

compression
This parameter turns the hardware compression On or Off.

max_scsi_xfer
This parameter is the maximum transfer size allowed per SCSI command.
In the IBMtape driver 3.0.3 or lower level, this value is 256KB (262144
bytes) by default and changeable through the STIOCSETP ioctl. In the
IBMtape driver 3.0.5 or above and the open source driver lin_tape, this
parameter is not changeable any more. It is determined by the maximum
transfer size of the Host Bus Adapter that the tape drive is attached to.

trailer_labels
If this parameter is set to On, then writing a record past the early warning
mark on the tape is allowed. Only the first write operation that detects the
early warning mark returns the ENOSPC error code. All subsequent write
operations are allowed to continue despite the check conditions that result
from writing in the early warning zone (which are suppressed). When the
end of the physical volume is reached, EIO is returned.

If this parameter is set to Off, the first write in the early warning zone
fails, the ENOSPC error code is returned, and subsequent write operations
fail.

rewind_immediate
This parameter turns the immediate bit On or Off for subsequent rewind
commands. If it is set to On, then the STREW tape operation executes
faster, but the next tape command may take longer to finish because the
actual physical rewind operation must complete before the next tape
command can start.

logging
This parameter turns the volume logging for the tape device On or Off.

disable_sim_logging
If this parameter is Off, the SIM/MIM data will be automatically retrieved
by the IBMtape device driver whenever it is available in the tape device.

disable_auto_drive_dump
If this parameter is Off, the drive dump will be automatically retrieved by
the IBMtape device driver whenever there is a drive dump in the tape
device.

logical_write_protect
This parameter sets the type of logical write protection for the tape loaded
in the drive. See the hardware reference guide for the specific device for
different types of logical write protect.

capacity_scaling
This field can only be changed when the tape is positioned at the

Linux Device Driver (IBMtape)

168 IBM Tape Device Drivers: Programming Reference

beginning of the tape. When a change is accepted, IBMtape rescales the
tape capacity by formatting the loaded tape. See the IBM TotalStorage
Enterprise Tape System 3592 SCSI Reference for the specific device for
different types of capacity scaling.

IBM 3592 tape cartridges have two formats available, the 300GB format
and the 60GB Fast Access format. The format of a cartridge can be queried
under program control by issuing the STIOCQRYP ioctl and checking the
returned value of capacity_scaling_value (in hex).

If the capacity_scaling_value is 0x00, your 3592 tape cartridge is in 300GB
format. If the capacity_scaling_value is 0x35, your tape cartridge is in 60GB
Fast Access format. If the capacity_scaling_value is some other value, your
tape cartridge format is undefined. (IBM may later define other supported
cartridge formats. If so, they will be documented in later versions of the
IBM TotalStorage Enterprise Tape System 3592 SCSI Reference).

If you want to change your cartridge format, you may use the STIOCSETP
ioctl to change the capacity scaling value of your cartridge.

Warning!: All data on the cartridge will be lost when the format is
changed.

If you want to set it to the 300GB format, set capacity_scaling_value to
0x00 and capacity_scaling to SCALE_VALUE. If you want to set it to the
60GB Fast Access format, set capacity_scaling_value to 0x35 and
capacity_scaling to SCALE_VALUE. Setting capacity_scaling to
SCALE_VALUE is required.

Note: All data on the tape is deleted and is not recoverable.

read_past_file_mark
This parameter changes the behavior of the read function when
encountering a filemark. If the read_past_filemark flag is TRUE when a
read operation encounters a filemark, IBMtape returns the number of bytes
read before encountering the filemark and sets the tape position at the EOT
side of the filemark.

If the read_past_filemark flag is FALSE (by default) when a read operation
encounters a filemark, if data was read, the read function returns the
number of bytes read, and positions the tape at the BOT side of the
filemark. If no data was read, the read returns 0 bytes and positions the
tape at the EOT side of the filemark.

limit_read_recov
If this flag is TRUE, automatic recovery from read errors will be limited to
five seconds. If it is FALSE, the default will be restored and the tape drive
will take an arbitrary amount of time for read error recovery.

limit_write_recov
If this flag is TRUE, automatic recovery from write errors will be limited to
five seconds. If it is FALSE, the default will be restored and the tape drive
will take an arbitrary amount of time for write error recovery.

data_safe_mode
If this flag is TRUE, data_safe_mode will be set in the drive. This will
prevent data on the tape from being overwritten to avoid accidental data
loss. If the value is FALSE, data_safe_mode will be turned off.

pews This parameter establishes the programmable early warning zone size. It is
a two-byte numerical value specifying how many MB before the standard

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 169

|
|
|
|

|
|
|
|

|
|
|
|

||
|

end-of-medium early warning zone to place the programmable early
warning indicator. If this value is set to a positive integer, a user
application will be warned that the tape is running out of space when the
tape head reaches the PEW location. If pews is set to 0, then there will be
no early warning zone and the user will only be notified at the standard
early warning location.

The input or output data structure is:
struct stchgp_s {

int blksize; /* new block size */
boolean trace; /* TRUE = message trace on */
uint hkwrd; /* trace hook word */
int sync_count; /* obsolete - not used */
boolean autoload; /* on/off autoload feature */
boolean buffered_mode; /* on/off buffered mode */
boolean compression; /* on/off compression */
boolean trailer_labels; /* on/off allow writing after EOM */
boolean rewind_immediate; /* on/off immediate rewinds */
boolean bus_domination; /* obsolete - not used */
boolean logging; /* enable or disable volume logging */
boolean write_protect; /* write_protected media */
uint min_blksize; /* minimum block size */
uint max_blksize; /* maximum block size */
uint max_scsi_xfer; /* maximum scsi tranfer len */
char volid[16]; /* volume id */
unchar acf_mode; /* automatic cartridge facility mode*/

#define ACF_NONE 0
#define ACF_MANUAL 1
#define ACF_SYSTEM 2
#define ACF_AUTOMATIC 3
#define ACF_ACCUMULATE 4
#define ACF_RANDOM 5

unchar record_space_mode; /* fsr/bsr space mode */
#define SCSI_SPACE_MODE 1
#define AIX_SPACE_MODE 2

unchar logical_write_protect; /* logical write protect */
#define NO_PROTECT 0
#define ASSOCIATED_PROTECT 1
#define PERSISTENT_PROTECT 2
#define WORM_PROTECT 3

unchar capacity_scaling; /* capacity scaling */
#define SCALE_100 0
#define SCALE_75 1
#define SCALE_50 2
#define SCALE_25 3
#define SCALE_VALUE 4

unchar retain_reservation; /* retain reservation */
unchar alt_pathing; /* alternate pathing active */
boolean emulate_autoloader; /* emulate autoloader in random mode*/
unchar medium_type; /* tape medium type */
unchar density_code; /* tape density code */
boolean disable_sim_logging; /* disable sim/mim error logging */
boolean read_sili_bit; /* SILI bit setting for read commands*/
unchar read_past_filemark; /* fixed block read pass the filemark*/
boolean disable_auto_drive_dump; /* disable auto drive dump logging*/
unchar capacity_scaling_value; /* hex value of capacity scaling */
boolean wfm_immediate; /* buffer write file mark */
boolean limit_read_recov; /* limit read recovery to 5 seconds */
boolean limit_write_recov; /* limit write recovery to 5 seconds*/
boolean data_safe_mode; /* turn data safe mode on/off */
unchar pews[2]; /* programmable early warn zone size*/
unchar reserved[13];

};

An example of the STIOCQRYP and STIOCSETP commands is:

Linux Device Driver (IBMtape)

170 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|

#include <sys/IBM_tape.h>
struct stchgp_s stchgp;
/* get current parameters */
if (ioctl(tapefd,STIOCQRYP,&stchgp)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}
/* set new parameters */
stchgp.rewind_immediate=1;
stchgp.trailer_labels=1;
if (ioctl(tapefd,STIOCSETP,&stchgp)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}

STIOCSYNC
This ioctl command immediately flushes the tape buffers to the tape. There are no
arguments for this ioctl command.

An example of the STIOCSYNC command is:
#include <sys/IBM_tape.h>
if (ioctl(tapefd,STIOCSYNC,NULL)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}

STIOCDM
This ioctl command displays and manipulates one or two messages on the message
display. The message sent using this call does not always remain on the display. It
depends on the current state of the tape device. Refer to the IBM 3590 manuals for
a description of the message display functions.

The input data structure is:
#define MAXMSGLEN 8
struct stdm_s
{

char dm_function; /* function code */
/* function selection */
#define DMSTATUSMSG 0x00 /* general status message */
#define DMDVMSG 0x20 /* demount verify message */
#deinfe DMMIMMED 0x40 /* mount with immediate action indicator */
#define DMDEMIMMED 0xE0 /* demount/mount with immediate action */
/* message control */
#define DMMSG0 0x00 /* display message 0 */
#define DMMSG1 0x04 /* display message 1 */
#define DMFLASHMSG0 0x08 /* flash message 0 */
#define DMFLASHMSG1 0x0C /* flash message 1 */
#define DMALTERNATE 0x10 /* alternate message 0 and message 1 */
char dm_msg0[MAXMSGLEN]; /* message 0 */
char dm_msg1[MAXMSGLEN]; /* message 1 */

};

An example of the STIOCDM command is:
#include <sys/IBM_tape.h>
struct stdm_s stdm;
memset(&stdm, 0, sizeof(struct stdm_s));
stdm.dm_func = DMSTATUSMSG|DMMSG0;
bcopy("SSG", stdm.dm_msg0, 8);
if(ioctl(tapefd, STIOCDM, &stdm)<0)
{

printf("IOCTL failure, errno = %d", errno);
exit(errno);

}

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 171

STIOCQRYPOS
This command queries the tape position. Tape position is defined as the location
where the next read or write operation occurs. The query function can be used
independently of, or in conjunction with, the STIOCSETPOS ioctl command.

A write filemark of count 0 is always issued to the drive, which flushes all data
from the buffers to the tape media. After the write filemark completes, the query is
issued.

After a query operation, the curpos field is set to an unsigned integer representing
the current position.

The eot field is set to TRUE if the tape is positioned between the early warning and
the physical end of the tape. Otherwise, it is set to FALSE.

The lbot field is valid only if the last command was a write command. If a query is
issued and the last command was not a write, lbot contains the value
LBOT_UNKNOWN.

Note: lbot indicates the last block of data transferred to the tape.

The number of blocks and number of bytes currently in the tape device buffers is
returned in the num_blocks and num_bytes fields, respectively.

The bot field is set to TRUE if the tape position is at the beginning of the tape.
Otherwise, it is set to FALSE.

The returned partition_number field is the current partition of the loaded tape.

Note: Partitioning of a volume is not currently supported.

The block ID of the next block of data to be transferred to or from the physical
tape is returned in the tapepos field.

The position data structure is:
typedef unsigned int blockid_t;
struct stpos_s {

char block_type; /* Format of block ID information */
#define QP_LOGICAL 0 /* SCSI logical block ID format */
#define QP_PHYSICAL 1 /* Vendor-specific block ID format */

boolean eot; /* Position is after early warning,*/
/* before physical end of tape. */

blockid_t curpos; /* For query pos, current position.*/
/* For set pos, position to go to. */

blockid_t lbot; /* Last block written to tape. */
#define LBOT_NONE 0xFFFFFFFF /* No blocks written to tape.*/
#define LBOT_UNKNOWN 0xFFFFFFFE /* Unable to determine info. */

uint num_blocks; /* Number of blocks in buffer. */
uint num_bytes; /* Number of bytes in buffer. */
boolean bot; /* Position is at beginning of tape*/
unchar partition_number; /* Current partition number on tape*/
unchar reserved1[2];
blockid_t tapepos; /* Next block to be transferred. */
unchar reserved2[48];

};

An example of the STIOCQRYPOS command is:

Linux Device Driver (IBMtape)

172 IBM Tape Device Drivers: Programming Reference

#include <sys/IBM_tape.h>
struct stpos_s stpos;
stpos.block_type=QP_PHYSICAL;
if (ioctl(tapefd,STIOCQRYPOS,&stpos)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}
oldposition=stpos.curpos;

STIOCSETPOS
This ioctl command issues a high speed locate operation to the position specified on
the tape. It uses the same position data structure described for STIOCQRYPOS,
however, only the block_type and curpos fields are used during a set operation.
STIOCSETPOS can be used independently of or in conjunction with
STIOCQRYPOS.

The block_type must be set to either QP_PHYSICAL or QP_LOGICAL; however,
there is no difference in how IBMtape processes the request.

An example of the STIOCQRYPOS and STIOCSETPOS commands is:
#include <sys/IBM_tape.h>
struct stpos_s stpos;
stpos.block_type=QP_LOGICAL;
if (ioctl(tapefd,STIOCQRYPOS,&stpos)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}
oldposition=stpos.curpos;

stpos.curpos=oldposition;
stpos.block_type=QP_LOGICAL;
if (ioctl(tapefd,STIOCSETPOS,&stpos)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}

STIOCQRYSENSE
This ioctl command returns the last sense data collected from the tape device, or it
issues a new Request Sense command and returns the collected data. If sense_type
equals LASTERROR, then the sense data is valid only if the last tape operation
had an error which caused a sense command to be issued to the device. If the
sense data is valid, then the ioctl command completes successfully, and the len field
is set to a value greater than zero. The residual_count field contains the residual
count from the last operation.

The input or output data structure is:
#define MAXSENSE 255
struct stsense_s {

/* input */
char sense_type; /* fresh (new sense) or sense from last error */

#define FRESH 1 /* Initiate a new sense command */
#define LASTERROR 2 /* Return sense gathered from */

/* the last SCSI sense command. */
/* output */
unchar sense[MAXSENSE]; /* actual sense data */
int len; /* length of valid sense data returned */
int residual_count; /* residual count from last operation */
unchar reserved[60];

};

An example of the STIOCQRYSENSE command is:

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 173

#include <sys/IBM_tape.h>
struct stsense_s stsense;
stsense.sense_type=LASTERROR;
#define MEDIUM_ERROR 0x03
if (ioctl(tapefd,STIOCQRYSENSE,&stsense)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}
if ((stsense.sense[2]&0x0F)==MEDIUM_ERROR) {

printf("We’re in trouble now!");
exit(SENSE_KEY(&stsense.sense));

}

STIOCQRYINQUIRY
This ioctl command returns the inquiry data from the device. The data is divided
into standard and vendor-specific portions.

The output data structure is:
/*inquiry data info */
struct inq_data_s {

BYTE b0;
/*macros for accessing fields of byte 1 */

#define PERIPHERAL_QUALIFIER(x) ((x->b0 &0xE0)>>5)
#define PERIPHERAL_CONNECTED 0x00
#define PERIPHERAL_NOT_CONNECTED 0x01
#define LUN_NOT_SUPPORTED 0x03
#define PERIPHERAL_DEVICE_TYPE(x) (x->b0 &0x1F)
#define DIRECT_ACCESS 0x00
#define SEQUENTIAL_DEVICE 0x01
#define PRINTER_DEVICE 0x02
#define PROCESSOR_DEVICE 0x03
#define CD_ROM_DEVICE 0x05
#define OPTICAL_MEMORY_DEVICE 0x07
#define MEDIUM_CHANGER_DEVICE 0x08
#define UNKNOWN 0x1F

BYTE b1;
/*macros for accessing fields of byte 2 */

#define RMB(x) ((x->b1 &0x80)>>7) /*removable media bit */
#define FIXED 0
#define REMOVABLE 1
#define device_type_qualifier(x) (x->b1 &0x7F) /*vendor specific */

BYTE b2;
/*macros for accessing fields of byte 3 */

#define ISO_Version(x) ((x->b2 &0xC0)>>6)
#define ECMA_Version(x) ((x->b2 &0x38)>>3)
#define ANSI_Version(x) (x->b2 &0x07)
#define NONSTANDARD 0
#define SCSI1 1
#define SCSI2 2
#define SCSI3 3

BYTE b3;
/*macros for accessing fields of byte 4 */

/* asynchronous event notification */
#define AENC(x) ((x->b3 &0x80)>>7)
/* support terminate I/O process message? */
#define TrmIOP(x) ((x->b3 &0x40)>>6)
#define Response_Data_Format(x) (x->b3 &0x0F)
#define SCSI1INQ 0 /* SCSI-1 standard inquiry data format */
#define CCSINQ 1 /* CCS standard inquiry data format */
#define SCSI2INQ 2 /* SCSI-2 standard inquiry data format */

BYTE additional_length; /* bytes following this field minus 4 */
BYTE res5;

BYTE b6;
#define MChngr(x) ((x->b6 & 0x08)>>3)
BYTE b7;
/*macros for accessing fields of byte 7 */

Linux Device Driver (IBMtape)

174 IBM Tape Device Drivers: Programming Reference

#define RelAdr(x) ((x->b7 &0x80)>>7)
/* the following fields are true or false */
#define WBus32(x) ((x->b7 &0x40)>>6)
#define WBus16(x) ((x->b7 &0x20)>>5)
#define Sync(x) ((x->b7 &0x10)>>4)
#define Linked(x) ((x->b7 &0x08)>>3)
#define CmdQue(x) ((x->b7 &0x02)>>1)
#define SftRe(x) (x->b7 &0x01)

char vendor_identification [8];
char product_identification [16];
char product_revision_level [4];

};
struct st_inquiry
{

struct inq_data_s standard;
BYTE vendor_specific [255-sizeof(struct inq_data_s)];

};

An example of the STIOCQRYINQUIRY command is:
struct st_inquiry inqd;
if (ioctl(tapefd,STIOCQRYINQUIRY,&inqd)) {

printf("ioctl failure. errno=%d\n",errno);
exit(errno);

}
if (ANSI_Version(((struct inq_data_s *)&(inqd.standard)))==SCSI2)
printf("Hey! We have a SCSI-2 device\n");

STIOC_LOCATE
This ioctl command causes the tape to be positioned at the specified block ID. The
block ID used for the command must be obtained using the
STIOC_READ_POSITION command.

An example of the STIOC_LOCATE command is:
#include <sys/IBM_tape.h>
unsigned int current_blockid;

/* read current tape position */
if (ioctl(tapefd,STIOC_READ_POSITION,¤t_blockid)) {

printf("ioctl failure. errno=%d\n",errno);
exit(1);

}

/* restore current tape position */
if (ioctl(tapefd,STIOC_LOCATE,current_blockid)) {

printf("ioctl failure. errno=%d\n",errno);
exit(1);

}

STIOC_READ_POSITION
This ioctl command returns the block ID of the current position of the tape. The
block ID returned from this command can be used with the STIOC_LOCATE
command to set the position of the tape.

An example of the STIOC_READ_POSITION command is:
#include <sys/IBM_tape.h>
unsigned int current_blockid;
/* read current tape position */
if (ioctl(tapefd,STIOC_READ_POSITION,¤t_blockid)) {

printf("ioctl failure. errno=%d\n",errno);
exit(1);

}
/* restore current tape position */

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 175

if (ioctl(tapefd,STIOC_LOCATE,current_blockid)) {
printf("ioctl failure.errno=%d\n",errno);
exit(1);

}

STIOC_RESET_DRIVE
This ioctl command issues a SCSI Send Diagnostic command to reset the tape
drive. There are no arguments for this ioctl command.

An example of the STIOC_RESET_DRIVE command is:
/* reset the tape drive */
if (ioctl(tapefd,STIOC_RESET_DRIVE,NULL)) {

printf("ioctl failure. errno=%d\n",errno);
exit(errno);

}

STIOC_PREVENT_MEDIUM_REMOVAL
This ioctl command prevents an operator from removing media from the device
until the STIOC_ALLOW_MEDIUM_REMOVAL command is issued or the device
is reset.

There is no associated data structure.

An example of the STIOC_PREVENT_MEDIUM_REMOVAL command is:
#include <sys/IBM_tape.h>
if (!ioctl (tapefd, STIOC_PREVENT_MEDIUM_REMOVAL, NULL))

printf ("The STIOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded\n");
else {

perror ("The STIOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

STIOC_ALLOW_MEDIUM_REMOVAL
This ioctl command allows an operator to remove media from the device. This
command is normally used after an STIOC_PREVENT_MEDIUM_REMOVAL
command to restore the device to the default state.

There is no associated data structure.

An example of the STIOC_ALLOW_MEDIUM_REMOVAL command is:
#include <sys/IBM_tape.h>
if (!ioctl (tapefd, STIOC_ALLOW_MEDIUM_REMOVAL, NULL))

printf ("The STIOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded\n");
else {

perror ("The STIOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

STIOC_REPORT_DENSITY_SUPPORT
This ioctl command issues the SCSI Report Density Support command to the tape
device and returns either ALL supported densities or only supported densities for
the currently mounted media. The media field specifies which type of report is
requested. The number_reports field is returned by the device driver and indicates
how many density reports in the reports array field were returned.

The data structures used with this ioctl is:
struct density_report {

unchar primary_density_code; /* primary density code */
unchar secondary_density_code; /* secondary density code */

Linux Device Driver (IBMtape)

176 IBM Tape Device Drivers: Programming Reference

uint wrtok :1, /* write ok, device can write this format */
dup :1, /* zero if density only reported once */
deflt :1, /* current density is default format */

:5; /* reserved */
char reserved[2]; /* reserved */
uint bits_per_mm :24; /* bits per mm */
ushort media_width; /* media width in millimeters */
ushort tracks; /* tracks */
uint capacity; /* capacity in megabytes */
char assigning_org[8]; /* assigning organization in ASCII */
char density_name[8]; /* density name in ASCII */
char description[20]; /* description in ASCII */

};

struct report_density_support {
unchar media; /* report all or current media as defined above */
ushort number_reports; /* number of density reports returned in array */
struct density_report reports[MAX_DENSITY_REPORTS];

};

Examples of the STIOC_REPORT_DENSITY_SUPPORT command are:
#include <sys/IBM_tape.h>
int stioc_report_density_support(void)
{

int i;
struct report_density_support density;
printf("Issuing Report Density Support for ALL supported media...\n");
density.media = ALL_MEDIA_DENSITY;
if (ioctl(fd, STIOC_REPORT_DENSITY_SUPPORT, &density) != 0)

return errno;
printf("Total number of densities reported:

%d\n",density.number_reports);
for (i = 0; i<density.number_reports; i++) {

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);
if (density.reports[i].wrtok)

printf(" Write OK..................... Yes\n");
else

printf(" Write OK..................... No\n");
if (density.reports[i].dup)

printf(" Duplicate.................... Yes\n");
else

printf(" Duplicate.................... No\n");
if (density.reports[i].deflt)

printf(" Default...................... Yes\n");
else

printf(" Default...................... No\n");
printf(" Bits per MM.................. %d\n",

density.reports[i].bits_per_mm);
printf(" Media Width (millimeters).... %d\n",

density.reports[i].media_width);
printf(" Tracks....................... %d\n",

density.reports[i].tracks);
printf(" Capacity (megabytes)......... %d\n",

density.reports[i].capacity);

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 177

if (opcode) {
printf ("\nHit enter> to continue?");
getchar();

}
}
printf("\nIssuing Report Density Support for CURRENT media...\n");
density.media = CURRENT_MEDIA_DENSITY;
if (ioctl(fd, STIOC_REPORT_DENSITY_SUPPORT, &density) != 0)

return errno;
for (i = 0; i<density.number_reports; i++) {

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);
if (density.reports[i].wrtok)

printf(" Write OK..................... Yes\n");
else

printf(" Write OK..................... No\n");
if (density.reports[i].dup)

printf(" Duplicate.................... Yes\n");
else

printf(" Duplicate.................... No\n");
if (density.reports[i].deflt)

printf(" Default...................... Yes\n");
else

printf(" Default...................... No\n");
printf(" Bits per MM.................. %d\n",

density.reports[i].bits_per_mm);
printf(" Media Width (millimeters).... %d\n",

density.reports[i].media_width);
printf(" Tracks....................... %d\n",

density.reports[i].tracks);
printf(" Capacity (megabytes)......... %d\n",

density.reports[i].capacity);
}
return errno;

}

MTDEVICE (Obtain Device Number)
This ioctl command obtains the device number used for communicating with a
3494 Library.

An example of the MTDEVICE command is:
int device;
if(ioctl(tapefd, MTDEVICE, &device)<0)
{

printf("IOCTL failure, errno = %d\n", errno);
exit(errno);

}
printf("Device number is %X\n", device);

STIOC_GET DENSITY and STIOC_SET_DENSITY
The STIOC_GET_DENSITY ioctl is used to query the current write density format
settings on the tape drive. The current density code from the drive Mode Sense
header, the Read/Write Control Mode page default density and pending density
are returned.

Linux Device Driver (IBMtape)

178 IBM Tape Device Drivers: Programming Reference

The STIOC_SET_DENSITY ioctl is used to set a new write density format on the
tape drive using the default and pending density fields. The density code field is
not used and ignored on this ioctl. The application can specify a new write density
for the current loaded tape only or as a default for all tapes. Refer to the examples
below.

The application should get the current density settings first before deciding to
modify the current settings. If the application specifies a new density for the
current loaded tape only, then the application must issue another set density ioctl
after the current tape is unloaded and the next tape is loaded to either the default
maximum density or a new density to ensure the tape drive will use the correct
density. If the application specifies a new default density for all tapes, the setting
remains in effect until changed by another set density ioctl or the tape drive is
closed by the application.

Following is the structure for the STIOC_GET_DENSITY and
STIOC_SET_DENSITY ioctls:
struct density_data_t
{

char density_code; /* mode sense header density code */
char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

Notes:

1. These ioctls are only supported on tape drives that can write multiple density
formats. Refer to the Hardware Reference for the specific tape drive to
determine if multiple write densities are supported. If the tape drive does not
support these ioctls, errno EINVAL will be returned.

2. The device driver always sets the default maximum write density for the tape
drive on every open system call. Any previous STIOC_SET_DENSITY ioctl
values from the last open are not used.

3. If the tape drive detects an invalid density code or can not perform the
operation on the STIOC_SET_DENSITY ioctl, the errno will be returned and the
current drive density settings prior to the ioctl will be restored.

4. The struct density_data_t defined in the header file is used for both ioctls.
The density_code field is not used and ignored on the STIOC_SET_DENSITY
ioctl .

Examples:
struct density_data_t data;

/* open the tape drive */
/* get current density settings */
rc = ioctl(fd, STIOC_GET_DENSITY, %data);

/* set 3592 J1A density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x51;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* unload tape */
/* load next tape */
/* set 3592 E05 density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x52;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 179

/* unload tape */
/* load next tape */
/* set default maximum density for current loaded tape */
data.default_density = 0;
data.pending_density = 0;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* close the tape drive */
/* open the tape drive */
/* set 3592 J1A density format for current loaded tape and all subsequent tapes */
data.default_density = 0x51;
data.pending_density = 0x51;

rc = ioctl(fd, STIOC_SET_DENSITY, %data);

GET_ENCRYPTION_STATE
This ioctl command queries the drive's encryption method and state. The data
structure used for this ioctl is as follows on all of the supported operating systems:

struct encryption_status
{
uchar encryption_capable; /* (1)Set this field as a boolean based on the

capability of the drive */
uchar encryption_method; /* (2)Set this field to one of the following */

#define METHOD_NONE 0 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_LIBRARY 1 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_SYSTEM 2 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_APPLICATION 3 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_CUSTOM 4 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_UNKNOWN 5 /* Only used in GET_ENCRYPTION_STATE */

uchar encryption_state; /* (3) Set this field to one of the following */
#define STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_NA 2 /* Only used in GET_ENCRYPTION_STATE*/

uchar[13] reserved;
};

An example of the GET_ENCRYPTION_STATE command is:
int qry_encrytion_state (void)
{

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(,&encryption_status_t 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE,);&encryption_status_t
if(rc == 0)
{

if(encryption_status_t.encryption_capable)
printf("encryption capable......Yes\n");

else
printf("encryption capable......No\n");

switch(encryption_status_t.encryption_method)
{
case METHOD_NONE:
printf("encryption method.......METHOD_NONE\n");
break;
case METHOD_LIBRARY:
printf("encryption method.......METHOD_LIBRARY\n");
break;
case METHOD_SYSTEM:
printf("encryption method.......METHOD_SYSTEM\n");
break;
case METHOD_APPLICATION:
printf("encryption method.......METHOD_APPLICATION\n");

Linux Device Driver (IBMtape)

180 IBM Tape Device Drivers: Programming Reference

break;
case METHOD_CUSTOM:
printf("encyrpiton method.......METHOD_CUSTOM\n");
break;
case METHOD_UNKNOWN:
printf("encryption method.......METHOD_UNKNOWN\n");
break;

default:
printf("encrption method.......Error\n");
}

switch(encryption_status_t.encryption_state)
{
case STATE_OFF:
printf("encryption state........OFF\n");
break;
case STATE_ON:
printf("encryption state........ON\n");
break;
case STATE_NA:
printf("encryption state........NA\n");
break;

default:
printf("encryption state......Error\n");
}

}

return rc;
}

SET_ENCRYPTION_STATE
This ioctl command only allows setting the encryption state for
application-managed encryption. Please note that on unload, some of drive setting
may be reset to default. To set the encryption state, the application should issue
this ioctl after a tape is loaded and at BOP.

The data structure used for this ioctl is the same as the one for
GET_ENCRYPTION_STATE. An example of the SET_ENCRYPTIO_STATE
command is:
int set_encryption_state(int option)
{

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(,&encryption_status_t 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE,);&encryption_status_t
if(rc < 0) return rc;

if(option == 0)
encryption_status_t.encryption_state = STATE_OFF;

else if(option == 1)
encryption_status_t.encryption_state = STATE_ON;

else
{

printf("Invalid parameter.\n");
return -EINVAL;

}

printf("Issuing set encryption state......\n");

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 181

rc = ioctl(fd, SET_ENCRYPTION_STATE, &encryption_status_t);

return rc;
}

SET_DATA_KEY
This ioctl command only allows set the data key for application-managed
encryption. The data structure used for this ioctl is as follows on all of the
supported operating systems:
struct data_key
{

uchar[12] data_key_index;
uchar data_key_index_length;
uchar[15] reserved1;
uchar[32] data_key;
uchar[48] reserved2;

};

An example of the SET_DATA_KEY command is:
int set_datakey(void)
{

int rc = 0;
struct data_key encryption_data_key_t;

printf("Issuing set encryption data key......\n");
memset(,&encryption_data_key_t 0, sizeof(struct data_key));
/* fill in your data key here, then issue the following ioctl*/
rc = ioctl(fd, SET_DATA_KEY, &encryption_data_key_t);
return rc;

}

STIOC_QUERY_PARTITION
This ioctl queries and displays information for tapes that support partitioning. The
data structure used for this ioctl is:
#define MAX_PARTITIONS 255
struct query_partition {
unchar max_partitions;
unchar active_partition;
unchar number_of_partitions;
unchar size_unit;
ushort size[MAX_PARTITIONS];
char reserved[32];
};

max_partitions is the maximum number of partitions that the tape allows.
active_parition is the current partition to which tape operations apply.
number_of_partitions is the number of partitions currently on the tape.
size_unit describes the units for the size of the tape, given as a logarithm
to the base 10.
For example, 0 refers to 10^0 = 1, the most basic unit, which is bytes.
All sizes reported will be in bytes. 3 refers to 10^3, or kilobytes.
size is an array of the size of the partitions on tape, one array element
per partition, in size_units.

An example of the STIOC_QUERY_PARTITION IOCTL is:
int stioc_query_partition()
{
struct query_partition qry;
int rc = 0, i = 0;

memset(&qry, ’\0’, sizeof(struct query_partition));
printf("Issuing IOCTL...\n");

rc = ioctl(fd, STIOC_QUERY_PARTITION, &qry);

Linux Device Driver (IBMtape)

182 IBM Tape Device Drivers: Programming Reference

if(rc) {
printf("Query partition failed: %d\n", rc);

goto EXIT_LABEL;
} /* if */

printf("\nmax possible partitions: %d\n", qry.max_partitions);
printf("number currently on tape: %d\n", qry.number_of_partitions);
printf("active: %d\n", qry.active_partition);
printf("unit: %d\n", qry.size_unit);

for(i = 0; i < qry.number_of_partitions; i++)
printf("size[%d]: %d\n", i, qry.size[i]);

EXIT_LABEL:

return rc;
} /* stioc_query_partition() */

STIOC_CREATE_PARTITION
This ioctl creates partitions on tapes that support partitioning. The data structure
used for this ioctl is:
#define IDP_PARTITION (1)
#define SDP_PARTITION (2)
#define FDP_PARTITION (3)
struct tape_partition {
unchar type;
unchar number_of_partitions;
unchar size_unit;
ushort size[MAX_PARTITIONS];
char reserved[32];
};

type is the type of partition, whether IDP_PARTITION (initiator defined partition)
SDP_PARTITION (select data partition) or FDP_PARTITION (fixed data partition).
The behavior of these options is described in the SCSI reference for your tape drive.
number_of_partitions is the number of partitions the user desires to create.
size_unit is as defined in the STIOC_QUERY_PARTITION section above.
size is an array of requested sizes, in size_units, one array element per partition.

An example of the STIOC_CREATE_PARTITION ioctl is:
int stioc_create_partition()
{
int rc = 0, i = 0, char_cap = 0, short_cap = 0;
struct tape_partition crt;
char* input = NULL;

char_cap = pow(2, sizeof(char) * BITS_PER_BYTE) - 1;
short_cap = pow(2, sizeof(short) * BITS_PER_BYTE) - 1;

input = malloc(DEF_BUF_SIZE / 16);
if(!input) {
rc = ENOMEM;
goto EXIT_LABEL;
} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

memset(&crt, ’\0’, sizeof(struct tape_partition));

while(atoi(input) < IDP_PARTITION || atoi(input) > FDP_PARTITION + 1) {
printf("%d) IDP_PARTITION\n", IDP_PARTITION);
printf("%d) SDP_PARTITION\n", SDP_PARTITION);
printf("%d) FDP_PARTITION\n", FDP_PARTITION);
printf("%d) Cancel\n", FDP_PARTITION + 1);
printf("\nPlease select: ");

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 183

fgets(input, DEF_BUF_SIZE / 16, stdin);
if(atoi(input) == FDP_PARTITION + 1) {
rc = 0;
goto EXIT_LABEL;
} /* if */
} /* while */

crt.type = atoi(input);

memset(input, ’\0’, DEF_BUF_SIZE / 16);
while(input[0] < ’1’ || input[0] > ’9’) {
printf("Enter desired number of partitions (0 to cancel): ");
fgets(input, DEF_BUF_SIZE / 16, stdin);
if(input[0] == ’0’) {
rc = 0;
goto EXIT_LABEL;
} /* if */

if(atoi(input) > MAX_PARTITIONS) {
printf("Please select number <= %d\n", MAX_PARTITIONS);
input[0] = ’\0’;
} /* if */
} /* while */

crt.number_of_partitions = atoi(input);

if(crt.type == IDP_PARTITION && crt.number_of_partitions > 1) {
memset(input, ’\0’, DEF_BUF_SIZE / 16);
while(input[0] < ’0’ || input[0] > ’9’) {
printf("Enter size unit (0 to cancel): ");
fgets(input, DEF_BUF_SIZE / 16, stdin);
if(input[0] == ’0’) {
rc = 0;
goto EXIT_LABEL;
} /* if */
if(atoi(input) > char_cap) {
printf("Please select number <= %d\n", char_cap);
input[0] = ’\0’;
} /* if */
} /* while */
crt.size_unit = atoi(input);

for(i = 0; i < crt.number_of_partitions; i++) {
memset(input, ’\0’, DEF_BUF_SIZE / 16);
while(input[0] != ’-’ &&
(input[0] < ’0’ || input[0] > ’9’)) {
printf("Enter size[%d] (0 to cancel, < 0 for "\
"remaining space on cartridge): ", i);
fgets(input, DEF_BUF_SIZE / 16, stdin);
if(input[0] == ’0’) {
rc = 0;
goto EXIT_LABEL;
} /* if */

if(atoi(input) > short_cap) {
printf("Please select number <= %d\n",
short_cap);
input[0] = ’\0’;
} /* if */
} /* while */
if(input[0] == ’-’ && atoi(&input[1]) > 0)
crt.size[i] = 0xFFFF;
else crt.size[i] = atoi(input);
} /* for */
} /* if */

Linux Device Driver (IBMtape)

184 IBM Tape Device Drivers: Programming Reference

printf("Issuing IOCTL...\n");
rc = ioctl(fd, STIOC_CREATE_PARTITION, &crt);

if(rc) {
printf("Create partition failed: %d\n", rc);
goto EXIT_LABEL;
} /* if */

EXIT_LABEL:

if(input) free(input);
return rc;
} /* stioc_create_partition() */

STIOC_SET_ACTIVE_PARTITION
This ioctl allows the user to specify the partition on which to perform subsequent
tape operations. The data structure used for this ioctl is:
struct set_active_partition {
unchar partition_number;
unsigned long long logical_block_id;
char reserved[32];
};

partition_number is the number of the requested active partition
logical_block_id is the requested block position within the new active partition

An example of the STIOC_SET_ACTIVE_PARTITION ioctl is:
int stioc_set_partition()
{
int rc = 0;
struct set_active_partition set;
char* input = NULL;

input = malloc(DEF_BUF_SIZE / 16);
if(!input) {
rc = ENOMEM;
goto EXIT_LABEL;
} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

memset(&set, ’\0’, sizeof(struct set_active_partition));
while(input[0] < ’0’ || input[0] > ’9’) {
printf("Select partition (< 0 to cancel): ");
fgets(input, DEF_BUF_SIZE / 16, stdin);

if(input[0] == ’-’ && atoi(&input[1]) > 0) {
rc = 0;
goto EXIT_LABEL;
} /* if */

if(atoi(input) > MAX_PARTITIONS) {
printf("Please select number < %d\n", MAX_PARTITIONS);
input[0] = ’\0’;
} /* if */
} /* while */
set.partition_number = atoi(input);

printf("Issuing IOCTL...\n");
rc = ioctl(fd, STIOC_SET_ACTIVE_PARTITION, &set);
if(rc) {
printf("Set partition failed: %d\n", rc);
goto EXIT_LABEL;
} /* if */

EXIT_LABEL:

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 185

if(input) free(input);
return rc;
} /* stioc_set_partition() */

STIOC_ALLOW_DATA_OVERWRITE
This ioctl allows data on the tape to be overwritten when in data safe mode. The
data structure used for this ioctl is:
struct allow_data_overwrite {

unchar partition_number;
unsigned long long logical_block_id;
unchar allow_format_overwrite;
char reserved[32];

};

partition_number is the number of the drive partition on which to allow
the overwrite.
logical_block_id is the block you wish to overwrite
allow_format_overwrite, if set to TRUE, instructs the tape drive to allow a
format of the tape and accept the CREATE_PARTITION ioctl.
If allow_format_overwrite is TRUE, partition_number and logical_block_id are ignored.

An example of the use of the STIOC_ALLOW_DATA_OVERWRITE ioctl is:
int stioc_allow_overwrite()
{

int rc = 0, i = 0, brk = FALSE;
struct allow_data_overwrite ado;
char* input = NULL;

memset(&ado, ’\0’, sizeof(struct allow_data_overwrite));
input = malloc(DEF_BUF_SIZE / 4);
if(!input) {

rc = ENOMEM;
goto EXIT_LABEL;

} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 4);

while(input[0] < ’0’ || input[0] > ’1’) {
printf("0. Write Data 1. Create Partition (< 0 to cancel): ");
fgets(input, DEF_BUF_SIZE / 4, stdin);

if(input[0] == ’-’ && atoi(&input[1]) > 0) {
rc = 0;
goto EXIT_LABEL;

} /* if */
} /* while */

ado.allow_format_overwrite = atoi(&input[0]);
switch(ado.allow_format_overwrite) {
case 0:

memset(input, ’\0’, DEF_BUF_SIZE / 4);
while((input[0] < ’0’ || input[0] > ’9’)

&& (input[0] < ’a’ || input[0] > ’f’)) {
brk = FALSE;
printf("Enter partition in hex (< 0 to cancel): 0x");
fgets(input, DEF_BUF_SIZE / 4, stdin);

if(input[0] == ’-’ && atoi(&input[1]) > 0) {
rc = 0;
goto EXIT_LABEL;

} /* if */

while(strlen(input) &&
isspace(input[strlen(input) - 1]))
input[strlen(input) - 1] = ’\0’;

Linux Device Driver (IBMtape)

186 IBM Tape Device Drivers: Programming Reference

if(!strlen(input)) continue;

for(i = 0; i < strlen(input); i++) {
if(input[i] >= ’A’ && input[i] <= ’F’)

input[i] = input[i] - ’A’ + ’a’;
else if(((input[i] < ’0’ || input[i] > ’9’) &&

(input[i] < ’a’ || input[i] > ’f’)) ||
i >= sizeof(unchar) * 2) {
printf("Input must be from 0 to 0xFF\n");
memset(input, ’\0’, DEF_BUF_SIZE / 4);
brk = TRUE;
break;

} /* else if */
} /* for */
if(brk) continue;

} /* while */

ado.partition_number = char_to_hex(input);

memset(input, ’\0’, DEF_BUF_SIZE / 4);
while((input[0] < ’0’ || input[0] > ’9’)

&& (input[0] < ’a’ || input[0] > ’f’)) {
brk = FALSE;
printf("Enter block ID in hex (< 0 to cancel): 0x");
fgets(input, DEF_BUF_SIZE / 4, stdin);

if(input[0] == ’-’ && atoi(&input[1]) > 0) {
rc = 0;
goto EXIT_LABEL;

} /* if */

while(strlen(input) &&
isspace(input[strlen(input) - 1]))
input[strlen(input) - 1] = ’\0’;

if(!strlen(input)) continue;

for(i = 0; i < strlen(input); i++) {
if(input[i] >= ’A’ && input[i] <= ’F’)

input[i] = input[i] - ’A’ + ’a’;
else if(((input[i] < ’0’ || input[i] > ’9’) &&

(input[i] <’a’ || input[i] > ’f’)) ||
i >= sizeof(unsigned long long) * 2) {
printf("Input out of range\n");
memset(input, ’\0’, DEF_BUF_SIZE / 4);
brk = TRUE;
break;

} /* else if */
} /* for */
if(brk) continue;

} /* while */

ado.logical_block_id = char_to_hex(input);
break;

case 1:
break;

default:
assert(!"Unreachable.");

} /* switch */

printf("Issuing IOCTL...\n");
rc = ioctl(fd, STIOC_ALLOW_DATA_OVERWRITE, &ado);

if(rc) {
printf("Allow data overwrite failed: %d\n", rc);
goto EXIT_LABEL;

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 187

} /* if */

EXIT_LABEL:

if(input) free(input);
return rc;

} /* stioc_allow_overwrite() */

STIOC_READ_POSITION_EX
This ioctl returns tape position with support for the short, long, and extended
formats. The definitions and data structures used for this ioctl follow. Please see the
READ_POSITION section of your tape drive’s SCSI documentation for details on
the short_data_format, long_data_format, and extended_data_format structures.
#define RP_SHORT_FORM (0x00)
#define RP_LONG_FORM (0x06)
#define RP_EXTENDED_FORM (0x08)

struct short_data_format {
#if defined __LITTLE_ENDIAN

unchar bpew : 1;
unchar perr : 1;
unchar lolu : 1;
unchar rsvd : 1;
unchar bycu : 1;
unchar locu : 1;
unchar eop : 1;
unchar bop : 1;

#elif defined __BIG_ENDIAN
unchar bop : 1;
unchar eop : 1;
unchar locu : 1;
unchar bycu : 1;unchar rsvd : 1;
unchar lolu : 1;
unchar perr : 1;
unchar bpew : 1;

#else
error

#endif
unchar active_partition;
char reserved[2];
unchar first_logical_obj_position[4];
unchar last_logical_obj_position[4];
unchar num_buffer_logical_obj[4];
unchar num_buffer_bytes[4];
char reserved1;

};

struct long_data_format {
#if defined __LITTLE_ENDIAN

unchar bpew : 1;
unchar rsvd2 : 1;
unchar lonu : 1;
unchar mpu : 1;
unchar rsvd1 : 2;
unchar eop : 1;
unchar bop : 1;

#elif defined __BIG_ENDIAN
unchar bop : 1;
unchar eop : 1;
unchar rsvd1 : 2;
unchar mpu : 1;
unchar lonu : 1;
unchar rsvd2 : 1;
unchar bpew : 1;

#else
error

Linux Device Driver (IBMtape)

188 IBM Tape Device Drivers: Programming Reference

#endif
char reserved[6];
unchar active_partition;
unchar logical_obj_number[8];
unchar logical_file_id[8];
unchar obsolete[8];

};

struct extended_data_format {
#if defined __LITTLE_ENDIAN

unchar bpew : 1;
unchar perr : 1;
unchar lolu : 1;
unchar rsvd : 1;
unchar bycu : 1;
unchar locu : 1;
unchar eop : 1;
unchar bop : 1;

#elif defined __BIG_ENDIAN
unchar bop : 1;
unchar eop : 1;
unchar locu : 1;
unchar bycu : 1;
unchar rsvd : 1;
unchar lolu : 1;
unchar perr : 1;
unchar bpew : 1;

#else
error

#endif
unchar active_partition;
unchar additional_length[2];
unchar num_buffer_logical_obj[4];
unchar first_logical_obj_position[8];
unchar last_logical_obj_position[8];
unchar num_buffer_bytes[8];
unchar reserved;

};

struct read_tape_position {
unchar data_format;
union {

struct short_data_format rp_short;
struct long_data_format rp_long;
struct extended_data_format rp_extended;

} rp_data;
};

data_format is the format in which you wish to receive your data, as defined
above. It may take the value RP_SHORT_FORM, RP_LONG_FORM, or
RP_EXTENDED_FORM. When the ioctl completes, data will be returned to the
corresponding structure within the rp_data union.

An example of the use of the STIOC_READ_POSITION_EX ioctl is:
int stioc_read_position_ex(void)
{

int rc = 0;
char* input = NULL;
struct read_tape_position rp = {0};

printf("Note: only supported on LTO 5 and higher drives\n");
input = malloc(DEF_BUF_SIZE / 16);
if(!input) {

rc = ENOMEM;
goto EXIT_LABEL;

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 189

} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

while(input[0] == ’\0’ || atoi(input) < 0 || atoi(input) > 3) {
printf("0) Cancel\n");
printf("1) Short Form\n");
printf("2) Long Form\n");
printf("3) Extended Form\n");

printf("\nPlease select: ");

fgets(input, DEF_BUF_SIZE / 16, stdin);
if(!atoi(input)) {

rc = 0;
goto EXIT_LABEL;

} /* if */
} /* while */

memset(&rp, ’\0’, sizeof(struct read_tape_position));

switch(atoi(input)) {
case 1:

rp.data_format = RP_SHORT_FORM;
break;

case 2:
rp.data_format = RP_LONG_FORM;
break;

case 3:
rp.data_format = RP_EXTENDED_FORM;
break;

default:
rc = EINVAL;
goto EXIT_LABEL;

} /* switch */

rc = ioctl(fd, STIOC_READ_POSITION_EX, &rp);

if(rc) {
printf("Cannot get position: %d\n", rc = errno);
goto EXIT_LABEL;

} /* if */

print_read_position_ex(&rp);

EXIT_LABEL:
if(input) free(input);
return rc;

} /* stioc_read_position_ex() */

STIOC_LOCATE_16
This ioctl sets the tape position using the long tape format. The definitions and
structure used for this IOCTL are:
#define LOGICAL_ID_BLOCK_TYPE (0x00)
#define LOGICAL_ID_FILE_TYPE (0x01)

struct set_tape_position {
unchar logical_id_type;
unsigned long long logical_id;
char reserved[32];

};

logical_id_type may take the values LOGICAL_ID_BLOCK_TYPE or
LOGICAL_ID_FILE_TYPE. These specify whether the tape head will be located to
the block with the specified logical_id or to the file with the specified logical_id,

Linux Device Driver (IBMtape)

190 IBM Tape Device Drivers: Programming Reference

respectively. An example on how to use the STIOC_LOCATE_16 ioctl follows. The
snippet assumes the declaration of global variables filetype and blockid.
int stioc_locate_16(void)
{

int rc = 0;
struct set_tape_position pos;

memset(&pos, ’\0’, sizeof(struct set_tape_position));
printf("\nLocating to %s ID %u (0x%08X)...\n",

filetype ? "File" : "Block", blockid, blockid);

pos.logical_id_type = filetype;
pos.logical_id = (long long) blockid;

rc = ioctl(fd, STIOC_LOCATE_16, &pos);
return rc;

} /* stioc_locate_16() */

STIOC_QUERY_BLK_PROTECTION
This ioctl queries capability and status of the drive's Logical Block Protection. The
structures and defines are:
#define LBP_DISABLE (0x00)
#define REED_SOLOMON_CRC (0x01)

struct logical_block_protection {
unchar lbp_capable;
unchar lbp_method;
unchar lbp_info_length;
unchar lbp_w;
unchar lbp_r;
unchar rbdp;
unchar reserved[26];

};

The lbp_capable will be set to True if the drive supports logical block protection, or
False otherwise.

A lbp_method method of LBP_DISABLE indicates that the logical block protection
feature is currently turned off. A value of REED_SOLOMON_CRC indicates that
logical block protection is being used, with a Reed-Solomon cyclical redundancy
check algorithm to perform the block protection.

The lbp_w indicates that logical block protection is performed for write commands.
The lbp_r indicates that logical block protection is performed for read commands.
The rbdp indicates that logical block protection is performed for recover buffer
data. To use this ioctl issue the following call:
rc = ioctl(fd, STIOC_QUERY_BLK_PROTECTION, &lbp);

STIOC_SET_BLK_PROTECTION
This ioctl sets status of the drive's Logical Block Protection. All fields are
configurable except lbp_capable and reserved. The structures and defines are the
same as for STIOC_QUERY_BLK_PROTECTION. To use this ioctl issue the
following call:
rc = ioctl(fd, STIOC_SET_BLK_PROTECTION, &lbp);

STIOC_VERIFY_TAPE_DATA
This ioctl instructs the tape drive to scan the data on its current tape to check for
errors. The structure is defined as follows:

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 191

|
|
|

struct verify_data {

#if defined __LITTLE_ENDIAN
unchar fixed : 1;
unchar bytcmp : 1;
unchar immed : 1;
unchar vbf : 1;
unchar vlbpm : 1;
unchar vte : 1;
unchar reserved1 : 2;

#elif defined __BIG_ENDIAN
unchar reserved1 : 2;
unchar vte : 1;
unchar vlbpm : 1;
unchar vbf : 1;
unchar immed : 1;
unchar bytcmp : 1;
unchar fixed : 1;

#else
error

#endif
unchar verify_length[3];
unchar reserved2[15];

};

vte instructs the drive to verify from the current tape head position to end of data.

vlbpm instructs the drive to verify that the logical block protection method that is
specified in the Control Data Protection mode page is used for each block.

If vbf is set, then the verify_length field contains the number of filemarks to be
traversed, rather than the number of blocks or bytes.

immed specifies that status is to be returned immediately after the command
descriptor block has been validated. Otherwise the command will not return status
until the entire operation has completed.

bytcmp shall be set to 0.

fixed indicates a fixed-block length, and that verify_length should be interpreted
as blocks rather than bytes.

verify_length specifies the length to verify in files, blocks or bytes, depending on
the values of the vbf and fixed fields. If vte is set to 1, verify_length is ignored.

An example of the use of STIOC_VERIFY_TAPE_DATA is as follows:
int stioc_verify()
{

int rc = 0, i = 0, cont = TRUE, len = 0;
char* input = NULL;
struct verify_data* vfy = NULL;

struct {
char* desc;
int idx;

} table[] = {
{"Verify to EOD", VFY_VTE},
{"Verify Logical Block Protection", VFY_VLBPM},
{"Verify by Filemarks", VFY_VBF},
{"Return immediately", VFY_IMMED},
{"Fixed", VFY_FIXED},
{NULL, 0}

Linux Device Driver (IBMtape)

192 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

};

input = malloc(DEF_BUF_SIZE / 16);
if(!input) {

rc = ENOMEM;
goto EXIT_LABEL;

} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

vfy = malloc(sizeof(struct verify_data));
if(!vfy) {

rc = ENOMEM;
goto EXIT_LABEL;

} /* if */
memset(vfy, ’\0’, sizeof(struct verify_data));

printf("\n");
for(i = 0; table[i].desc; i++) {

while(tolower(input[0]) != ’y’ && tolower(input[0]) != ’n’) {
printf("%s (y/n/c to cancel)? ", table[i].desc);
fgets(input, DEF_BUF_SIZE / 16, stdin);
if(tolower(input[0]) == ’c’) {

rc = 0;
goto EXIT_LABEL;

} /* if */
} /* while */

if(tolower(input[0]) == ’y’) {
switch(table[i].idx) {

case VFY_VTE: vfy->vte = 1; break;
case VFY_VLBPM: vfy->vlbpm = 1; break;
case VFY_VBF: vfy->vbf = 1; break;
case VFY_IMMED: vfy->immed = 1; break;

default: break;
} /* switch */

} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

} /* for */

if(!vfy->vte) {
while(cont) {

cont = FALSE;

printf("Verify length in decimal (c to cancel): ");
fgets(input, DEF_BUF_SIZE / 16, stdin);

while(strlen(input) && isspace(input[strlen(input)-1]))
input[strlen(input) - 1] = ’\0’;

if(!strlen(input)) {
cont = TRUE;
continue;

} /* if */

if(tolower(input[0]) == ’c’) {
rc = 0;
goto EXIT_LABEL;

} /* if */

for(i = 0; i < strlen(input); i++) {
if(!isdigit(input[i])) {

memset(input, ’\0’, DEF_BUF_SIZE / 16);
cont = TRUE;

} /* if */
} /* for */

} /* while */

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 193

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

len = atoi(input);
vfy->verify_length[0] = (len >> 16) & 0xFF;
vfy->verify_length[1] = (len >> 8) & 0xFF;
vfy->verify_length[2] = len & 0xFF;

} /* if */

rc = ioctl(fd, STIOC_VERIFY_TAPE_DATA, &vfy);
printf("VERIFY_TAPE_DATA returned %d\n", rc);
if(rc) printf("errno: %d\n", errno);

EXIT_LABEL:

if(input) free(input);
if(vfy) free(vfy);
return rc;

} /* stioc_verify() */

Tape Drive Compatibility IOCTL Operations
The following ioctl commands help provide compatibility for previously compiled
programs. Where practical, such programs should be recompiled to use the
preferred ioctl commands in the IBMtape device driver.

MTIOCTOP
This ioctl command is similar in function to the st MTIOCTOP command. It is
provided as a convenience for precompiled programs which call that ioctl
command. Refer to /usr/include/sys/mtio.h or /usr/include/linux/mtio.h for information
on the MTIOCTOP command.

MTIOCGET
This ioctl command is similar in function to the st MTIOCGET command. It is
provided as a convenience for precompiled programs which call that ioctl
command. Refer to /usr/include/sys/mtio.h or /usr/include/linux/mtio.h for information
on the MTIOCGET command.

MTIOCPOS
This ioctl command is similar in function to the st MTIOCPOS command. It is
provided as a convenience for precompiled programs which call that ioctl
command. Refer to /usr/include/sys/mtio.h or /usr/include/linux/mtio.h for information
on the MTIOCPOS command.

Medium Changer IOCTL Operations
This chapter describes the ioctl commands that provide access and control of the
SCSI medium changer functions. These ioctl operations can be issued to the
medium changer special file, such as IBMchanger0.

The following ioctl commands are supported:

SMCIOC_ELEMENT_INFO
Obtain the device element information.

SMCIOC_MOVE_MEDIUM
Move a cartridge from one element to another element.

SMCIOC_EXCHANGE_MEDIUM
Exchange a cartridge in an element with another cartridge.

Linux Device Driver (IBMtape)

194 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

SMCIOC_POS_TO_ELEM
Move the robot to an element.

SMCIOC_INIT_ELEM_STAT
Issue the SCSI Initialize Element Status command.

SMCIOC_INIT_ELEM_STAT_RANGE
Issue the SCSI Initialize Element Status with Range command.

SMCIOC_INVENTORY
Return the information about the four element types.

SMCIOC_LOAD_MEDIUM
Load a cartridge from a slot into the drive.

SMCIOC_UNLOAD_MEDIUM
Unload a cartridge from the drive and return it to a slot.

SMCIOC_UNLOAD_MEDIUM
Unload a cartridge from the drive and return it to a slot.

SMCIOC_PREVENT_MEDIUM_REMOVAL
Prevent medium removal by the operator.

SMCIOC_ALLOW_MEDIUM_REMOVAL
Allow medium removal by the operator.

SMCIOC_READ_ELEMENT_DEVIDS
Return the device id element descriptors for drive elements.

SCSI IOCTL Commands
These ioctl commands and their associated structures are defined in the IBM_tape.h
header file, which can be found in /usr/include/sys after installing IBMtape. The
IBM_tape.h header file should be included in the corresponding C program using
the functions.

SMCIOC_ELEMENT_INFO
This ioctl command obtains the device element information.

The data structure is:
struct element_info {

ushort robot_addr; /* first robot address */
ushort robots; /* number of medium transport elements */
ushort slot_addr; /* first medium storage element address */
ushort slots; /* number of medium storage elements */
ushort ie_addr; /* first import/export element address */
ushort ie_stations; /* number of import/export elements */
ushort drive_addr; /* first data-transfer element address */
ushort drives; /* number of data-transfer elements */

};

An example of the SMCIOC_ELEMENT_INFO command is:
#include <sys/IBM_tape.h>
struct element_info element_info;
if (!ioctl (smcfd, SMCIOC_ELEMENT_INFO, &element_info)) {

printf ("The SMCIOC_ELEMENT_INFO ioctl succeeded\n");
printf ("\nThe element information data is:\n");
dump_bytes ((unchar *) &element_info, sizeof (struct element_info));

}
else {

perror ("The SMCIOC_ELEMENT_INFO ioctl failed");
smcioc_request_sense();

}

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 195

SMCIOC_MOVE_MEDIUM
This ioctl command moves a cartridge from one element to another element.

The data structure is:
struct move_medium {

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination; /* move to location */
char invert; /* invert before placement bit */

};

An example of the SMCIOC_MOVE_MEDIUM command is:
#include <sys/IBM_tape.h>
struct move_medium move_medium;
move_medium.robot = 0;
move_medium.invert = 0;
move_medium.source = source;
move_medium.destination = dest;
if (!ioctl (smcfd, SMCIOC_MOVE_MEDIUM, &move_medium))

printf ("The SMCIOC_MOVE_MEDIUM ioctl succeeded\n");
else {

perror ("The SMCIOC_MOVE_MEDIUM ioctl failed");
smcioc_request_sense();

}

SMCIOC_EXCHANGE_MEDIUM
This ioctl command exchanges a cartridge in an element with another cartridge.
This command is equivalent to two SCSI Move Medium commands. The first
moves the cartridge from the source element to the destination1 element, and the
second moves the cartridge that was previously in the destination1 element to the
destination 2 element. This function is only available in the IBM 3584 UltraScalable
Tape Library. The destination2 element can be the same as the source element.

The input data structure is:
struct exchange_medium {

ushort robot; /* robot address */
ushort source; /* source address for exchange */
ushort destination1; /* first destination address for exchange */
ushort destination2; /* second destination address for exchange */
char invert1; /* invert before placement into destination1 */
char invert2; /* invert before placement into destination2 */

};

An example of the SMCIOC_EXCHANGE_MEDIUM command is:
#include <sys/IBM_tape.h>
struct exchange_medium exchange_medium;
exchange_medium.robot = 0;
exchange_medium.invert1 = 0;
exchange_medium.invert2 = 0;
exchange_medium.source = 32; /* slot 32 */
exchange_medium.destination1 = 16; /* drive address 16 */
exchange_medium.destination2 = 35; /* slot 35 */

/* exchange cartridge in drive address 16 with cartridge from */
/* slot 32 and return the cartridge currently in the drive to */
/* slot 35 */
if (!ioctl (smcfd, SMCIOC_EXCHANGE_MEDIUM, &exchange_medium))

printf("The SMCIOC_EXCHANGE_MEDIUM ioctl succeeded\n");
else {
perror ("The SMCIOC_EXCHANGE_MEDIUM ioctl failed");
smcioc_request_sense();

}

Linux Device Driver (IBMtape)

196 IBM Tape Device Drivers: Programming Reference

SMCIOC_POS_TO_ELEM
This ioctl command moves the robot to an element.

The input data structure is:
struct pos_to_elem {

ushort robot; /* robot address */
ushort destination; /* move to location */
char invert; /* invert before placement bit */

};

An example of the SMCIOC_POS_TO_ELEM command is:
#include <sys/IBM_tape.h>
struct pos_to_elem pos_to_elem;
pos_to_elem.robot = 0;
pos_to_elem.invert = 0;
pos_to_elem.destination = dest;
if (!ioctl (smcfd, SMCIOC_POS_TO_ELEM, &pos_to_elem))

printf ("The SMCIOC_POS_TO_ELEM ioctl succeeded\n");
else {

perror ("The SMCIOC_POS_TO_ELEM ioctl failed");
smcioc_request_sense();

}

SMCIOC_INIT_ELEM_STAT
This ioctl command instructs the medium changer robotic device to issue the SCSI
Initialize Element Status command.

There is no associated data structure.

An example of the SMCIOC_INIT_ELEM_STAT command is:
#include <sys/IBM_tape.h>
if (!ioctl (smcfd, SMCIOC_INIT_ELEM_STAT, NULL))

printf ("The SMCIOC_INIT_ELEM_STAT ioctl succeeded\n");
else {

perror ("The SMCIOC_INIT_ELEM_STAT ioctl failed");
smcioc_request_sense();

}

SMCIOC_INIT_ELEM_STAT_RANGE
This ioctl command issues the SCSI Initialize Element Status with Range command
and audits specific elements in a library by specifying the starting element address
and number of elements. Use the SMCIOC_INIT_ELEM_STAT ioctl to audit all
elements.

The data structure is:
struct element_range {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */

}

An example of the SMCIOC_INIT_ELEM_STAT_RANGE command is:
#include <sys/IBM_tape.h>
struct element_range elements;
/* audit slots 32 to 36 */
elements.element_address = 32;
elements.number_elements = 5;
if (!ioctl (smcfd, SMCIOC_INIT_ELEM_STAT_RANGE, &elements))
printf ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl succeeded\n");

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 197

else {
perror ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl failed");
smcioc_request_sense();

}

Note: Use the SMCIOG_INVENTORY ioctl command to obtain the current version
after issuing this ioctl command.

SMCIOC_INVENTORY
This ioctl command returns the information about the four element types. The
software application processes the input data (the number of elements about which
it requires information) and allocates a buffer large enough to hold the output for
each element type.

The input data structure is:
struct element_status {

ushort address; /* element address */
uint :2, /* reserved */

inenab :1, /* media into changer’s scope */
exenab :1, /* media out of changer’s scope */
access :1, /* robot access allowed */
except :1, /* abnormal element state */
impexp :1, /* import/export placed by operator or robot */
full :1; /* element contains medium */

unchar resvd1; /* reserved */
unchar asc; /* additional sense code */
unchar ascq; /* additional sense code qualifier */
uint notbus :1, /* element not on same bus as robot */

:1, /* reserved */
idvalid :1, /* element address valid */
luvalid :1, /* logical unit valid */

:1, /* reserved */
lun :3; /* logical unit number */

unchar scsi; /* SCSI bus address */
unchar resvd2; /* reserved */
uint svalid :1, /* element address valid */

invert :1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
unchar volume[36]; /* primary volume tag */
unchar resvd3[4]; /* reserved */

};
struct inventory {

struct element_status *robot_status; /* medium transport elem pgs */
struct element_status *slot_status; /* medium storage elem pgs */
struct element_status *ie_status; /* import/export elem pgs */
struct element_status *drive_status; /* data-transfer elem pgs */

};

Linux Device Driver (IBMtape)

198 IBM Tape Device Drivers: Programming Reference

An example of the SMCIOC_INVENTORY command is:
#include <sys/IBM_tape.h>
ushort i;
struct element_info element_info;
struct element_status robot_status[1];
struct element_status slot_status[20];
struct element_status ie_status[1];
struct element_status drive_status[1];
struct inventory inventory;
bzero((caddr_t)robot_status,sizeof(struct element_status));
for (i=0;i<20;i++)

bzero((caddr_t)(&slot_status[i]),sizeof(struct element_status));
bzero((caddr_t)ie_status,sizeof(struct element_status));
bzero((caddr_t)drive_status,sizeof(struct element_status));
smcioc_element_info(&element_info);
inventory.robot_status = robot_status;
inventory.slot_status = slot_status;
inventory.ie_status = ie_status;
inventory.drive_status = drive_status;
if (!ioctl (smcfd, SMCIOC_INVENTORY, &inventory)) {

printf ("\nThe SMCIOC_INVENTORY ioctl succeeded\n");
printf ("\nThe robot status pages are:\n");
for (i = 0; i<element_info.robots; i++) {

dump_bytes ((unchar *)(robot_status[i]), sizeof (struct
element_status));
printf ("\n--- more ---");
getchar();

}
printf ("\nThe slot status pages are:\n");
for (i = 0; i<element_info.slots; i++) {

dump_bytes ((unchar *)(slot_status[i]), sizeof (struct
element_status));
printf ("\n--- more ---");
getchar();

}
printf ("\nThe ie status pages are:\n");
for (i = 0; i<element_info.ie_stations; i++) {

dump_bytes ((unchar *)(ie_status[i]), sizeof (struct
element_status));
printf ("\n--- more ---");
getchar();

}
printf ("\nThe drive status pages are:\n");
for (i = 0; i<element_info.drives; i++) {

dump_bytes ((unchar *)(drive_status[i]), sizeof (struct element_status));
printf ("\n--- more ---");
getchar();

}
}
else {

perror ("The SMCIOC_INVENTORY ioctl failed");
smcioc_request_sense();

}

SMCIOC_LOAD_MEDIUM
This ioctl command loads a tape from a specific slot into the drive or from the first
full slot into the drive if the slot address is specified as zero.

An example of the SMCIOC_LOAD_MEDIUM command is:
#include <sys/IBM_tape.h>
/* load cartridge from slot 3 */
if (ioctl (tapefd, SMCIOC_LOAD_MEDIUM,3)) {

printf ("IOCTL failure. errno=%d\n",errno);
exit(1);

}

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 199

/* load first cartridge from magazine */
if (ioctl (tapefd, SMCIOC_LOAD_MEDIUM,0)) {

printf ("IOCTL failure. errno=%d\n",errno);
exit(1);

}

SMCIOC_UNLOAD_MEDIUM
This ioctl command moves a tape from the drive and returns it to a specific slot or
to the first empty slot in the magazine if the slot address is specified as zero. An
unload/offline command must be sent to the tape first, otherwise, this ioctl command
fails with errno EIO.

An example of the SMCIOC_UNLOAD_MEDIUM command is:
#include <sys/IBM_tape.h>
/* unload cartridge to slot 3 */
if (ioctl (tapefd, SMCIOC_UNLOAD_MEDIUM,3)) {

printf ("IOCTL failure. errno=%d\n",errno);
exit(1);

}
/* unload cartridge to first empty slot in magazine */
if (ioctl (tapefd, SMCIOC_UNLOAD_MEDIUM,0)) {

printf ("IOCTL failure.errno=%d\n",errno);
exit(1);

}

SMCIOC_PREVENT_MEDIUM_REMOVAL
This ioctl command prevents an operator from removing medium from the device
until the SMCIOC_ALLOW_MEDIUM_REMOVAL command is issued or the
device is reset. There is no associated data structure.

An example of the SMCIOC_PREVENT_MEDIUM_REMOVAL command is:
#include <sys/IBM_tape.h>
if (!ioctl (smcfd, SMCIOC_PREVENT_MEDIUM_REMOVAL, NULL))
printf ("The SMCIOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded\n");
else {

perror ("The SMCIOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

SMCIOC_ALLOW_MEDIUM_REMOVAL
This ioctl command allows an operator to remove medium from the device. This
command is normally used after an SMCIOC_PREVENT_MEDIUM_REMOVAL
command to restore the device to the default state. There is no associated data
structure.

An example of the SMCIOC_ALLOW_MEDIUM_REMOVAL command is:
#include <sys/IBM_tape.h>
if (!ioctl (smcfd, SMCIOC_ALLOW_MEDIUM_REMOVAL, NULL))
printf ("The SMCIOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded\n");
else {

perror ("The SMCIOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

SMCIOC_READ_ELEMENT_DEVIDS
This ioctl command issues the SCSI Read Element Status command with the device
ID(DVCID) bit set and returns the element descriptors for the data transfer
elements. The element_address field specifies the starting address of the first data
transfer element. The number_elements field specifies the number of elements to

Linux Device Driver (IBMtape)

200 IBM Tape Device Drivers: Programming Reference

return. The application must allocate a return buffer large enough for the number
of elements specified in the input structure.

The input data structure is:
struct read_element_devids {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
struct element_devid *drive_devid; /* data transfer element pages */

};

The output data structure is:
struct element_devid {

ushort address; /* element address */
uint :4, /* reserved */

access :1, /* robot access allowed */
except :1, /* abnormal element state */

:1, /* reserved */
full :1; /* element contains medium */

unchar resvd1; /* reserved */
unchar asc; /* additional sense code */
unchar ascq; /* additional sense code qualifier */
uint notbus :1, /* element not on same bus as robot */

:1, /* reserved */
idvalid :1, /* element address valid */
luvalid :1, /* logical unit valid */

:1, /* reserved */
lun :3; /* logical unit number */

unchar scsi; /* scsi bus address */
unchar resvd2; /* reserved */
uint svalid :1, /* element address valid */

invert :1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
uint :4, /* reserved */

code_set :4; /* code set X’2’ is all ASCII identifier*/
uint :4, /* reserved */

ident_type :4; /* identifier type */
unchar resvd3; /* reserved */
unchar ident_len; /* identifier length */
unchar identifier[36]; /* device identification */

};

An example of the SMCIOC_READ_ELEMENT_DEVIDS command is:
#include <sys/IBM_tape.h>
int smcioc_read_element_devids() {
int i;
struct element_devid *elem_devid, *elemp;
struct read_element_devids devids;
struct element_info element_info;
if (ioctl(fd, SMCIOC_ELEMENT_INFO, &element_info)) return errno;
if (element_info.drives) {

elem_devid = malloc(element_info.drives
* sizeof(struct element_devid));

if (elem_devid == NULL) {
errno = ENOMEM;
return errno;

}
bzero((caddr_t)elem_devid,element_info.drives

* sizeof(struct element_devid));
devids.drive_devid = elem_devid;
devids.element_address = element_info.drive_addr;
devids.number_elements = element_info.drives;
printf("Reading element device ids?\n");
if (ioctl (fd, SMCIOC_READ_ELEMENT_DEVIDS, &devids)) {

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 201

free(elem_devid);
return errno;

}
elemp = elem_devid;
for (i = 0; i<element_info.drives; i++, elemp++) {

printf("\nDrive Address %d\n",elemp->address);
if (elemp->except)

printf(" Drive State Abnormal\n");
else

printf(" Drive State Normal\n");
if (elemp->asc == 0x81 && elemp->ascq ==0x00)

printf(" ASC/ASCQ %02X%02X (Drive Present)\n",
elemp->asc,elemp->ascq);

else if (elemp->asc == 0x82 && elemp->ascq ==0x00)
printf(" ASC/ASCQ %02X%02X (Drive Not Present)\n",

elemp->asc,elemp->ascq);
else

printf(" ASC/ASCQ %02X%02X\n",
elemp->asc,elemp->ascq);

if (elemp->full)
printf(" Media Present Yes\n");

else
printf(" Media Present No\n");

if (elemp->access)
printf(" Robot Access Allowed Yes\n");

else
printf(" Robot Access Allowed No\n");

if (elemp->svalid)
printf(" Source Element Address %d\n",

elemp->source);
else

printf(" Source Element Address ValidNo\n");
if (elemp->invert)

printf(" Media Inverted Yes\n");
else

printf(" Media Inverted No\n");
if (elemp->notbus)

printf(" Same Bus as Medium Changer No\n");
else

printf(" Same Bus as Medium Changer Yes\n");
if (elemp->idvalid)

printf(" SCSI Bus Address %d\n",elemp->scsi);
else

printf(" SCSI Bus Address Valid No\n");
if (elemp->luvalid)

printf(" Logical Unit Number %d\n",elemp->lun);
else

printf(" Logical Unit Number Valid No\n");
printf(" Device ID %0.36s\n",

elemp->identifier);
}
else {

printf("\nNo drives found in element information\n");
}
free(elem_devid);
return errno;

}

Return Codes
This chapter describes error codes generated by IBMtape when an error occurs
during an operation. On error, the operation returns negative one (-1), and the
external variable errno is set to one of the listed error codes. Errno values are
defined in /usr/include/errno.h (and other files which it includes). Application
programs must include errno.h in order to interpret the return codes.

Linux Device Driver (IBMtape)

202 IBM Tape Device Drivers: Programming Reference

Note: For error code EIO, an application can retrieve more information from the
device itself. Issue the STIOCQRYSENSE ioctl command when the
sense_type equals LASTERROR, or the SIOC_REQSENSE ioctl command, to
retrieve sense data. Then analyze the sense data using the appropriate
hardware or SCSI reference for that device.

General Error Codes
The following codes apply to all operations:

[EBUSY] An excessively busy state was encountered in the device.

[EFAULT] A memory failure occurred due to an invalid pointer or address.

[EIO] An error due to one of the following conditions:

v An unrecoverable media error was detected by the device.

v The device was not ready for operation or a tape was not in the
drive.

v The device did not respond to SCSI selection.

v A bad file descriptor was passed to the device.

[ENOMEM] Insufficient memory was available for an internal memory
operation.

[ENXIO] The device was not configured and is not receiving requests.

[EPERM] The process does not have permission to perform the desired
function.

[ETIMEDOUT] A command timed out in the device.

Open Error Codes
The following codes apply to open operations:

[EACCES] The open requires write access when the cartridge loaded in the
drive is physically write-protected.

[EAGAIN] The device was already open when an open was attempted.

[EBUSY] The device was reserved by another initiator or an excessively
busy state was encountered.

[EINVAL] The operation requested has invalid parameters or an invalid
combination of parameters, or the device is rejecting open
commands.

[EIO] An I/O error occurred that indicates a failure to operate the
device. Perform failure analysis.

[ENOMEM] Insufficient memory was available for an internal memory
operation.

[EPERM] One of the following situations occurred:

v An open operation with the O_RDWR or O_WRONLY flag was
attempted on a write-protected tape.

v A write operation was attempted on a device that was opened
with the O_RDONLY flag.

Close Error Codes
The following codes apply to close operations:

[EBUSY] The SCSI subsystem was busy.

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 203

[EFAULT] Memory reallocation failed.

[EIO] A command issued during close, such as a rewind command,
failed because the device was not ready. An I/O error occurred
during the operation. Perform failure analysis.

Read Error Codes
The following codes apply to read operations:

[EFAULT] Failure copying from user to kernel space or vice versa.

[EINVAL] One of the following situations occurred:

v The operation requested has invalid parameters or an invalid
combination of parameters.

v The number of bytes requested in the read operation was not a
multiple of the block size for a fixed block transfer.

v The number of bytes requested in the read operation was
greater than the maximum size allowed by the device for
variable block transfers.

v A read for multiple fixed odd-byte-count blocks was issued.

[ENOMEM] One of the following situations occurred:

v The number of bytes requested in the read operation of a
variable block record was less than the size of the block. This
error is known as an overlength condition.

v Insufficient memory was available for an internal memory
operation.

[EPERM] A read operation was attempted on a device that was opened
with the O_WRONLY flag.

Linux Device Driver (IBMtape)

204 IBM Tape Device Drivers: Programming Reference

Write Error Codes
The following codes apply to write operations:

[EFAULT] Failure copying from user to kernel space or vice versa.

[EINVAL] One of the following conditions occurred:

v The operation requested has invalid parameters or an invalid
combination of parameters.

v The number of bytes requested in the write operation was not a
multiple of the block size for a fixed block transfer.

v The number of bytes requested in the write operation was
greater than the maximum block size allowed by the device for
variable block transfers.

[EIO] The physical end of the medium was detected, or it is a general
error that indicates a failure to write to the device. Perform failure
analysis.

[ENOMEM] Insufficient memory was available for an internal memory
operation.

[ENOSPC] A write operation failed because it reached the early warning
mark. This error code is returned only once when the early
warning is reached and trailer_labels is set to true. A write
operation was attempted after the device reached the logical end
of the medium and trailer_labels were set to false.

[EPERM] A write operation was attempted on a write protected tape.

IOCTL Error Codes
The following codes apply to ioctl operations:

[EBUSY] SCSI subsystem was busy.

[EFAULT] Failure copying from user to kernel space or vice versa.

[EINVAL] The operation requested has invalid parameters or an invalid
combination of parameters. This error code also results if the ioctl
command is not supported by the device. For example, if you are
attempting to issue tape drive ioctl commands to a SCSI medium
changer. An invalid or nonexistent ioctl command was specified.

[EIO] An I/O error occurred during the operation. Perform failure
analysis.

[ENOMEM] Insufficient memory was available for an internal memory
operation.

[ENOSYS] The underlying function for this ioctl command does not exist on
this device. (Other devices may support the function.)

[EPERM] An operation that modifies the media was attempted on a
write-protected tape or a device that was opened with the
O_RDONLY flag.

Linux Device Driver (IBMtape)

Chapter 4. Linux Tape and Medium Changer Device Driver 205

Linux Device Driver (IBMtape)

206 IBM Tape Device Drivers: Programming Reference

Chapter 5. Solaris Tape and Medium Changer Device Driver

IOCTL Operations
The following sections describe the ioctl operations supported by the IBMtape
device driver for Solaris. Usage, syntax, and examples are given.

The ioctl operations supported by the Solaris Tape and Medium Changer Device
Driver support are described in:
v “General SCSI IOCTL Operations”
v “SCSI Medium Changer IOCTL Operations” on page 217
v “SCSI Tape Drive IOCTL Operations” on page 228
v “Base Operating System Tape Drive IOCTL Operations” on page 266
v “Downward Compatibility Tape Drive IOCTL Operations” on page 269
v “Service Aid IOCTL Operations” on page 275

General SCSI IOCTL Operations
A set of general SCSI ioctl commands gives applications access to standard SCSI
operations such as device identification, access control, and problem determination
for both tape drive and medium changer devices.

The following commands are supported:

Name Description

IOC_TEST_UNIT_READY Determine if the device is ready for operation.

IOC_INQUIRY Collect the inquiry data from the device.

IOC_INQUIRY_PAGE Return the inquiry page data for a special page
from the device.

IOC_REQUEST_SENSE Return the device sense data.

IOC_LOG_SENSE_PAGE Collect the log sense page data from the device.

IOC_LOG_SENSE10_PAGE Enhanced to add a Subpage variable from
IOC_LOG_SENSE_PAGE. It returns a log sense
page and/or Subpage from the device.

IOC_MODE_SENSE Return the mode sense data for a specific page.

IOC_MODE_SENSE_SUBPAGE
Return the mode sense data for a specific page and
Subpage.

SIOC_MODE_SENSE Return whole mode sense data and support for
Mode Sense Subpage.

IOC_DRIVER_INFO Return the driver information.

IOC_RESERVE Reserve the device for exclusive use by the
initiator.

IOC_RELEASE Release the device from exclusive use by the
initiator.

© Copyright IBM Corp. 1999, 2012 207

||
|
|

||
|

These commands and associated data structures are defined in the st.h and smc.h
header files in the /usr/include/sys directory that is installed with the IBMtape
package. Any application program that issues these commands must include this
header file.

Solaris Device Driver (IBMtape)

208 IBM Tape Device Drivers: Programming Reference

IOC_TEST_UNIT_READY
This command determines if the device is ready for operation.

No data structure is required for this command.

An example of the IOC_TEST_UNIT_READY command is:
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_TEST_UNIT_READY, 0))) {
printf ("The IOC_TEST_UNIT_READY ioctl succeeded.\n");

}

else {
perror ("The IOC_TEST_UNIT_READY ioctl failed");
scsi_request_sense ();

}

IOC_INQUIRY
This command collects the inquiry data from the device.

The following data structure is filled out and returned by the driver:
typedef struct {

uchar qual : 3, /* peripheral qualifier */
type : 5; /* device type */

uchar rm : 1, /* removable medium */
mod : 7; /* device type modifier */

uchar iso : 2, /* ISO version */
ecma : 3, /* ECMA version */
ansi : 3; /* ANSI version */

uchar aen : 1, /* asynchronous even notification */
trmiop : 1, /* terminate I/O process message */

: 2, /* reserved */
rdf : 4; /* response data format */

uchar len; /* additional length */
uchar : 8; /* reserved */
uchar : 4, /* reserved */

mchngr : 1, /* medium changer mode */
: 3; /* reserved */

uchar reladr : 1, /* relative addressing */
wbus32 : 1, /* 32-bit wide data transfers */
wbus16 : 1, /* 16-bit wide data transfers */
sync : 1, /* synchronous data transfers */
linked : 1, /* linked commands */

: 1, /* reserved */
cmdque : 1, /* command queueing */
sftre : 1; /* soft reset */

uchar vid[8]; /* vendor ID */
uchar pid[16]; /* product ID */
uchar rev[4]; /* product revision level */
uchar vendor[92]; /* vendor specific (padded to 128) */

} inquiry_data_t;

An example of the IOC_INQUIRY command is:
#include <sys/st.h>

inquiry_data_t inquiry_data;

if (!(ioctl (dev_fd, IOC_INQUIRY, &inquiry_data))) {
printf ("The IOC_INQUIRY ioctl succeeded.\n");
printf ("\nThe inquiry data is:\n");
dump_bytes ((char *)&inquiry_data, sizeof (inquiry_data_t));

}

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 209

else {
perror ("The IOC_INQUIRY ioctl failed");
scsi_request_sense ();

}

IOC_INQUIRY_PAGE
This command returns the inquiry data for a special page from the device.

The following data structures for inquiry page, inquiry page x80 is filled out and
returned by the driver:
typedef struct {

uchar page_code; /*page code */
uchar data [253]; /*inquiry parameter List */

}inquiry_page_t;

typedef struct {
uchar page_code; /*page code */
uchar data [253]; /*inquiry parameter List */

}inquiry_page_t;

typedef struct {
uchar periph_qual :3, /*peripheral qualifier */

periph_type :5; /*peripheral device type */
uchar page_code; /*page code */
uchar reserved_1; /*reserved */
uchar page_len; /*page length */
uchar serial [12]; /*serial number */

}inq_pg_80_t;

An example of the IOC_INQUIRY_PAGE command is:

#include <sys/st.h>

inquiry_page_t inquiry_page;
inquiry_page.page_code =(uchar)page;

if (!(ioctl (dev_fd, IOC_INQUIRY_PAGE, &inquiry_page))){
printf ("Inquiry Data (Page 0x%02x):\n", page);
dump_bytes ((char *) &inquiry_page.data, inquiry_page.data [3]+4);

}
else {

perror ("The IOC_INQUIRY_PAGE ioctl for page 0x%X failed.\n", page);
scsi_request_sense ();

}

IOC_REQUEST_SENSE
This command returns the device sense data. If the last command resulted in an
error, the sense data is returned for that error. Otherwise, a new (unsolicited)
Request Sense command is issued to the device.

The following data structure is filled out and returned by the driver:
typedef struct {

uchar valid : 1, /* sense data is valid */
code : 7, /* error code */

uchar segnum; /* segment number */
uchar fm : 1, /* filemark detected */

eom : 1, /* end of media */
ili : 1, /* incorrect length indicator */

: 1, /* reserved */
key : 4; /* sense key */

uchar info[4]; /* information bytes */
uchar addlen; /* additional sense length */
uchar cmdinfo[4]; /* command-specific information */

Solaris Device Driver (IBMtape)

210 IBM Tape Device Drivers: Programming Reference

uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar fru; /* field-replaceable unit code */
uchar sksv : 1, /* sense key specific valid */

cd : 1, /* control/data */
: 2, /* reserved */

bpv : 1, /* bit pointer valid */
sim : 3; /* system information message */

uchar field[2]; /* field pointer */
uchar vendor[110]; /* vendor specific (padded to 128) */

} sense_data_t;

An example of the IOC_REQUEST_SENSE command is:
#include <sys/st.h>

sense_data_t sense_data;

if (!(ioctl (dev_fd, IOC_REQUEST_SENSE, &sense_data))) {
printf ("The IOC_REQUEST_SENSE ioctl succeeded.\n");
printf ("\nThe request sense data is:\n");
dump_bytes ((char *)&sense_data, sizeof (sense_data_t));

}

else {
perror ("The IOC_REQUEST_SENSE ioctl failed");

}

IOC_LOG_SENSE_PAGE
This ioctl command returns a log sense page from the device. The desired page is
selected by specifying the page_code in the log_sense_page structure.

The structure of a log page consists of the following log page header and log
parameters.
Log Page
- Log Page Header
-Page Code
-Page Length
- Log Paramter(s) (One or more may exist)
- Parameter Code
- Control Byte
- Parameter Length
- Paramter Value

The following data structure is filled out and returned by the driver:
#define IOC_LOG_SENSE_PAGE (_IOWR(’S’,6, log_sns_pg_t)
#define LOGSENSEPAGE 1024 /* The maximum data length which this */

/* ioctl can return, including the */
/* log page header. This value is not */
/* application modifiable. */

typedef struct log_sns_pg_s {
uchar page_code; /* Log page to be returned. */
uchar subpage_code; /* Log subpage to be returned. */
uchar reserved1[1]; /* Reserved for IBM future use. */
uchar reserved2[2]; /* Reserved for IBM future use. */
uchar data[LOGSENSEPAGE]; /* Log page data will be placed here. */

} log_sns_pg_t;

An example of the IOC_LOG_SENSE_PAGE command is:
#include <sys/st.h>

memset((char*)&log_sns_pg,0,sizeof(log_sns_pg_t));
log_sns_pg.page_code = page;

if(!(ioctl(dev_fd, IOC_LOG_SENSE_PAGE,&log_sns_pg))){

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 211

log_data_len = (uint)(((log_page_hdr_p->len[0]<<8) | log_page_hdr_p->len[1])+4);
returned_len = MIN(log_data_len,sizeof log_sns_pg.data);
printf ("\n Log Sense Page ioctl succeeded.\n");
printf(" Log Page 0x%X data, length %d(%d returned):\n",page,log_data_len,returned_len);
dump_bytes((char*)log_page_p,returned_len);

}
else {

perror("The IOC_INQUIRY ioctl failed");
scsi_request_sense();

}

IOC_LOG_SENSE10_PAGE
This ioctl command is enhanced to add a Subpage variable from
IOC_LOG_SENSE_PAGE. It returns a log sense page and/or Subpage from the
device.

The data structure used with this ioctl is:
#define LOGSENSEPAGE 1024 /* The maximum data length which this */

/* ioctl can return, including the */
/* log page header. This value is not */
/* application modifiable. */}

typedef struct {
uchar page_code; /* Log sense page */
uchar subpage_code; /* Log sense subpage */
uchar reserved[2]; /* Reserved for IBM future use. */
ushort len; /* number of valid bytes in data(log_page_header_size+page_length) */
ushort parm_pointer; /* specific parameter number at which the data begins */
char data[LOGSENSEPAGE]; /* log data */

}log_sense10_page_t;

Examples of the IOC_LOG_SENSE10_PAGE ioctl:
#include<sys/st.h>
log_sense10_page_t log_sns_pg;
memset((char*)&log_sns_pg,0,sizeof(log_sense10_page_t));
log_sns_pg.page_code = page;
log_sns_pg.page_code =subpage;
log_sns_pg.parm_pointer =parm;

if(!(ioctl(dev_fd, IOC_LOG_SENSE10_PAGE,&log_sns_pg))){
log_data_len = (uint)(((log_page_hdr_p->len[0]<<8) | log_page_hdr_p->len[1])+4);
returned_len = MIN(log_data_len,sizeof log_sns_pg.data);
printf ("\n Log Sense Page ioctl succeeded.\n");
printf(" Log Page 0x%X data, length %d(%d returned):\n",page,log_data_len,returned_len);
dump_bytes((char*)log_page_p,returned_len);
}
else { perror("The IOC_LOG_SENSE10_PAGE ioctl failed");
scsi_request_sense(); }
}

IOC_MODE_SENSE
This command returns a mode sense page from the device. The desired page is
selected by specifying the page_code in the mode_sns_t structure.

The following data structure is filled out and returned by the driver.
#define MAX_MSDATA 253 /* The maximum data length which this */

/* ioctl can return, including */
/* headers and block descriptors. */

#define MODESNS_10_CMD 0x5A /* SCSI cmd code for 10-byte version */
/* of the command */

#define MODESNS_6_CMD 0x1A /* SCSI cmd code for 6-byte version */
/* of the command */

Solaris Device Driver (IBMtape)

212 IBM Tape Device Drivers: Programming Reference

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

typedef struct {
uchar page_code; /* Page Code: Set this field with */

/* the desired mode page number */
/* before issuing the ioctl. */

uchar cmd_code; /* SCSI Command Code: Upon return, */
/* this field is set with the */
/* SCSI command code to which */
/* the device responded. */
/* x’5A’ = Mode Sense (10) */
/* x’1A’ = Mode Sense (6) */

uchar data[MAX_MSDATA]; /* Mode Parameter List: Upon return, */
/* this field contains the mode */
/* parameters list, up to the max */
/* length supported by the ioctl. */

} mode_sns_t;

An example of the IOC_MODE_SENSE command is:
#include <sys/st.h>

mode_sns_t mode_data;
mode_data.page_code =(uchar)page;

memset ((char *)&mode_data, (char)0, sizeof(mode_sns_t));

if (!(rc =ioctl (dev_fd, IOC_MODE_SENSE, &mode_data))){
if (mode_data.cmd_code ==0x1A)

offset =(int)(mode_data.data [3]) + sizeof(mode_hdr6_t);
if (mode_data.cmd_code ==0x5A)

offset =(int)((mode_data.data [6]<<8) + mode_data.data [7]) + sizeof(mode_hdr10_t);
printf("Mode Data (Page 0x%02x):\n", mode_data.page_code);
dump_bytes ((char *)&mode_data.data [offset], (mode_data.data [offset+1] + 2));

}
else {

printf("IOC_MODE_SENSE for page 0x%X failed.\n",mode_data.page_code);
scsi_request_sense ();

}

IOC_MODE_SENSE_SUBPAGE
This command returns the mode sense data for a specific page and Subpage from
the device. The desired page and Subpage are selected by specifying the page_code
and subpage_code in the mode_sns_subpage_t structure.

The following data structure is filled out and returned by the driver.
#define MAX_MS_SUBDATA 10240 /* The maximum subpage data length which */

/* this ioctl can return, including */
/* headers and block descriptors. */

typedef struct {
uchar page_code; /* Page Code: Set this field with */

/* the desired mode page number */
/* before issuing the ioctl */

uchar subpage_code; /* Subpage Code: Set this field with */
/* the desired mode page subpage */
/* number before issuing the ioctl */

uchar cmd_code; /* SCSI Command Code: Upon return, */
/* this field is set with the */
/* SCSI command code to which */
/* the device responded. */
/* x’5A’ = Mode Sense (10) */
/* x’1A’ = Mode Sense (6) */

uchar reserved[13];
uchar data[MAX_MS_SUBDATA]; /* Mode Subpage Data: Upon return, */

/* this field contains the mode */
/* ubpage data up to the max */
/* length supported by the ioctl */

} mode_sns_subpage_t;

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 213

An example of the IOC_MODE_SENSE command is:
include<sys/st.h>

int rc;
int header_len;
int blk_dsc_len = 0;
int mode_data_len = 0;
int mode_data_returned_len = 0;
int max_mdsnspg_data_len = 0;
uchar cmd_code;
uchar medium_type;
uchar density_code;
uchar wrt_prot;
char *header_p;
char *blkdsc_p;
void *mode_data_p;
mode_sns_subpage_t mode_subpage;

memset ((char *)&mode_subpage, 0, sizeof(mode_sns_subpage_t));
mode_subpage.page_code = page;
mode_subpage.subpage_code = subpage;

if (!(rc = ioctl (dev_fd, IOC_MODE_SENSE_SUBPAGE, &mode_subpage))) {
printf ("IOC_MODE_SENSE_SUBPAGE succeeded.\n");
header_p = (char *)&mode_subpage.data;
cmd_code = mode_subpage.cmd_code;
if (cmd_code == MODESNS_6_CMD) {

header_len = sizeof(mode_hdr6_t);
mode_data_len = (uint) ((mode_hdr6_t *)header_p)->data_len;
blk_dsc_len = (uint) ((mode_hdr6_t *)header_p)->blk_dsc_len;
max_mdsnspg_data_len = MAX_MS_SUBDATA - header_len - blk_dsc_len;
mode_data_returned_len = MIN(mode_data_len + 1, max_mdsnspg_data_len);
medium_type = (uchar)((mode_hdr6_t *)(header_p))->medium_type;
wrt_prot = (uchar)((mode_hdr6_t *)(header_p))->wrt_prot;

}
else if (cmd_code == MODESNS_10_CMD) {

header_len = sizeof(mode_hdr10_t);
mode_data_len = (uint) ((((mode_hdr10_t *)header_p)->data_len[0] << 8)

| ((mode_hdr10_t *)header_p)->data_len[1]);
blk_dsc_len = (uint) ((((mode_hdr10_t *)header_p)->blk_dsc_len[0] << 8)

| ((mode_hdr10_t *)header_p)->blk_dsc_len[1]);
max_mdsnspg_data_len = MAX_MS_SUBDATA - header_len - blk_dsc_len;
mode_data_returned_len = MIN(mode_data_len+2, max_mdsnspg_data_len);
medium_type = (uchar)((mode_hdr10_t *)(header_p))->medium_type;
wrt_prot = (uchar)((mode_hdr10_t *)(header_p))->wrt_prot;

}
else {

fprintf (stderr, "mode sense: Unknown mode sense command code ’0x%X’.\n",
cmd_code);

return (1);
} blkdsc_p = header_p + header_len;
mode_data_p = blkdsc_p + blk_dsc_len;
density_code = (blk_dsc_len ? (unsigned char)((blkdsc_t

*)(blkdsc_p))->density_code : 0);
printf ("Page Code x’%2.2X’\n", page);
printf ("SubPage Code x’%2.2X’\n", subpage);
printf ("Command Code x’%2.2X’\n", mode_subpage.cmd_code);
printf ("Mode Data Len %4d\n", mode_data_len);
printf ("Blk Desc Len %4d\n", blk_dsc_len);
printf ("Returned Len %4d\n", mode_data_returned_len);
printf ("Write Protect x’%2.2X’\t\n", wrt_prot);
printf ("Medium Type x’%2.2X’\t\n", medium_type);
if (blk_dsc_len != 0)

printf ("Density Code x’%2.2X’\t\n", density_code);

printf ("\nHeader:\n");
DUMP_BYTES ((char *)(header_p), header_len);

Solaris Device Driver (IBMtape)

214 IBM Tape Device Drivers: Programming Reference

if (blk_dsc_len != 0) {
printf ("\nBlock Descriptor:\n");
DUMP_BYTES ((char *)(blkdsc_p), blk_dsc_len);

}
printf ("\nMode Page:\n");
DUMP_BYTES ((char *)(mode_data_p), (mode_data_returned_len - header_len -

blk_dsc_len));
}
else {

perror ("mode sense subpage");
}
return (rc);

SIOC_MODE_SENSE
This command returns the mode sense data for a specific page and Subpage from
the device. The desired page and Subpage are selected by specifying the page_code
and subpage_code in the mode_sense_t structure.
#define MAX_MS_SUBDATA 10240 /* The maximum subpage data length which */

/* this ioctl can return, including */
/* headers and block descriptors. */

#define MODESNS_10_CMD 0x5A /* SCSI cmd code for 10-byte version */
/* of the command */

#define MODESNS_6_CMD 0x1A /* SCSI cmd code for 6-byte version */
/* of the command */

#define MODESENSEPAGE 255 /* max data xfer for mode sense/select page ioctl */

typedef struct {
uchar page_code; /* mode sense page code */
uchar subpage_code; /* mode sense subpage code */
uchar reserved[6]; /*Reserved for IBM future use.*/
uchar cmd_code; /* SCSI Command Code: this field is set with */

/* SCSI command code which the device responded. */
/* x’5A’ = Mode Sense (10) */
/* x’1A’ = Mode Sense (6) */

char data[MODESENSEPAGE]; /* whole mode sense data include header, block descriptor
and page */

} mode_sense_t;

An example of the SIOC_MODE_SENSE command is:
#include <sys/st.h>

int header_len;
int blk_dsc_len = 0;
int mode_data_len = 0;
int mode_data_returned_len = 0;
int max_mdsnspg_data_len = 0;
uchar cmd_code;
uchar medium_type;
uchar density_code;
uchar wrt_prot;
char *header_p;
char *blkdsc_p;
void *mode_data_p;
mode_sense_t mode_sns;

memset ((char *)&mode_sns, 0, sizeof(mode_sense_t));

mode_sns.page_code = page;
mode_sns.subpage_code = subpage;

if (!(rc = ioctl (dev_fd, SIOC_MODE_SENSE, &mode_sns))) {
header_p = (char *)&mode_sns.data;
cmd_code = mode_sns.cmd_code;
if (cmd_code == MODESNS_6_CMD) {

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 215

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

header_len = sizeof(mode_hdr6_t);
mode_data_len = (uint) ((mode_hdr6_t *)header_p)->data_len;
blk_dsc_len = (uint) ((mode_hdr6_t *)header_p)->blk_dsc_len;
max_mdsnspg_data_len = MAX_MS_SUBDATA - header_len - blk_dsc_len;
mode_data_returned_len = MIN(mode_data_len + 1, max_mdsnspg_data_len);
medium_type = (uchar)((mode_hdr6_t *)(header_p))->medium_type;
wrt_prot = (uchar)((mode_hdr6_t *)(header_p))->wrt_prot;

}
else if (cmd_code == MODESNS_10_CMD) {

header_len = sizeof(mode_hdr10_t);
mode_data_len = (uint) ((((mode_hdr10_t *)header_p)->data_len[0] << 8)

| ((mode_hdr10_t *)header_p)->data_len[1]);

blk_dsc_len = (uint) ((((mode_hdr10_t *)header_p)->blk_dsc_len[0] << 8)
| ((mode_hdr10_t *)header_p)->blk_dsc_len[1]);

max_mdsnspg_data_len = MAX_MS_SUBDATA - header_len - blk_dsc_len;
mode_data_returned_len = MIN(mode_data_len+2, max_mdsnspg_data_len);
medium_type = (uchar)((mode_hdr10_t *)(header_p))->medium_type;
wrt_prot = (uchar)((mode_hdr10_t *)(header_p))->wrt_prot;

}
else {

fprintf (stderr, "mode sense: Unknown mode sense command code
’0x%X’.\n", cmd_code);
return (1);

}
blkdsc_p = header_p + header_len;
mode_data_p = blkdsc_p + blk_dsc_len;
density_code = (blk_dsc_len

? (unsigned char)((blkdsc_t *)(blkdsc_p))->density_code : 0);

PRINTF ("\nHeader:\n");
DUMP_BYTES ((char *)(header_p), header_len);
if (blk_dsc_len != 0) {

PRINTF ("\nBlock Descriptor:\n");
DUMP_BYTES ((char *)(blkdsc_p), blk_dsc_len);

}
PRINTF ("\nMode Page:\n");
DUMP_BYTES ((char *)(mode_data_p),
(mode_data_returned_len - header_len - blk_dsc_len));

}
else {

PERROR ("mode sense page");
PRINTF ("\n");
scsi_request_sense ();

}

IOC_DRIVER_INFO
This command returns the information about the currently installed IBMtape
driver.

The following data structure is filled out and returned by the driver:
typedef struct {

uchar reserved_1[4]; /* Reserved for IBM Development Use */
uchar reserved_2[4]; /* Reserved for IBM Development Use */
uchar reserved_3[4]; /* Reserved for IBM Development Use */
uchar reserved_4[4]; /* Reserved for IBM Development Use */
uchar name[16]; /* IBMtape device driver name */
uchar version[16]; /* IBMtape device driver version */
uchar sver[16]; /* Short version string (less ’.’ & ’_’ chars) */
uchar seq[16]; /* Sequence number */
uchar os[16]; /* Operating System */
uchar reserved_5[159]; /* Reserved for IBM Development Use */

} IBMtape_info_t;

An example of the IOC_DRIVER_INFO command is:

Solaris Device Driver (IBMtape)

216 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

#include <sys/st.h>

IBMtape_info_t IBMtape_info;

if (!(rc = ioctl (dev_fd, IOC_DRIVER_INFO, &IBMtape_info))) {
printf ("IBMtape tape device driver information:\n");
printf("Name: %s\n", IBMtape_info.name);
printf("Version: %s\n", IBMtape_info.version);
printf("Short version string: %s\n", IBMtape_info.sver);
printf("Operating System: %s\n", IBMtape_info.os);

}
else {

perror("Failure obtaining the information of IBMtape");
printf("\n");
scsi_request_sense ();

}

IOC_RESERVE
This command persistently reserves the device for exclusive use by the initiator.
The IBMtape device driver normally reserves the device in the open operation and
releases the device in the close operation. Issuing this command prevents the
driver from releasing the device during the close operation; hence the device
reservation is maintained after the device is closed. This command is negated by
issuing the IOC_RELEASE ioctl command.

No data structure is required for this command.

An example of the IOC_RESERVE command is:
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_RESERVE, 0))) {
printf ("The IOC_RESERVE ioctl succeeded.\n");

}

else {
perror ("The IOC_RESERVE ioctl failed");
scsi_request_sense ();

}

IOC_RELEASE
This command releases the persistent reservation of the device for exclusive use by
the initiator. It negates the result of the IOC_RESERVE ioctl command issued either
from the current or a previous open session.

No data structure is required for this command.

An example of the IOC_RELEASE command is:
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_RELEASE, 0))) {
printf ("The IOC_RELEASE ioctl succeeded.\n");

}

else {
perror ("The IOC_RELEASE ioctl failed");
scsi_request_sense ();

}

SCSI Medium Changer IOCTL Operations
A set of medium changer ioctl commands gives applications access to IBM medium
changer devices.

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 217

The following commands are supported:

Name Description

SMCIOC_MOVE_MEDIUM Transport a cartridge from one element to another
element.

SMCIOC_EXCHANGE_MEDIUM
Exchange a cartridge in an element with another
cartridge.

SMCIOC_POS_TO_ELEM Move the robot to an element.

SMCIOC_ELEMENT_INFO Return the information about the device elements.

SMCIOC_INVENTORY Return the information about the medium changer
elements.

SMCIOC_AUDIT Perform an audit of the element status.

SMCIOC_AUDIT_RANGE Perform an audit for a particular range of
elements.

SMCIOC_LOCK_DOOR Lock and unlock the library access door.

SMCIOC_READ_ELEMENT_DEVIDS
Return the device ID element descriptors for drive
elements.

SMCIOC_READ_CARTRIDGE_LOCATION
Returns the cartridge location information for all
storage elements in the library.

These commands and associated data structures are defined in the smc.h header file
in the /usr/include/sys directory that is installed with the IBMtape package. Any
application program that issues these commands must include this header file.

SMCIOC_MOVE_MEDIUM
This command transports a cartridge from one element to another element.

The following data structure is filled out and supplied by the caller:
typedef struct {

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination; /* move to location */
uchar invert; /* invert medium before insertion */
} move_medium_t

An example of the SMCIOC_MOVE_MEDIUM command is:
#include <sys/smc.h>

move_medium_t move_medium;

move_medium.robot = 0;
move_medium.invert = NO_FLIP;
move_medium.source = src;
move_medium.destination = dst;

if (!(ioctl (dev_fd, SMCIOC_MOVE_MEDIUM, &move_medium))) {
printf ("The SMCIOC_MOVE_MEDIUM ioctl succeeded.\n");

}

Solaris Device Driver (IBMtape)

218 IBM Tape Device Drivers: Programming Reference

else {
perror ("The SMCIOC_MOVE_MEDIUM ioctl failed");
scsi_request_sense ();

}

SMCIOC_EXCHANGE_MEDIUM
This command exchanges a cartridge from one element to another element. This
command is equivalent to two SCSI Move Medium commands. The first moves the
cartridge from the source element to the destination1 element, and the second
moves the cartridge that was previously in the destination1 element to the
destination2 element. The destination2 element can be the same as the source
element.

The following data structure is filled out and supplied by the caller:
typedef struct {

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination1; /* move to location */
ushort destination2; /* move to location */
uchar invert1; /* invert medium before insert into destination 1 */
uchar invert2; /* invert medium before insert into destination 2 */

} Exchange_medium_t

An example of the SMCIOC_EXCHANGE_MEDIUM command is:
#include<sys/smc.h>

exchange_medium_t exchange_medium;

exchange_medium.robot = 0;
exchange_medium.invert1 = NO_FLIP;
exchange_medium.invert2 = NO_FLIP;
exchange_medium.source = (short)src;
exchange_medium.destination1 = (short)dst1;
exchange_medium.destination2 = (short)dst2;

if (!(rc = ioctl (dev_fd, SMCIOC_EXCHANGE_MEDIUM, &exchange_medium))) {
PRINTF ("SMCIOC_MOVE_MEDIUM succeeded.\n");

}
else {

PERROR ("SMCIOC_EXCHANGE_MEDIUM failed");
PRINTF ("\n");
scsi_request_sense ();

}

SMCIOC_POS_TO_ELEM
This command moves the robot to an element.

The following data structure is filled out and supplied by the caller:
typedef struct {

ushort robot; /* robot address */
ushort destination; /* move to location */
uchar invert; /* invert medium before insertion */

} pos_to_elem_t;

An example of the SMCIOC_POS_TO_ELEM command is:
#include <sys/smc.h>

pos_to_elem_t pos_to_elem;

pos_to_elem.robot = 0;
pos_to_elem.invert = NO_FLIP;
pos_to_elem.destination = dst;

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 219

if (!(ioctl (dev_fd, SMCIOC_POS_TO_ELEM, &pos_to_elem))) {
printf ("The SMCIOC_POS_TO_ELEM ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_POS_TO_ELEM ioctl failed");
scsi_request_sense ();

}

SMCIOC_ELEMENT_INFO
This command requests the information about the device elements.

There are four types of medium changer elements. (Not all medium changers
support all four types.) The robot elements are associated with the cartridge
transport devices. The cell elements are associated with the cartridge storage slots.
The port elements are associated with the import/export mechanisms. The drive
elements are associated with the data-transfer devices. The quantity of each
element type and its starting address is returned by the driver.

The following data structure is filled out and returned by the driver:
typedef struct {

ushort robot_address; /* medium transport element address */
ushort robot_count; /* number medium transport elements */
ushort cell_address; /* medium storage element address */
ushort cell_count; /* number medium storage elements */
ushort port_address; /* import/export element address */
ushort port_count; /* number import/export elements */
ushort drive_address; /* data-transfer element address */
ushort drive_count; /* number data-transfer elements */

} element_info_t;

An example of the SMCIOC_ELEMENT_INFO command is:
#include <sys/smc.h>

element_info_t element_info;

if (!(ioctl (dev_fd, SMCIOC_ELEMENT_INFO, &element_info))) {
printf ("The SMCIOC_ELEMENT_INFO ioctl succeeded.\n");
printf ("\nThe element information data is:\n");
dump_bytes ((char *)&element_info, sizeof (element_info_t));

}

else {
perror ("The SMCIOC_ELEMENT_INFO ioctl failed");
scsi_request_sense ();

}

SMCIOC_INVENTORY
This command returns the information about the medium changer elements (SCSI
Read Element Status command).

There are four types of medium changer elements. (Not all medium changers
support all four types.) The robot elements are associated with the cartridge
transport devices. The cell elements are associated with the cartridge storage slots.
The port elements are associated with the import/export mechanisms. The drive
elements are associated with the data-transfer devices.

Note: The application must allocate buffers large enough to hold the returned
element status data for each element type. The SMCIOC_ELEMENT_INFO
ioctl is generally called first to establish the criteria.

Solaris Device Driver (IBMtape)

220 IBM Tape Device Drivers: Programming Reference

The following data structure is filled out and supplied by the caller:
typedef struct {

element_status_t *robot_status; /* medium transport element pages */
element_status_t *cell_status; /* medium storage element pages */
element_status_t *port_status; /* import/export element pages */
element_status_t *drive_status; /* data-transfer element pages */

} inventory_t;

One or more of the following data structures are filled out and returned to the user
buffer by the driver:
typedef struct {

ushort address; /* element address */
uchar : 2, /* reserved */

inenab : 1, /* medium in robot scope */
exenab : 1, /* medium not in robot scope */
access : 1, /* robot access allowed */
except : 1, /* abnormal element state */

: 1, /* reserved */
full : 1; /* element contains medium */

uchar : 8; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar notbus : 1, /* element not on same bus as robot */

: 1, /* reserved */
idvalid : 1, /* element address valid */
luvalid : 1, /* logical unit valid */

: 1, /* reserved */
lun : 3; /* logical unit number */

uchar scsi; /* SCSI bus address */
uchar : 8; /* reserved */
uchar svalid : 1, /* element address valid */

invert : 1, /* medium inverted */
: 6; /* reserved */

ushort source; /* source storage element address */
uchar volume[36]; /* primary volume tag */
uchar vendor[80]; /* vendor specific (padded to 128) */

} element_status_t;

An example of the SMCIOC_INVENTORY command is:
#include <sys/smc.h>

ushort i;
element_info_t element_info;
inventory_t inventory;

smc_element_info (); /* get element information first */
inventory.robot_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.robot_count);
inventory.cell_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.cell_count);
inventory.port_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.port_count);
inventory.drive_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.drive_count);

if (!inventory.robot_status || !inventory.cell_status ||
!inventory.port_status || !inventory.drive_status) {

perror ("The SMCIOC_INVENTORY ioctl failed");
return;

}

if (!(ioctl (dev_fd, SMCIOC_INVENTORY, &inventory))) {

printf ("\nThe SMCIOC_INVENTORY ioctl succeeded.\n");

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 221

printf ("\nThe robot status pages are:\n");

for (i = 0; i < element_info.robot_count; i++) {
dump_bytes ((char *)(&inventory.robot_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe cell status pages are:\n");

for (i = 0; i < element_info.cell_count; i++) {
dump_bytes ((char *)(&inventory.cell_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe port status pages are:\n");

for (i = 0; i < element_info.port_count; i++) {
dump_bytes ((char *)(&inventory.port_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe drive status pages are:\n");

for (i = 0; i < element_info.drive_count; i++) {
dump_bytes ((char *)(&inventory.drive_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

}

else {
perror ("The SMCIOC_INVENTORY ioctl failed");
scsi_request_sense ();

}

SMCIOC_AUDIT
This command causes the medium changer device to perform an audit of the
element status (SCSI Initialize Element Status command).

No data structure is required for this command.

An example of the SMCIOC_AUDIT command is:
#include <sys/smc.h>

if (!(ioctl (dev_fd, SMCIOC_AUDIT, 0))) {
printf ("The SMCIOC_AUDIT ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_AUDIT ioctl failed");
scsi_request_sense ();

}

Solaris Device Driver (IBMtape)

222 IBM Tape Device Drivers: Programming Reference

SMCIOC_AUDIT_RANGE
This ioctl command issues the SCSI Initialize Element Status with Range command
and is used to audit specific elements in a library by specifying the starting
element address and the number of elements. Use the SMCIOC_AUDIT ioctl to
audit all elements.

The data structure is:
typedef struct {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */

} element_range_t;

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 223

An example of the SMCIOC_AUDIT_RANGE command is:
#include <sys/smc.h>
element_range_t elements;
/*audit slots 32 to 36 */
elements.element_address =32;
elements.number_elements =5;
if (!ioctl (dev_fd, SMCIOC_AUDIT_RANGE, &elements))

printf ("The SMCIOC_AUDIT_RANGE ioctl succeeded \n");
else
{

perror ("The SMCIOC_AUDIT_RANGE ioctl failed");
scsi_request_sense();

}

SMCIOC_LOCK_DOOR
This command locks and unlocks the library access door. Not all IBM medium
changer devices support this operation.

The following data structure is filled out and supplied by the caller:
typedef uchar lock_door_t;

An example of the SMCIOC_LOCK_DOOR command is:
#include <sys/smc.h>

lock_door_t lock_door;

lock_door = LOCK;

if (!(ioctl (dev_fd, SMCIOC_LOCK_DOOR, &lock_door))) {
printf ("The SMCIOC_LOCK_DOOR ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_LOCK_DOOR ioctl failed");
scsi_request_sense ();

}

SMCIOC_READ_ELEMENT_DEVIDS
This ioctl command issues the SCSI Read Element Status command with the
DVCID (device ID) bit set and returns the element descriptors for the data transfer
elements. The element_address field is used to specify the starting address of the
first data transfer element and the number_elements field specifies the number of
elements to return. The application must allocate a return buffer large enough for
the number_elements specified in the input structure.

The input data structure is:
typedef struct read_element_devids_s {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
element_devids_t *drive_devid; /* data transfer element pages */

} read_element_devids_t;

The output data structure is:
typedef struct {

ushort address; /* element address */
uchar : 2, /* reserved */

inenab : 1, /* medium in robot scope */
exenab : 1, /* medium not in robot scope */
access : 1, /* robot access allowed */
except : 1, /* abnormal element state */
impexp : 1, /* medium imported or exported */

Solaris Device Driver (IBMtape)

224 IBM Tape Device Drivers: Programming Reference

full : 1; /* element contains medium */
uchar : 8; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar notbus : 1, /* element not on same bus as robot */

: 1, /* reserved */
idvalid : 1, /* scsi bus id valid */
luvalid : 1, /* logical unit valid */

: 1, /* reserved */
lun : 3; /* logical unit */

uchar scsi; /* scsi bus id */
uchar : 8; /* reserved */
uchar svalid : 1, /* element address valid */

invert : 1, /* medium inverted */
: 6; /* reserved */

ushort source; /* source storage element address */
uchar : 4, /* reserved */

codeset : 4; /* code set */
uchar : 2, /* reserved */

assoc : 2, /* Association */
idtype : 4; /* Identifier Type */

uchar : 8; /* reserved */
uchar idlength; /* Length of Device Identifier */
uchar vendorid[8]; /* Vendor ID */
uchar devtype[16]; /* Device type and Model Numer */
uchar serialnum[12]; /* Serial Number of device (ASCII) */

} element_devids_t;

An example of the SMCIOC_READ_ELEMENT_DEVIDS command is:
#include <sys/smc.h>
/*---*/
/* Name: smc_read_element_devids */
/*-- */
static int smc_read_element_devids(void)

{
int rc;
int i,j;
element_devids_t *elem_devid, *elemp;
read_element_devids_t devids;
element_info_t element_info;
if (ioctl(dev_fd, SMCIOC_ELEMENT_INFO, &element_info))

return errno;
if (element_info.drive_count)

{
elem_devid = malloc(element_info.drive_count * sizeof(element_devids_t));
if (elem_devid == NULL)
{

errno = ENOMEM;
return errno;

}
bzero((caddr_t)elem_devid,element_info.drive_count * sizeof(element_devids_t));
devids.drive_devid = elem_devid;
devids.element_address = element_info.drive_address;
devids.number_elements = element_info.drive_count;
printf("Reading element device ids...\n");
if (rc = ioctl (dev_fd, SMCIOC_READ_ELEMENT_DEVIDS, &devids))
{

free(elem_devid);
perror ("SMCIOC_READ_ELEMENT_DEVIDS failed");
printf ("\n");
scsi_request_sense ();
return rc;

}
j=0;
elemp = elem_devid;
for (i = 0; i < element_info.drive_count; i++, elemp++)

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 225

{
/* don’t overflow screen if menu mode */
if (interactive && j == 2)
{

j=0;
printf ("\nHit to continue...");
getchar();

}
j++;
printf("\nDrive Address %d\n",elemp->address);
if (elemp->except)

printf(" Drive State Abnormal\n");
else

printf(" Drive State Normal\n");
if (elemp->asc == 0x81 && elemp->ascq ==0x00)

printf(" ASC/ASCQ %02X%02X (Drive Present)\n",
elemp->asc,elemp->ascq);

else if (elemp->asc == 0x82 && elemp->ascq ==0x00)
printf(" ASC/ASCQ %02X%02X (Drive Not Present)\n",

elemp->asc,elemp->ascq);
else

printf(" ASC/ASCQ %02X%02X\n",
elemp->asc,elemp->ascq);

if (elemp->full)
printf(" Media Present Yes\n");

else
printf(" Media Present No\n");

if (elemp->access)
printf(" Robot Access Allowed Yes\n");

else
printf(" Robot Access Allowed No\n");

if (elemp->svalid)
printf(" Source Element Address %d\n",elemp->source);

else
printf(" Source Element Address Valid ... No\n");

if (elemp->invert)
printf(" Media Inverted Yes\n");

else
printf(" Media Inverted No\n");

if (elemp->notbus)
printf(" Same Bus as Medium Changer No\n");

else
printf(" Same Bus as Medium Changer Yes\n");

if (elemp->idvalid)
printf(" SCSI Bus Address %d\n",elemp->scsi);

else
printf(" SCSI Bus Address Vaild No\n");

if (elemp->luvalid)
printf(" Logical Unit Number %d\n",elemp->lun);

else
printf(" Logical Unit Number Valid No\n");

printf(" Device ID Info\n");
printf(" Vendor %0.8s\n", elemp->vendorid);
printf(" Model %0.16s\n", elemp->devtype);
printf(" Serial Number %0.12s\n", elemp->serialnum);
}

}
else

{
printf("\nNo drives found in element information\n");
if (interactive)

{
printf ("\nHit to continue...");
getchar();
}

Solaris Device Driver (IBMtape)

226 IBM Tape Device Drivers: Programming Reference

}
free(elem_devid);
return errno;

}

SMCIOC_READ_CARTRIDGE_LOCATION
The SMCIOC_READ_CARTRIDGE_LOCATION ioctl is used to return the cartridge
location information for storage elements in the library. The element_address field
specifies the starting element address to return and the number_elements field
specifies how many storage elements will be returned. The data field is a pointer
to the buffer for return data. The buffer must be large enough for the number of
elements that will be returned. If the storage element contains a cartridge then the
ASCII identifier field in return data specifies the location of the cartridge.

Note: This ioctl is only supported on the TS3500 (3584) library.

The data structure is:
typedef struct
{

ushort address; /* element address */
uchar :4, /* reserved */

access:1, /* robot access allowed */
except:1, /* abnormal element state */

:1, /* reserved */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar resvd2[3]; /* reserved */
uchar svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage elem addr */
uchar volume[36]; /* primary volume tag */
uchar :4, /* reserved */

code_set:4; /* code set */
uchar :4, /* reserved */

ident_type:4; /* identifier type */
uchar resvd3; /* reserved */
uchar ident_len; /* identifier length */
uchar identifier[24]; /* slot identification */

} cartridge_location_data_t;

typedef struct
{

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
cartridge_location_data_t *data; /* storage element pages */
char reserved[8]; /* reserved /

} read_cartridge_location_t;

An example of the SMCIOC_READ_CARTRIDGE_LOCATION command is:
#include <sys/smc.h>

int rc;
int available_slots=0;
cartridge_location_data_t *slot_devid;
read_cartridge_location_t slot_devids;

slot_devids.element_address = (ushort)element_address;
slot_devids.number_elements = (ushort)number_elements;

if (rc = ioctl(dev_fd,SMCIOC_ELEMENT_INFO,&element_info))

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 227

{
PERROR("SMCIOC_ELEMENT_INFO failed");
PRINTF("\n");
scsi_request_sense();
return (rc);

}
if (element_info.cell_count == 0)

{
printf("No slots found in element information...\n");
errno = EIO;
return errno;
}

if ((slot_devids.element_address==0) && (slot_devids.number_elements==0))
{
slot_devids.element_address=element_info.cell_address;
slot_devids.number_elements=element_info.cell_count;
printf("Reading all locations...\n");
}

if ((element_info.cell_address > slot_devids.element_address)
|| (slot_devids.element_address >

(element_info.cell_address+element_info.cell_count-1)))
{
printf("Invalid slot address %d\n",element_address);
errno = EINVAL;
return errno;
}

available_slots = (element_info.cell_address+element_info.cell_count)
-slot_devids.element_address;

if (available_slots>slot_devids.number_elements)
available_slots=slot_devids.number_elements;

slot_devid = malloc(element_info.cell_count
* sizeof(cartridge_location_data_t));

if (slot_devid == NULL
) {

errno = ENOMEM;
return errno;
}

bzero((caddr_t)slot_devid,element_info.cell_count * sizeof
(cartridge_location_data_t));

slot_devids.data = slot_devid;
rc = ioctl (dev_fd, SMCIOC_READ_CARTRIDGE_LOCATION, &slot_devids);

free(slot_devid);
return rc;

SCSI Tape Drive IOCTL Operations
A set of enhanced ioctl commands gives applications access to additional features
of IBM tape drives.

The following commands are supported:

Name Description

STIOC_TAPE_OP Perform a tape drive operation.

STIOC_GET_DEVICE_STATUS
Return the status information about the tape drive.

STIOC_GET_DEVICE_INFO Return the configuration information about the
tape drive.

STIOC_GET_MEDIA_INFO Return the information about the currently
mounted tape.

Solaris Device Driver (IBMtape)

228 IBM Tape Device Drivers: Programming Reference

STIOC_GET_POSITION Return information about the tape position.

STIOC_SET_POSITION Set the physical position of the tape.

STIOC_GET_PARM Return the current value of the working parameter
for the tape drive.

STIOC_SET_PARM Set the current value of the working parameter for
the tape drive.

STIOC_DISPLAY_MSG Display messages on the tape drive console.

STIOC_SYNC_BUFFER Flush the drive buffers to the tape.

STIOC_REPORT_DENSITY_SUPPORT
Return supported densities from the tape device.

GET_ENCRYPTION_STATE This ioctl can be used for application-, system-, and
library-managed encryption. It only allows a query
of the encryption status.

SET_ENCRYPTION_STATE This ioctl can only be used for
application-managed encryption. It sets encryption
state for application-managed encryption.

SET_DATA_KEY This ioctl can only be used for
application-managed encryption. It sets the data
key for application-managed encryption.

CREATE_PARTITION Create one or more tape partitions and format the
media..

QUERY_PARTITION Query tape partitioning information and current
active partition.

SET_ACTIVE_PARTITION Set the current active tape partition.

ALLOW_DATA_OVERWRITE
Set the drive to allow a subsequent data overwrite
type command at the current position or allow a
CREATE_PARTITION ioctl when data safe
(append-only) mode is enabled.

READ_TAPE_POSITION Read current tape position in either short, long or
extended form.

SET_TAPE_POSITION Set the current tape position to either a logical
object or logical file position.

QUERY_LOGICAL_BLOCK_PROTECTION
Query Logical Block Protection (LBP) support and
its setup

SET_LOGICAL_BLOCK_PROTECTION
Enable/disable Logical Block Protection (LBP), set
the protection method, and how the protection
information is transferred

VERIFY_TAPE_DATA Issues VERIFY command to cause data to be read
from the tape and passed through the drive’s error
detection and correction hardware to determine
whether it can be recovered from the tape, or
whether the protection information is present and
validates correctly on logical block on the medium.

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 229

||
|
|
|
|
|

These commands and associated data structures are defined in the st.h header file
in the /usr/include/sys directory that is installed with the IBMtape package. Any
application program that issues these commands must include this header file.

STIOC_TAPE_OP
This command performs the standard tape drive operations. It is identical to the
MTIOCTOP ioctl command defined in the /usr/include/sys/mtio.h system header file.
The STIOC_TAPE_OP and MTIOCTOP commands both use the same data
structure defined in the /usr/include/sys/mtio.h system header file. The
STIOC_TAPE_OP ioctl command maps to the MTIOCTOP ioctl command. The two
ioctl commands are interchangeable. See “MTIOCTOP” on page 266.

For all space operations, the resulting tape position is at the end-of-tape side of the
record or filemark for forward movement, and at the beginning-of-tape side of the
record or filemark for backward movement.

The following data structure is filled out and supplied by the caller:
/* from mtio.h */
struct mtop {

short mt_op; /* operations (defined below) */
daddr_t mt_count; /* how many to perform */

};

/* from st.h */
typedef struct mtop tape_op_t;

The mt_op field is set to one of the following:

Name Description

MTWEOF Write mt_count filemarks.

MTFSF Space forward mt_count filemarks.

MTBSF Space backward mt_count filemarks. Upon
completion, the tape is positioned at the
beginning-of-tape side of the requested filemark.

MTFSR Space forward the mt_count number of records.

MTBSR Space backward the mt_count number of records.

MTREW Rewind the tape. The mt_count parameter does not
apply.

MTOFFL Rewind and unload the tape. The mt_count
parameter does not apply.

MTNOP No tape operation is performed. A Test Unit Ready
command is issued to the drive to retrieve status
information.

MTRETEN Retension the tape. The mt_count parameter does
not apply.

MTERASE Erase the entire tape from the current position. The
mt_count parameter does not apply.

MTEOM Space forward to the end of the data. The mt_count
parameter does not apply.

MTNBSF Space backward mt_count filemarks, then space
backward before all data records in that tape file.
For a given MTNBFS operation with mt_count = n,

Solaris Device Driver (IBMtape)

230 IBM Tape Device Drivers: Programming Reference

the equivalent position can be achieved with
MT_BSF and MT_FSF, as follows:
MTBSF with mt_count = n + 1
MTFSF with mt_count = 1

MTGRSZ Return the current record (block) size. The mt_count
parameter contains the value.

MTSRSZ Set the working record (block) size to mutant.

STLOAD Load the tape in the drive. The mt_count parameter
does not apply.

STUNLOAD Unload the tape from the drive. The mt_count
parameter does not apply.

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 231

An example of the STIOC_TAPE_OP command is:
#include <sys/mtio.h>
#include <sys/st.h>

tape_op_t tape_op;

tape_op.mt_op = mt_op;
tape_op.mt_count = mt_count;

if (!(ioctl (dev_fd, STIOC_TAPE_OP, &tape_op))) {
printf ("The STIOC_TAPE_OP ioctl succeeded.\n");

}

else {
perror ("The STIOC_TAPE_OP ioctl failed");
scsi_request_sense ();

}

STIOC_GET_DEVICE_STATUS
This command returns the status information about the tape drive. It is identical to
the MTIOCGET ioctl command defined in the /usr/include/sys/mtio.h system header
file. The STIOC_GET_DEVICE_STATUS and MTIOCGET commands both use the
same data structure defined in the /usr/include/sys/mtio.h system header file. The
STIOC_GET_DEVICE_STATUS ioctl command maps to the MTIOCGET ioctl
command. The two ioctl commands are interchangeable. See “MTIOCGET” on page
266.

The following data structure is returned by the driver:
/* from mtio.h */
struct mtget {

short mt_type; /* type of tape device */
short mt_dsreg; /* drive status register */
short mt_erreg; /* error register */
daddr_t mt_resid; /* residual count */
daddr_t mt_fileno; /* current file number */
daddr_t mt_blkno; /* current block number */
u_short mt_flags; /* device flags */
short mt_bf; /* optimum blocking factor */

};

/* from st.h */
typedef struct mtget device_status_t;

The mt_flags field, which returns the type of automatic cartridge stacker or loader
installed on the tape drive, is set to one of the following values:

Value Description

STF_ACL Automatic Cartridge Loader

STF_RACL Random Access Cartridge Facility

An example of the STIOC_GET_DEVICE_STATUS command is:
#include <sys/mtio.h>
#include <sys/st.h>

device_status_t device_status;

if (!(ioctl (dev_fd, STIOC_GET_DEVICE_STATUS, &device_status))) {
printf ("The STIOC_GET_DEVICE_STATUS ioctl succeeded.\n");
printf ("\nThe device status data is:\n");
dump_bytes ((char *)&device_status, sizeof (device_status_t));

}

Solaris Device Driver (IBMtape)

232 IBM Tape Device Drivers: Programming Reference

else {
perror ("The STIOC_GET_DEVICE_STATUS ioctl failed");
scsi_request_sense ();

}

STIOC_GET_DEVICE_INFO
This command returns the configuration information about the tape drive. It is
identical to the MTIOCGETDRIVETYPE ioctl command defined in the
/usr/include/sys/mtio.h system header file. The STIOC_GET_DEVICE_INFO and
MTIOCGETDRIVETYPE commands both use the same data structure defined in
the /usr/include/sys/mtio.h system header file. The STIOC_GET_DEVICE_STATUS
ioctl command maps to the MTIOCGETDRIVETYPE ioctl command. The two ioctl
commands are interchangeable. See “MTIOCGETDRIVETYPE” on page 266.

The following data structure is returned by the driver:
/* from mtio.h */
struct mtdrivetype {

char name[64]; /* Name, for debug */
char vid[25]; /* Vendor id and model (product) id */
char type; /* Drive type for driver */
int bsize; /* Block size */
int options; /* Drive options */
int max_rretries; /* Max read retries */
int max_wretries; /* Max write retries */
uchar_t densities[MT_NDENSITIES]; /* density codes, low->hi */
uchar_t default_density; /* Default density chosen */
uchar_t speeds[MT_NSPEEDS]; /* speed codes, low->hi */
ushort_t non_motion_timeout; /* Inquiry type commands */
ushort_t io_timeout; /* io timeout. seconds */
ushort_t rewind_timeout; /* rewind timeout. seconds */
ushort_t space_timeout; /* space cmd timeout. seconds */
ushort_t load_timeout; /* load tape time in seconds */
ushort_t unload_timeout; /* Unload tape time in scounds */
ushort_t erase_timeout; /* erase timeout. seconds */

};

/* from st.h */
typedef struct mtdrivetype device_info_t;

An example of the STIOC_GET_DEVICE_INFO command is:
#include <sys/mtio.h>
#include <sys/st.h>

device_info_t device_info;

if (!(ioctl (dev_fd, STIOC_GET_DEVICE_INFO, &device_info))) {
printf ("The STIOC_GET_DEVICE_INFO ioctl succeeded.\n");
printf ("\nThe device information is:\n");
dump_bytes ((char *)&device_info, sizeof (device_info_t));

}

else {
perror ("The STIOC_GET_DEVICE_INFO ioctl failed");
scsi_request_sense ();

}

STIOC_GET_MEDIA_INFO
This command returns the information about the currently mounted tape.

The following data structure is filled out and returned by the driver:

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 233

typedef struct {
uint media_type; /* type of media loaded */
uint media_format; /* format of media loaded */
uchar write_protect; /* write protect (physical/logical) */

} media_info_t;

The media_type field is set to one of the values in st.h.

The media_format field, which returns the current recording format, is set to one of
the values in st.h.

The write_protect field is set to 1 if the currently mounted tape is physically or
logically write protected.

An example of the STIOC_GET_MEDIA_INFO command is:
#include <sys/st.h>

media_info_t media_info;

if (!(ioctl (dev_fd, STIOC_GET_MEDIA_INFO, &media_info))) {
printf ("The STIOC_GET_MEDIA_INFO ioctl succeeded.\n");
printf ("\nThe media information is:\n");
dump_bytes ((char *)&media_info, sizeof (media_info_t));

}

else {
perror ("The STIOC_GET_MEDIA_INFO ioctl failed");
scsi_request_sense ();

}

STIOC_GET_POSITION
This command returns the information about the tape position.

The tape position is defined as where the next read or write operation occurs. The
STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or in conjunction with each other.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver):
typedef struct {

uchar block_type; /* block type (logical or physical) */
uchar bot; /* physical beginning of tape */
uchar eot; /* logical end of tape */
uchar partition; /* partition number */
uint position; /* current or new block ID */
uint last_block; /* last block written to tape */
uint block_count; /* blocks remaining in buffer */
uint byte_count; /* bytes remaining in buffer */
} position_data_t;

The block_type field is set to LOGICAL_BLK for standard SCSI logical tape
positions or PHYSICAL_BLK for composite tape positions used for high-speed
locate operations implemented by the tape drive. Only the IBM 3490E Magnetic
Tape Subsystem or a virtual drive in a VTS supports the PHYSICAL_BLK type. All
devices support the LOGICAL_BLK type.

The block_type is the only field that must be filled out by the caller. The other fields
are ignored. Tape positions can be obtained with the STIOC_GET_POSITION
command, saved, and used later with the STIOC_SET_POSITION command to
quickly return to the same location on the tape.

Solaris Device Driver (IBMtape)

234 IBM Tape Device Drivers: Programming Reference

The position field returns the current position of the tape (physical or logical).

The last_block field returns the last block of data that was transferred physically to
the tape.

The block_count field returns the number of blocks of data remaining in the buffer.

The byte_count field returns the number of bytes of data remaining in the buffer.

The bot and eot fields indicate if the tape is positioned at the beginning of tape or
the end of tape, respectively.

An example of the STIOC_GET_POSITION command is:
#include <sys/st.h>

position_data_t position_data;
position_data.block_type = type;

if (!(ioctl (dev_fd, STIOC_GET_POSITION, &position_data))) {
printf ("The STIOC_GET_POSITION ioctl succeeded.\n");
printf ("\nThe tape position data is:\n");
dump_bytes ((char *)&position_data, sizeof (position_data_t));

}

else {
perror ("The STIOC_GET_POSITION ioctl failed");
scsi_request_sense ();

}

STIOC_SET_POSITION
This command sets the physical position of the tape.

The tape position is defined as where the next read or write operation occurs. The
STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or in conjunction with each other.

The following data structure is filled out and supplied by the caller:
typedef struct {

uchar block_type; /* block type (logical or physical) */
uchar bot; /* physical beginning of tape */
uchar eot; /* logical end of tape */
uchar partition; /* partition number */
uint position; /* current or new block ID */
uint last_block; /* last block written to tape */
uint block_count; /* blocks remaining in buffer */
uint byte_count; /* bytes remaining in buffer */

} position_data_t;

The block_type field is set to LOGICAL_BLK for standard SCSI logical tape
positions or PHYSICAL_BLK for composite tape positions used for high-speed
locate operations implemented by the tape drive. Only the IBM 3490E Magnetic
Tape Subsystem and the IBM Virtual Tape Servers support the PHYSICAL_BLK
type. All devices support the LOGICAL_BLK type.

The block_type and position fields must be filled out by the caller. The other fields
are ignored. The type of position specified in the position field must correspond
with the type specified in the block_type field. Tape positions can be obtained with
the STIOC_GET_POSITION command, saved, and used later with the

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 235

STIOC_SET_POSITION command to quickly return to the same location on the
tape. The IBM 3490E Magnetic Tape Subsystem drives in VTSs do not support
position to end of tape.

An example of the STIOC_SET_POSITION command is:
#include <sys/st.h>

position_data_t position_data;
position_data.block_type = type;
position_data.position = value;

if (!(ioctl (dev_fd, STIOC_SET_POSITION, &position_data))) {
printf ("The STIOC_SET_POSITION ioctl succeeded.\n");

}

else {
perror ("The STIOC_SET_POSITION ioctl failed");
scsi_request_sense ();

}

STIOC_GET_PARM
This command returns the current value of the working parameter for the specified
tape drive. This command is used in conjunction with the STIOC_SET_PARM
command.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver):
typedef struct {

uchar type; /* type of parameter to get or set */
uint value; /* current or new value of parameter */

} parm_data_t;

The value field returns the current value of the specified parameter, within the
ranges indicated below for the specific type.

The type field, which is filled out by the caller, should be set to one of the
following values:

Value Description

BLOCKSIZE Block Size (0- [2 MB]/Maximum dma size)

A value of zero indicates variable block size. Only
the IBM 359x Tape System supports 2MB
maximum block size or maximum dma transfer
size supported by host adapter if it is larger than 2
MB. All other devices support 256 KB maximum
block size.

COMPRESSION Compression Mode (0 or 1)

If this mode is enabled, data is compressed by the
tape device before storing it on tape.

BUFFERING Buffering Mode (0 or 1)

If this mode is enabled, data is stored in hardware
buffers in the tape device and not immediately
committed to tape, thus increasing data throughput
performance.

IMMEDIATE Immediate Mode

Solaris Device Driver (IBMtape)

236 IBM Tape Device Drivers: Programming Reference

v NO_IMMEDIATE (0)
If IMMEDIATE is set to zero, SCSI commands
which support the immediate bit in the CDB run
to completion before status is returned.

v GEN_IMMEDIATE (1)
If IMMEDIATE is set to GEN_IMMEDIATE, the
SCSI commands Write FM, Locate, Load-Unload,
Erase, and Rewind return with status before the
command actually completes on the tape drive.

v REW_IMMEDIATE (2)
If IMMEDIATE is set to REW_IMMEDIATE, the
SCSI rewind command returns with status before
the command actually completes on the tape
drive.

TRAILER Trailer Label Mode (0 or 1)

This mode affects write behavior after logical end
of medium (LEOM) is reached. See “Writing to a
Special File” on page 284 for information about
write operations which approach LEOM. With
trailer label processing disabled, (TRAILER=0),
writing past logical end of medium (LEOM) is not
allowed. After LEOM is reached, all further writes
fail, returning -1, with the errno system variable set
to ENOSPC (no space left on device).

With trailer label processing enabled (TRAILER=1),
writing past logical end of medium (LEOM) is
allowed. After LEOM is reached, all subsequent
writes succeed until physical end of medium
(PEOM) is reached. Note that write requests for
multiple fixed blocks may encounter short writes.
See “Writing to a Special File” on page 284 for
more information about short writes. After PEOM
is reached, all further writes fail, returning -1, with
the errno system variable set to ENOSPC (nospace
left on device).

An application using the trailer label processing
option should stop normal data writing when
LEOM is reached, and perform end of volume
processing. Such processing typically consists of
writing a final data record, a filemark, a "trailing"
tape label, and finally two more filemarks to
indicate end of data (EOD).

WRITEPROTECT Write-Protect mode

This configuration parameter returns the current
write protection status of the mounted cartridge.
The following values are recognized:
v NO_PROTECT

The tape is not physically or logically write
protected. Operations that alter the contents of
the media are permitted. Setting the tape to this
value resets the PERSISTENT and ASSOCIATED

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 237

logical write protection modes. It does not reset
the WORM logical or the PHYSICAL write
protection modes.

v PHYS_PROTECT
The tape is physically write protected. The write
protect switch on the tape cartridge is in the
protect position. This mode is queryable only,
and it is not alterable through device driver
functions.

Note: Only IBM 359x and Magstar MP 3570
Tape Subsystem recognize the following
values.

v WORM_PROTECT
The tape is logically write protected in WORM
mode. When the tape has been protected in this
mode, it is permanently write protected. The only
method to return the tape to a writable state is
to format the cartridge, erasing all data.

v PERS_PROTECT
The tape is logically write protected in
PERSISTENT mode. A tape that is protected in
this mode is write protected for all uses (across
mounts). This logical write protection mode may
be reset using the NO_PROTECT value.

v ASSC_PROTECT
The tape is logically write protected in
ASSOCIATED mode. A tape that is protected in
this mode in only write protected while it is
associated with a tape drive (mounted). When
the tape is unloaded from the drive, the
associated write protection is reset. This logical
write protection mode may also be reset using
the NO_PROTECT value.

ACFMODE Automatic Cartridge Facility mode

This configuration parameter is read-only. ACF
modes can be established only through the tape
drive operator panel. The device driver can only
query the ACF mode; it cannot change it. The
ACFMODE parameter applies only to the IBM 3590
Tape System and the IBM Magstar MP 3570 Tape
Subsystem. The following values are recognized:
v NO_ACF

There is no ACF attached to the tape drive.
v SYSTEM_MODE

The ACF is in the system mode. This mode
allows explicit load and unloads to be issued
through the device driver. An unload or offline
command causes the tape drive to unload the
cartridge and the ACF to replace the cartridge in
its original magazine slot. A subsequent load

Solaris Device Driver (IBMtape)

238 IBM Tape Device Drivers: Programming Reference

command causes the ACF to load the cartridge
from the next sequential magazine slot into the
drive.

v RANDOM_MODE
The ACF is in the random mode. This mode
provides random access to all of the cartridges in
the magazine. The ACF operates as a standard
SCSI medium changer device.

v MANUAL_MODE
The ACF is in the manual mode. This mode does
not allow ACF control through the device driver.
Cartridge load and unload operations can be
performed only through the tape drive operator
panel. Cartridges are imported and exported
through the priority slot.

v ACCUM_MODE
The ACF is in the accumulate mode. This mode is
similar to the manual mode. However, rather
than cartridges being exported through the
priority slot, they are put away in the next
available magazine slot.

v AUTO_MODE
The ACF is in the automatic mode. This mode
causes cartridges to be accessed sequentially
under ACF control. When a tape has finished
processing, it is put back in its magazine slot
and the next tape is loaded without an explicit
unload and load command from the host.

v LIB_MODE
The ACF is in the library mode. This mode is
available only if the tape drive is installed in an
automated tape library that supports the ACF
(3495).

SCALING Capacity Scaling

This configuration parameter returns the capacity
or logical length or the currently mounted tape.
The SCALING parameter is not supported on the
IBM 3490E Magnetic Tape Subsystem, nor in VTS
drives. The following values are recognized:
v SCALE_100

The current tape capacity is 100%.
v SCALE_75

The current tape capacity is 75%.
v SCALE_50

The current tape capacity is 50%.
v SCALE_25

The current tape capacity is 25%.
v Other values (0x00 - 0xFF)

For 3592 tape drive only.

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 239

SILI Suppress Illegal Length Indication

If this mode is enabled, and a larger block of data
is requested than is actually read from the tape
block, the tape device suppresses raising a check
condition. This eliminates error processing
normally performed by the device driver and
results in improved read performance for some
situations.

DATASAFE data safe mode

This parameter queries the current drive setting for
data safe (append-only) mode or on a set operation
changes the current data safe mode setting on the
drive. On a set operation a parameter value of zero
sets the drive to normal (non-data safe) mode and
a value of 1 sets the drive to data safe mode.

PEW_SIZE Programmable early warning zone

Using the tape parameter, the application is
allowed to request the tape drive to create a zone
called the programmable early warning zone
(PEWZ) in the front of Early Warning (EW).

When a WRITE or WRITE FILE MARK (WFM)
command writes a data or filemark upon reaching
the PEWZ, a check condition status arises
associated with a sense data with EOM and
PROGRAMMABLE EARLY WARNING
DETECTED.The futher WRITE or WFM commands
in PEWZ would be completed with a good status.

For the application developers, two methods are
used to explicit determine PEWZ when the errno is
set to ENOSPC for Write or Write FileMark
command, since ENOSPC is returned for either EW
or PEW.
v Method 1: Issue the Request Sense ioctl, check

the sense key and ASC-ASCQ, and if it is
0x0/0x0007 (PROGRAMMABLE EARLY
WARNING DETECTED), the tape is in PEW. If
the sense key ASC-ASCQ is 0x0/0x0000 or
0x0/0x0002, the tape is in EW.

v Method 2: Call Read Position ioctl in long or
extended form and check bpew and eop bits. If
bpew = 1 and eop = 0, the tape is in PEW. If
bpew = 1 and eop = 1, the tape is in EW.

The IBMtape driver requests the tape drive to save
the mode page indefinitely. The PEW size will be
modified in the drive until a new setup is
requested from the driver or application. The
application must be programmed to issue the "Set"
ioctl to zero when PEW support is no longer
needed, as the IBMtape drivers don't perform this
function. Note that PEW is a setting of the drive

Solaris Device Driver (IBMtape)

240 IBM Tape Device Drivers: Programming Reference

||

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

and not tape. Therefore, it is the same on each
partition should partitions exist.

Encountering the PEWZ will not cause the device
server to perform a synchronize operation or
terminate the command. It means that the data or
filemark has been written in the cartridge when a
check condition with PROGRAMMABLE EARLY
WARNING DETECTED is returned. But, IBMtape
driver still returns the counter to less than zero (-1)
for a write command or a failure for Write
FileMark ioctl call with ENOSPC error. In this way,
it will force the application to use one of the above
methods to check PEW or EW. Once the
application determines ENOSPC comes from PEW,
it will read the requested write data or filemark
written into the cartridge and reach or pass the
PEW point. The application can issue a "Read
position" ioctl to validate the tape position.

An example of the STIOC_GET_PARM command is:
#include <sys/st.h>

parm_data_t parm_data;
parm_data.type = type;

if (!(ioctl (dev_fd, STIOC_GET_PARM, &parm_data))) {
printf ("The STIOC_GET_PARM ioctl succeeded.\n");
printf ("\nThe parameter data is:\n");
dump_bytes ((char *)&parm_data.value, sizeof (int));

}

else {
perror ("The STIOC_GET_PARM ioctl failed");
scsi_request_sense ();

}

STIOC_SET_PARM
This command sets the current value of the working parameter for the specified
tape drive. This command is used in conjunction with the STIOC_GET_PARM
command.

The default values of most of these parameters, in effect when a tape drive is first
opened, are determined by the values in the IBMtape.conf configuration file located
in the /usr/kernel/drv directory. Changing the working parameters dynamically
through this STIOC_SET_PARM command only affects the tape drive during the
current open session. The working parameters revert back to the defaults when the
tape drive is closed and reopened.

Note: The COMPRESSION, WRITEPROTECT, ACFMODE, and SCALING
parameters are not supported in the IBMtape.conf configuration file. The
default value for compression mode is established through the specific
special file used to open the device. The default value of the ACF mode is
established by the mode that the ACF is in at the time the device is opened.
The default write protect and scaling modes are established through the
presently mounted cartridge.

The following data structure is filled out and supplied by the caller:

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 241

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

typedef struct {
uchar type; /* type of parameter to get or set */
uint value; /* current or new value of parameter */

} parm_data_t;

The value field specifies the new value of the specified parameter, within the
ranges indicated below for the specific type.

The type field, which is filled out by the caller, should be set to one of the
following values:

Value Description

BLOCKSIZE Block Size (0-2097152 [2 MB]/Maximum dma size)

A value of zero indicates variable block size. Only
the IBM 359x Tape System supports 2MB
maximum block size or maximum dma transfer
size supported by the host adapter if it is larger
than 2 MB. All other devices support 256 KB
maximum block size.

COMPRESSION Compression Mode (0 or 1)

If this mode is enabled, data is compressed by the
tape device before storing it on tape.

BUFFERING Buffering Mode (0 or 1)

If this mode is enabled, data is stored in hardware
buffers in the tape device and not immediately
committed to tape, thus increasing data throughput
performance.

IMMEDIATE Immediate Mode
v NO_IMMEDIATE (0)

If IMMEDIATE is set to zero, SCSI commands
which support the immediate bit in the CDB run
to completion before status is returned.

v GEN_IMMEDIATE (1)
If IMMEDIATE is set to GEN_IMMEDIATE, the
SCSI commands Write FM, Locate, Load-Unload,
Erase, and Rewind return with status before the
command actually completes on the tape drive.

v REW_IMMEDIATE (2)
If IMMEDIATE is set to REW_IMMEDIATE, the
SCSI rewind command returns with status before
the command actually completes on the tape
drive.

TRAILER Trailer Label Mode (0 or 1)

This mode affects write behavior after logical end
of medium (LEOM) is reached. See “Writing to a
Special File” on page 284 for information about
write operations which approach LEOM. With
trailer label processing disabled (TRAILER = 0),
writing past logical end of medium (LEOM) is not
allowed. After LEOM is reached, all further writes
fail, returning -1, with the errno system variable set

Solaris Device Driver (IBMtape)

242 IBM Tape Device Drivers: Programming Reference

to ENOSPC (no space left on device). With trailer
label processing enabled (TRAILER = 1), writing
past logical end of medium (LEOM) is allowed.
After LEOM is reached, all subsequent writes
succeed until physical end of medium (PEOM) is
reached. Note that write requests for multiple fixed
blocks may encounter short writes. See “Writing to
a Special File” on page 284 for more information
about short writes. After PEOM is reached, all
further writes fail, returning -1, with the errno
system variable set to ENOSPC (no space left on
device).

An application using the trailer label processing
option should stop normal data writing when
LEOM is reached, and perform end of volume
processing. Such processing typcially consists of
writing a final data record, a filemark, a trailing
tape label, and, finally, two more filemarks to
indicate end of data (EOD).

WRITEPROTECT Write-Protect Mode

This configuration parameter establishes the
current write protection status of the mounted
cartridge. The WRITEPROTECT parameter applies
only to the IBM 359x Tape System and the IBM
Magstar MP 3570 Tape Subsystem. The following
values are recognized:
v NO_PROTECT

The tape is not physically or logically write
protected. Operations that alter the contents of
the media are permitted. Setting the tape to this
value resets the PERSISTENT and ASSOCIATED
logical write protection modes. It does not reset
the WORM logical or the PHYSICAL write
protection modes.

v WORM_PROTECT
The tape is logically write protected in WORM
mode. When the tape has been protected in this
mode, it is permanently write protected. The only
method to return the tape to a writable state is
to format the cartridge, erasing all data.

v PERS_PROTECT
The tape is logically write protected in
PERSISTENT mode. A tape that is protected in
this mode is write protected for all uses (across
mounts). This logical write protection mode may
be reset using the NO_PROTECT value.

v ASSC_PROTECT
The tape is logically write protected in
ASSOCIATED mode. A tape that is protected in
this mode in only write protected while it is
associated with a tape drive (mounted). When
the tape is unloaded from the drive, the

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 243

associated write protection is reset. This logical
write protection mode may also be reset using
the NO_PROTECT value.

v PHYS_PROTECT
The tape is physically write protected. The write
protect switch on the tape cartridge is in the
protect position. This mode is not alterable
through device driver functions.

ACFMODE Automatic Cartridge Facility Mode

This configuration parameter is read-only. ACF
modes can only be established through the tape
drive operator panel. This type value is not
supported by the STIOC_SET_PARM ioctl.

SCALING Capacity Scaling

This configuration parameter sets the capacity or
logical length or the currently mounted tape. The
tape must be at BOT to change this value.
Changing the scaling value destroys all existing
data on the tape. The SCALING parameter is not
supported on the IBM 3490E Magnetic Tape
Subsystem or VTS drives. The following values are
recognized:
v SCALE_100

Sets the tape capacity to 100%.
v SCALE_75

Sets the tape capacity to 75%.
v SCALE_50

Sets the tape capacity to 50%.
v SCALE_25

Sets the tape capacity to 25%.
v Other values (0x00 - 0xFF)

For 3592 tape drive only.

SILI Suppress Illegal Length Indication

If this mode is enabled, and a larger block of data
is requested than is actually read from the tape
block, the tape device suppresses raising a check
condition. This eliminates error processing
normally performed by the device driver and
results in improved read performance for some
situations.

DATASAFE data safe mode

This parameter queries the current drive setting for
data safe (append-only) mode or on a set operation
changes the current data safe mode setting on the
drive. On a set operation a parameter value of zero
sets the drive to normal (non-data safe) mode and
a value of 1 sets the drive to data safe mode.

PEW_SIZE Programmable early warning zone

Solaris Device Driver (IBMtape)

244 IBM Tape Device Drivers: Programming Reference

||

Using the tape parameter, the application is
allowed to request the tape drive to create a zone
called the programmable early warning zone
(PEWZ) in the front of Early Warning (EW).

When a WRITE or WRITE FILE MARK (WFM)
command writes a data or filemark upon reaching
the PEWZ, a check condition status arises
associated with a sense data with EOM and
PROGRAMMABLE EARLY WARNING
DETECTED. The WRITE or WFM commands in
PEWZ are completed with a good status.

For the application developers:
1. Two methods are used to determine PEWZ

when the errno is set to ENOSPC for Write or
Write FileMark command, since ENOSPC is
returned for either EW or PEW.
v Method 1: Issue the Request Sense ioctl,

check the sense key and ASC-ASCQ, and if it
is 0x0/0x0007 (PROGRAMMABLE EARLY
WARNING DETECTED), the tape is in PEW.
If the sense key ASC-ASCQ is 0x0/0x0000 or
0x0/0x0002, the tape is in EW.

v Method 2: Call Read Position ioctl in long or
extended form and check bpew and eop bits.
If bpew = 1 and eop = 0, the tape is in PEW.
If bpew = 1 and eop = 1, the tape is in EW.

The IBMtape driver requests the tape drive to
save the mode page indefinitely. The PEW size
will be modified in the drive until a new setup
is requested from the driver or application. The
application must be programmed to issue the
"Set" ioctl to zero when PEW support is no
longer needed, as the IBMtape drivers don't
perform this function. Note that PEW is a
setting of the drive and not tape. Therefore, it is
the same on each partition should partitions
exist.

2. Encountering the PEWZ will not cause the
device server to perform a synchronize
operation or terminate the command. It means
that the data or filemark has been written in the
cartridge when a check condition with
PROGRAMMABLE EARLY WARNING
DETECTED is returned. But, IBMtape driver
still returns the counter to less than zero (-1) for
a write command or a failure for Write
FileMark ioctl call with ENOSPC error. In this
way, it will force the application to use one of
the above methods to check PEW or EW. Once
the application determines ENOSPC comes
from PEW, it will read the requested write data
or filemark written into the cartridge and reach

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 245

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

or pass the PEW point. The application can
issue a "Read position" ioctl to validate the tape
position.

An example of the STIOC_SET_PARM command is:
#include <sys/st.h>

parm_data_t parm_data;
parm_data.type = type;
parm_data.value = value;

if (!(ioctl (dev_fd, STIOC_SET_PARM, &parm_data))) {
printf ("The STIOC_SET_PARM ioctl succeeded.\n");

}

else {
perror ("The STIOC_SET_PARM ioctl failed");
scsi_request_sense ();

}

STIOC_DISPLAY_MSG
This command displays and manipulates one or two messages on the tape drive
operator panel.

The message sent using this call does not always remain on the display. It depends
on the current drive activity.

Note: All messages must be padded to MSGLEN bytes (8). Otherwise, garbage
characters (meaningless data) can be displayed in the message.

The following data structure is filled out and supplied by the caller:
typedef struct {

uchar function; /* message function code */
char msg_0[MSGLEN]; /* message 0 */
char msg_1[MSGLEN]; /* message 1 */

} msg_data_t;

The function field, which is filled out by the caller, is set by combining (using
logical OR) a Message Type flag and a Message Control Flag.

Message Type Flags

Value Description

GENSTATUS (General Status Message)
Message 0, Message 1, or both are displayed according to the
Message Control flag, until the drive next initiates tape motion or
the message is updated with a new message.

DMNTVERIFY (Demount/Verify Message)
Message 0, Message 1, or both are displayed according to the
Message Control flag, until the current volume is unloaded. If the
volume is currently unloaded, the message display is not changed
and the command performs no operation.

MNTIMMED (Mount with Immediate Action Indicator)
Message 0, Message 1, or both are displayed according to the
Message Control flag, until the volume is loaded. An attention
indicator is activated. If the volume is currently loaded, the
message display is not changed and the command performs no
operation.

Solaris Device Driver (IBMtape)

246 IBM Tape Device Drivers: Programming Reference

|
|
|

DMNTIMMED (Demount/Mount with Immediate Action Indicator)
When the Message Control flag is set to a value of ALTERNATE,
Message 0 and Message 1 are displayed alternately until the
currently mounted volume, if any, is unloaded. When the Message
Control flag is set to any other value, Message 0 is displayed until
the currently mounted volume, if any, is unloaded. Message 1 is
displayed from the time the volume is unloaded (or immediately, if
the volume is already unloaded) until another volume is loaded.
An attention indicator is activated.

Message Control Flags

Value Description

DISPMSG0 Display message 0.

DISPMSG1 Display message 1.

FLASHMSG0 Flash message 0.

FLASHMSG1 Flash message 1.

ALTERNATE Alternate flashing message 0 and message 1.

An example of the STIOC_DISPLAY_MSG command is:
#include <sys/st.h>

msg_data_t msg_data;
msg_data.function = GENSTATUS | ALTERNATE;
memcpy (msg_data.msg_0, "Hello ", 8);
memcpy (msg_data.msg_1, "World!!!", 8);

if (!(ioctl (dev_fd, STIOC_DISPLAY_MSG, &msg_data))) {
printf ("The STIOC_DISPLAY_MSG ioctl succeeded.\n");

}

else {
perror ("The STIOC_DISPLAY_MSG ioctl failed");
scsi_request_sense ();

}

STIOC_SYNC_BUFFER
This command immediately flushes the drive buffers to the tape (commits the data
to the media).

No data structure is required for this command.

An example of the STIOC_SYNC_BUFFER command is:
#include <sys/st.h>

if (!(ioctl (dev_fd, STIOC_SYNC_BUFFER, 0))) {
printf ("The STIOC_SYNC_BUFFER ioctl succeeded.\n");

}

else {
perror ("The STIOC_SYNC_BUFFER ioctl failed");
scsi_request_sense ();

}

STIOC_REPORT_DENSITY_SUPPORT
This ioctl command issues the SCSI Report Density Support command to the tape
device and returns either all supported densities or supported densities for the
currently mounted media. The media field specifies which type of report is

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 247

requested. The number_reports field is returned by the device driver and indicates
how many density reports in the reports array field were returned.

The data structures used with this ioctl are:
typedef struct density_report
{

uchar primary_density_code; /* primary density code */
uchar secondary_density_code; /* secondary density code */
uchar wrtok : 1, /* write ok, device can write this format */

dup : 1, /* zero if density only reported once */
deflt : 1, /* current density is default format */
res_1 : 5; /* reserved */

uchar reserved1[2]; /* reserved */
uchar bits_per_mm[3]; /* bits per mm */
uchar media_width[2]; /* media width in millimeters */
uchar tracks[2]; /* tracks */
uchar capacity[4]; /* capacity in megabytes */
char assigning_org[8]; /* assigning organization in ASCII */
char density_name[8]; /* density name in ASCII */
char description[20]; /* description in ASCII */

} density_report_t;

typedef struct report_density_support
{

uchar media; /* report all or current media as defined above */
uchar number_reports; /* number of density reports returned in array */
struct density_report reports[MAX_DENSITY_REPORTS];

} rpt_dens_sup_t;

Examples of the STIOC_REPORT_DENSITY_SUPPORT command are:
/*---*/
/* Name: st_report_density_support */
/* Synopsis: Report the supported densities for the device. */
/* Returns: Error code from /usr/include/sys/errno.h. */
/*---*/
static int st_report_density_support ()
{

int rc;
int i;
rpt_dens_sup_t density;

int bits_per_mm = 0;
int media_width = 0;
int tracks = 0;
int capacity = 0;

printf("Issuing Report Density Support for ALL supported media...\n");

density.media = ALL_MEDIA_DENSITY;
density.number_reports = 0;

if (!(rc = ioctl (dev_fd, STIOC_REPORT_DENSITY_SUPPORT, &density))) {
printf ("STIOC_REPORT_DENSITY_SUPPORT succeeded.\n");
printf("Total densities reported: %d\n",density.number_reports);

}
else {

perror ("STIOC_REPORT_DENSITY_SUPPORT failed");
printf ("\n");
scsi_request_sense ();

}

for (i = 0; i < density.number_reports; i++)
{

bits_per_mm = (int)density.reports[i].bits_per_mm[0] << 16;
bits_per_mm |= (int)density.reports[i].bits_per_mm[1] << 8;

Solaris Device Driver (IBMtape)

248 IBM Tape Device Drivers: Programming Reference

bits_per_mm |= (int)density.reports[i].bits_per_mm[2];

media_width |= density.reports[i].media_width[0] << 8;
media_width |= density.reports[i].media_width[1];

tracks |= density.reports[i].tracks[0] << 8;
tracks |= density.reports[i].tracks[1];

capacity = density.reports[i].capacity[0] << 24;
capacity |= density.reports[i].capacity[1] << 16;
capacity |= density.reports[i].capacity[2] << 8;
capacity |= density.reports[i].capacity[3];

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..................... Yes\n");
else
printf(" Write OK..................... No\n");

if (density.reports[i].dup)
printf(" Duplicate.................... Yes\n");
else
printf(" Duplicate.................... No\n");

if (density.reports[i].deflt)
printf(" Default...................... Yes\n");
else
printf(" Default...................... No\n");

printf(" Bits per MM.................. %d\n",bits_per_mm);
printf(" Media Width.................. %d\n",media_width);
printf(" Tracks....................... %d\n",tracks);
printf(" Capacity (megabytes)......... %d\n",capacity);

if (interactive) {
printf ("\nHit <ENTER> to continue...");
getchar ();

}

} /* end for all media density*/

printf("\nIssuing Report Density Support for CURRENT media...\n");

density.media = CURRENT_MEDIA_DENSITY;
density.number_reports = 0;

if (!(rc = ioctl (dev_fd, STIOC_REPORT_DENSITY_SUPPORT, &density))) {
printf ("STIOC_REPORT_DENSITY_SUPPORT succeeded.\n");
printf("Total number of densities reported: %d\n",

density.number_reports);
}
else {

perror ("STIOC_REPORT_DENSITY_SUPPORT failed");
printf ("\n");
scsi_request_sense ();

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 249

}

for (i = 0; i < density.number_reports; i++)
{

bits_per_mm = density.reports[i].bits_per_mm[0] << 16;
bits_per_mm |= density.reports[i].bits_per_mm[1] << 8;
bits_per_mm |= density.reports[i].bits_per_mm[2];

media_width |= density.reports[i].media_width[0] << 8;
media_width |= density.reports[i].media_width[1];

tracks |= density.reports[i].tracks[0] << 8;
tracks |= density.reports[i].tracks[1];

capacity = density.reports[i].capacity[0] << 24;
capacity |= density.reports[i].capacity[1] << 16;
capacity |= density.reports[i].capacity[2] << 8;
capacity |= density.reports[i].capacity[3];

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..................... Yes\n");
else
printf(" Write OK..................... No\n");

if (density.reports[i].dup)
printf(" Duplicate.................... Yes\n");
else
printf(" Duplicate.................... No\n");

if (density.reports[i].deflt)
printf(" Default...................... Yes\n");
else
printf(" Default...................... No\n");

printf(" Bits per MM.................. %d\n",bits_per_mm);
printf(" Media Width.................. %d\n",media_width);
printf(" Tracks....................... %d\n",tracks);
printf(" Capacity (megabytes)......... %d\n",capacity);

if (interactive) {
printf ("\nHit <ENTER> to continue...");
getchar ();

}
}

return (rc);
}

STOIC_GET_DENSITY
STOIC_GET_DENSITY is used to query the current write density format settings
on the tape drive for 3592 E05 or later model drive only.

Solaris Device Driver (IBMtape)

250 IBM Tape Device Drivers: Programming Reference

The STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or in conjunction with each other.

Following is the structure for the STIOC_GET_DENSITY and
STIOC_SET_DENSITY ioctls:
struct density_data_t
{

char density_code; /* mode sense header density code */
char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

The density_code field returns the current density of the tape loaded in the tape
drive from the block descriptor of Mode sense. The default_density field returns
the default write density in Mode sense (Read/Write Control). The
pending_density field returns the pending write density in Mode sense
(Read/Write Control). An example of the STIOC_SET_DENSITY command is:
#include <sys/st.h>
density_data_t density_data;

if (!(ioctl (dev_fd, STIOC_GET_DENSITY, &density_data)))
{

printf ("The STIOC_GET_DENSITY ioctl succeeded.\n");
}
else
{

perror ("The STIOC_GET_DENSITY ioctl failed");
scsi_request_sense ();

}

STOIC_SET_DENSITY
STIOC_SET_DENSITY is used to set a new write density format on the tape drive
using the default and pending density fields in 3592 E05 or later model drive only.
For example, this command is used if the user wants to write the data to the tape
in 3592 J1A format (0x51) in 3592 E05 drive, not in the default 3592 E05 format
(0x52). The application can specify a new write density for the current loaded tape
only or as a default for all tapes. Refer to the examples below.

The STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or in conjunction with each other. The application should get the
current density settings first before deciding to modify the current settings. If the
application specifies a new density for the current loaded tape only, then the
application must issue another set density ioctl after the current tape is unloaded
and the next tape is loaded to either the default maximum density or a new
density to ensure the tape drive will use the correct density. If the application
specifies a new default density for all tapes, the setting remains in effect until
changed by another set density ioctl or the tape drive is closed by the application.

Following is the structure for the STIOC_GET_DENSITY and
STIOC_SET_DENSITY ioctls:
struct density_data_t
{

char density_code; /* mode sense header density code */
char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 251

Notes:

1. These ioctls are only supported on tape drives that can write multiple density
formats. Refer to the hardware reference for the specific tape drive to determine
if multiple write densities are supported. If the tape drive does not support
these ioctls, errno EINVAL will be returned.

2. The device driver always sets the default maximum write density for the tape
drive on every open system call. Any previous STIOC_SET_DENSITY ioctl
values from the last open are not used.

3. If the tape drive detects an invalid density code or can not perform the
operation on the STIOC_SET_DENSITY ioctl, the errno will be returned and the
current drive density settings prior to the ioctl will be restored.

4. The struct density_data_t defined in the header file of st.h is used for both
ioctls. The density_code field is not used and ignored on the
STIOC_SET_DENSITY ioctl .

5. A new write density is only allowed when positioned at BOP (logical block 0),
and will be ignored at any other location in the tape drive. The new density
will be applied on the next write-type operation (Write, Write Filemarks (>0),
Erase, Format Medium, etc.) and will not be reported in the
STIOC_GET_DENSITY ioctl density_code field before the format is performed.

Here are some study cases how to set the default write density and pending write
density for a new write density before issuing the ioctl.
struct density_data_t density_data;

Case 1: Set 3592 J1A density format for current loaded tape only.
density_data.default_density = 0x7F;
density_data.pending_density = 0x51;

Case 2: Set 3592 E05 density format for current loaded tape only.
density_data.default_density = 0x7F;
density_data.pending_density = 0x52;

Case 3: Set default maximum density for current loaded tape.
density_data.default_density = 0;
density_data.pending_density = 0;

Case 4: Set 3592 J1A density format for current loaded tape and all subsequent
tapes.
density_data.default_density = 0x51;
density_data.pending_density = 0x51;

An example of the STIOC_SET_DENSITY command is:
#include <sys/st.h>
density_data_t density_data;

/* set 3592 J1A density format (0x51) for current loaded tape only */
density_data.default_density = 0x7F;
density_data.pending_density = 0x51;

if (!(ioctl (dev_fd, STIOC_SET_DENSITY, &density_data)))
{

printf ("The STIOC_SET_DENSITY ioctl succeeded.\n");
}
else

Solaris Device Driver (IBMtape)

252 IBM Tape Device Drivers: Programming Reference

{
perror ("The STIOC_SET_DENSITY ioctl failed");
scsi_request_sense ();

}

GET_ENCRYPTION_STATE
This ioctl command queries the drive's encryption method and state.

The data structure used for this ioctl is as follows on all of the supported operating
systems:
struct encryption_status {

uchar encryption_capable; /* Set this field as a boolean based on the
capability of the drive */

uchar encryption_method; /* Set this field to one of the
defines below */

#define METHOD_NONE 0 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_LIBRARY 1 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_SYSTEM 2 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_APPLICATION 3 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_CUSTOM 4 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_UNKNOWN 5 /* Only used in
GET_ENCRYPTION_STATE */

uchar encryption_state; /* Set this field to one of the
defines below */

#define STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_NA 2 /* Used in GET_ENCRYPTION_STATE */

uchar reserved[13];
};

An example of the GET_ENCRYPTION_STATE command is:
int qry_encryption_state (void) {

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(&encryption_status_t, 0, sizeof(struct encryption_status));
rc = ioctl (fd, GET_ENCRYPTION_STATE, &encryption_status_t);

if(rc == 0) {
if(encryption_status_t.encryption_capable)

printf("encryption capable......Yes\n");
else

printf("encryption capable......No\n");
switch(encryption_status_t.encryption_method) {

case METHOD_NONE:
printf("encryption method.......METHOD_NONE\n");
break;

case METHOD_LIBRARY:
printf("encryption method.......METHOD_LIBRARY\n");
break;

case METHOD_SYSTEM:
printf("encryption method.......METHOD_SYSTEM\n");
break;

case METHOD_APPLICATION:
printf("encryption method.......METHOD_APPLICATION\n");
break;

case METHOD_CUSTOM:
printf("encryption method.......METHOD_CUSTOM\n");
break;

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 253

case METHOD_UNKNOWN:
printf("encryption method.......METHOD_UNKNOWN\n");
break;

default:
printf("encryption method.......Error\n");

}

switch(encryption_status_t.encryption_state) {
case STATE_OFF:

printf("encryption state........OFF\n");
break;

case STATE_ON:
printf("encryption state........ON\n");
break;

case STATE_NA:
printf("encryption state........NA\n");
break;

default:
printf("encryption state......Error\n");

}
}

return rc;
}

SET_ENCRYPTION_STATE
This ioctl command only allows setting the encryption state for
application-managed encryption. Please note that on unload, some of the drive
settings may be reset to default. To set the encryption state, the application should
issue this ioctl after a tape is loaded and at BOP.

The data structure used for this ioctl is the same as the one for
GET_ENCRYPTION_STATE.

An example of the SET_ENCRYPTION_STATE command is:
int set_encryption_status(int option) {

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(&encryption_status_t, 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE, &encryption_status_t);
if(rc < 0) return rc;
if(option == 0)

encryption_status_t.encryption_state = STATE_OFF;
else if(option == 1)

encryption_status_t.encryption_state = STATE_ON;
else {

printf("Invalid parameter.\n");
return (EINVAL);

}

printf("Issuing set encryption status......\n");
rc = ioctl(fd, SET_ENCRYPTION_STATE, &encryption_status_t);

return rc;
}

SET_DATA_KEY
This ioctl command only allows setting the data key for application-managed
encryption.

Solaris Device Driver (IBMtape)

254 IBM Tape Device Drivers: Programming Reference

The data structure used for this ioctl is as follows on all of the supported operating
systems:
struct data_key {

uchar data_key_index[12]; /* The DKi */
uchar data_key_index_length; /* The DKi length */
uchar reserved1[15];
uchar data_key[32]; /* The DK */
uchar reserved2[48];

};

An example of the SET_DATA_KEY command is:
int set_datakey(void) {

int rc = 0;
struct data_key encryption_data_key_t;

printf("Issuing set encryption data key......\n");
memset(&encryption_status_t, 0, sizeof(struct data_key));

/* fill in your data key here, then issue the following ioctl*/
rc = ioctl(fd, SET_DATA_KEY, &encryption_status_t);
return rc;

}

QUERY_PARTITION
The QUERY_PARTITION ioctl is used to return partition information for the tape
drive and the current media in the tape drive including the current active partition
the tape drive is using for the media. The number_of partitions field is the current
number of partitions on the media and the max_partitions is the maximum
partitions that the tape drive supports. The size_unit field could be either one of
the defined values below or another value such as 8 and is used in conjunction
with the size array field value for each partition to specify the actual size partition
sizes. The partition_method field is either Wrap-wise Partitioning or Longitudinal
Partitioning, refer to “CREATE_PARTITION” on page 256 for details.

The data structure used with this ioctl is:
The define for “partition_method”:
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */

The define for “size_unit”:
define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

struct query_partition {
uchar max_partitions; /* Max number of supported partitions */
uchar active_partition; /* current active partition on tape */
uchar number_of_partitions; /* Number of partitions from 1 to max */
uchar size_unit; /* Size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method; /* partitioning type for 3592 E07 and later generation only */
char reserved [31];
};

Example of the QUERY_PARTITION ioctl:
#include<sys/st.h>

int rc,i;

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 255

struct query_partition q_partition;

memset((char *)&q_partition, 0, sizeof(struct query_partition));
rc = ioctl(dev_fd, QUERY_PARTITION, &q_partition);
if(!rc)
{

printf("QUERY PARTITION ioctl succeed\n");
printf(" Partition Method = %d\n",q_partition.partition_method);
printf("Max partitions = %d\n",q_partition.max_partitions);
printf("Number of partitions = %d\n",q_partition.number_of_partitions);
for(i=0;i<q partition.number of partitions;i++)
{

printf("Size of Partition # %d = %d ",i,q_partition.size[i]);
switch(q_partition.size_unit)
{

case SIZE_UNIT_BYTES:
printf(" Bytes\n");

break;
case SIZE_UNIT_KBYTES:

printf(" KBytes\n");
break;
case SIZE_UNIT_MBYTES:

printf(" MBytes\n");
break;
case SIZE_UNIT_GBYTES:

printf(" GBytes\n");
break;
case SIZE_UNIT_TBYTES:

printf(" TBytes\n");
break;
default:

printf("Size unit 0x%d\n",q_partition.size_unit);
}

}
printf("Current active partition = %d\n",q_partition.active_partition);

} else {
printf("QUERY PARTITION ioctl failed\n");

}

return rc;

CREATE_PARTITION
The CREATE_PARTITION ioctl is used to format the current media in the tape
drive into 1 or more partitions. The number of partitions to create is specified in
the number_of_partitions field. When creating more than 1 partition the type field
specifies the type of partitioning, either FDP, SDP, or IDP. The tape must be
positioned at the beginning of tape (partition 0 logical block id 0) before using this
ioctl.

If the number_of_partitions field to create in the ioctl structure is 1 partition, all
other fields are ignored and not used. The tape drive formats the media using it's
default partitioning type and size for a single partition.

When the type field in the ioctl structure is set to either FDP or SDP, the size_unit
and size fields in the ioctl structure are not used. When the type field in the ioctl
structure is set to IDP, the size_unit in conjunction with the size fields are used to
specify the size for each partition.

There are two partition types: Wrap-wise Partitioning (Figure 7 on page 257)
optimized for streaming performance, and Longitudinal Partitioning (Figure 8 on
page 257) optimized for random access performance. Media is always partitioned
into 1 by default or more than one partition where the data partition will always

Solaris Device Driver (IBMtape)

256 IBM Tape Device Drivers: Programming Reference

exist as partition 0 and other additional index partition 1 to n could exist. A
volume can be partitioned (up to 4 partitions) using Wrap-wise partition supported
on TS1140 only.

A WORM media cannot be partitioned and the Format Medium commands are
rejected. Attempts to scale a partitioned media will be accepted but only if you use
the correct FORMAT field setting, as part of scaling the volume will be set to a
single data partition cartridge.

The following chart lists the maximum number of partitions that the tape drive
will support.

Table 5. Number of Supported Partitions

Drive type Maximum number of supported partitions

LTO-5 (TS2250 and TS2350) 2 in Wrap-wise Partitioning

3592 E07 (TS 1140) 4 in Wrap-wise Partitioning

2 in Longitudinal Partitioning

The data structure used with this ioctl is:
The define for "partition_method":
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */
#define WRAP_WISE_PARTITION_WITH_FASTSYNC 3 /* Wrap-wise Partitioning with RABF */

The define for “type”:
#define IDP_PARTITION 1 /* Initiator Defined Partition type */

Partition 0

Partition 1

Partition 2

Partition 3

Guard wraps

a
2
5
0
0
2
8
3

Figure 7. Wrap-wise Partitioning

Partition 1Partition 0

a
2
5
0
0
2
8
4

Guard gap

Figure 8. Longitudinal Partitioning

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 257

|

#define SDP_PARTITION 2 /* Select Data Partition type */
#define FDP_PARTITION 3 /* Fixed Data Partition type */

The define for “size_unit”:
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

struct tape_partition {
uchar type; /* Type of tape partition to create */
uchar number_of_partitions; /* Number of partitions to create */
uchar size_unit; /* IDP size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method; /* partitioning type for 3592 E07 and */

/* later generations only */
char reserved [31];
};

Examples of the CREATE_PARTITION ioctl:
#include<sys/st.h>

struct tape_partition partition;

/* create 2 SDP partitions for LTO-5 */
partition.type = SDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = UNKNOWN_TYPE;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* create 2 IDP partitions with partition 1 for 37 gigabytes and
partition 0 for the remaining capacity on LTO-5*/
partition.type = IDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = UNKNOWN_TYPE;
partition.size_unit = SIZE_UNIT_GBYTES;
partition.size[0] = 0xFFFF;
partition.size[1] = 37;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* format the tape into 1 partition */
partition.number_of_partitions = 1;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* create 4 IDP partitions on 3592 JC volume in Wrap-wise partitioning with
partition 0 and 2 for 94.11 gigabytes (minimum size) and partition 1 and 3 to use
the remaining capacity equally around 1.5 TB on 3592 E07 */
partition.type = IDP_PARTITION;
partition.number_of_partitions = 4;
partition.partition_method = WRAP_WISE_PARTITION;
partition.size_unit = 8; /* 100 megabytes */
partition.size[0] = 0x03AD;
partition.size[1] = 0xFFFF;
partition.size[2] = 0x03AD;
partition.size[3] = 0x3AD2;
ioctl(dev_fd, CREATE_PARTITION, &partition);

SET_ACTIVE_PARTITION
The SET_ACTIVE_PARTITION ioctl is used to position the tape to a specific
partition which will become the current active partition for subsequent commands
and a specific logical bock id in the partition. To position to the beginning of the
partition the logical_block_id field should be set to 0.

Solaris Device Driver (IBMtape)

258 IBM Tape Device Drivers: Programming Reference

The data structure used with this ioctl is:
struct set_active_partition {

uchar partition_number; /* Partition number 0-n to change to */
ullong logical_block_id; /* Blockid to locate to within partition */
char reserved[32];
};

Examples of the SET_ACTIVE_PARTITION ioctl:
#include<sys/st.h>

struct set_active_partition partition;

/* position the tape to partition 1 and logical block id 12 */
partition.partition_number = 1;
partition.logical_block_id = 12;
ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition);

/* position the tape to the beginning of partition 0 */
partition.partition_number = 0;
partition.logical_block_id = 0;
ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition);

ALLOW_DATA_OVERWRITE
The ALLOW_DATA_OVERWRITE ioctl is used to set the drive to allow a
subsequent data write type command at the current position or allow a
CREATE_PARTITION ioctl when data safe (append-only) mode is enabled.

For a subsequent write type command the allow_format_overwrite field must be
set to 0 and the partition_number and logical_block_id fields must be set to the
current partition and position within the partition where the overwrite will occur.

For a subsequent CREATE_PARTITION ioctl the allow_format_overwrite field
must be set to 1. The partiton_number and logical_block_id fields are not used but
the tape must be at the beginning of tape (partition 0 logical block id 0) prior to
issuing the Create Partition ioctl.

The data structure used with this ioctl is:
struct allow_data_overwrite{

uchar partition_number; /* Partition number 0-n to overwrite */
ullong logical_block_id; /* Blockid to overwrite to within partition */
uchar allow_format_overwrite; /* allow format if in data safe mode */
char reserved[32];
};

Examples of the ALLOW_DATA_OVERWRITE ioctl:
#include<sys/st.h>

struct read_tape_position rpos;
struct allow_data_overwrite data_overwrite;
struct set_active_partition partition;

/* get current tape position for a subsequent write type command and */
rpos.data_format = RP_LONG_FORM;
if (ioctl (dev_fd, READ_TAPE_POSITION, &rpos) <0)

retun errno;

/* set the allow_data_overwrite fields with the current position
for the next write type command */
data_overwrite.partition_number = rpos.rp_data.rp_long.active_partition;
data_overwrite.logical_block_id = rpos.rp_data.rp_long.logical_obj_number;
data_overwrite.allow_format_overwrite = 0;
ioctl (dev_fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 259

/* set the tape position to the beginning of tape and */
/* prepare a format overwrite for the CREATE_PARTITION ioctl */
partition.partition_number = 0;
partition.logical_block_id = 0;
if (ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition;) <0)
return errno;

data_overwrite.allow_format_overwrite = 1;
ioctl (dev_fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

READ_TAPE_POSITION
The READ_TAPE_POSITION ioctl is used to return Read Position command data
in either the short, long, or extended form. The type of data to return is specified
by setting the data_format field to either RP_SHORT_FORM, RP_LONG_FORM, or
RP_EXTENDED_FORM.

The data structures used with this ioctl are:
#define RP_SHORT_FORM 0x00
#define RP_LONG_FORM 0x06
#define RP_EXTENDED_FORM 0x08

struct short_data_format {
uchar bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */
rsvd :1,
lolu:1, /* 1 means the first and last logical obj

position fields are unknown */
perr: 1, /* 1 means the position fields have overflowed

and can not be reported */
bpew :1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
char reserved[2];
uint first_logical_obj_position;/* current logical object position */
uint last_logical_obj_position; /* next logical object to be transferred to tape */
uint num_buffer_logical_obj; /* number of logical objects in buffer */
uint num_buffer_bytes; /* number of bytes in buffer */
char reserved1;
};

struct long_data_format {
uchar bop:1, /* beginning of partition */

eop:1, /* end of partition */
rsvd1:2,
mpu:1, /* 1 means the logical file id field in unknown */
lonu:1, /* 1 means either the partition number or

logical obj number field are unknown */
rsvd2:1,
bpew :1; /* beyond programmable early warning */

char reserved[6];
uchar active_partition; /* current active partition */
ullong logical_obj_number; /* current logical object position */
ullong logical_file_id; /* number of filemarks from bop and
current logical position */
ullong obsolete;
};

struct extended_data_format {
uchar bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */
rsvd :1,

Solaris Device Driver (IBMtape)

260 IBM Tape Device Drivers: Programming Reference

lolu:1, /* 1 means the first and last logical obj position
fields are unknown */

perr: 1, /* 1 means the position fields have overflowed
and can not be reported */

bpew :1; /* beyond programmable early warning */
uchar active_partition; /* current active partition */
ushort additional_length;
uint num_buffer_logical_obj; /* number of logical objects in buffer */
ullong first_logical_obj_position;/* current logical object position */
ullong last_logical_obj_position; /* next logical object to be transferred to tape */
ullong num_buffer_bytes; /* number of bytes in buffer */
char reserved;
};

struct read_tape_position{
uchar data_format; /* Specifies the return data format either short,
long or extended as defined above */
union

{
struct short_data_format rp_short;
struct long_data_format rp_long;
struct extended_data_format rp_extended;
char reserved[64];
} rp_data;

};

Example of the READ_TAPE_POSITION ioctl:
#include<sys/st.h>

struct read_tape_position rpos;

printf("Reading tape position long form....\n");
rpos.data_format = RP_LONG_FORM;
if (ioctl (dev_fd, READ_TAPE_POSITION, &rpos) <0)

return errno;

if (rpos.rp_data.rp_long.bop)
printf(" Beginning of Partition Yes\n");

else
printf(" Beginning of Partition No\n");
if (rpos.rp_data.rp_long.eop)
printf(" End of Partition Yes\n");

else
printf(" End of Partition No\n");

if (rpos.rp_data.rp_long.bpew)
printf(" Beyond Early Warning Yes\n");

else
printf(" Beyond Early Warning No\n");

if (rpos.rp_data.rp_long.lonu
) {

printf(" Active Partition UNKNOWN \n");
printf(" Logical Object Number UNKNOWN \n");
}

else
{
printf(" Active Partition %u \n",

rpos.rp_data.rp_long.active_partition);
printf(" Logical Object Number %llu \n",

rpos.rp_data.rp_long.logical_obj_number);
}

if (rpos.rp_data.rp_long.mpu
) printf(" Logical File ID UNKNOWN \n");

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 261

else
printf(" Logical File ID %llu \n",

rpos.rp_data.rp_long.logical_file_id);

SET_TAPE_POSITION
The SET_TAPE_POSITION ioctl is used to position the tape in the current active
partition to either a logical block id or logical filemark. The logical_id_type field in
the ioctl structure specifies either a logical block or logical filemark.

The data structure used with this ioctl is:
#define LOGICAL_ID_BLOCK_TYPE 0x00
#define LOGICAL_ID_FILE_TYPE 0x01

struct set_tape_position{
uchar logical_id_type; /* Block or file as defined above */
ullong logical_id; /* logical object or logical file to position to */
char reserved[32];
};

Examples of the SET_TAPE_POSITION ioctl:
#include<sys/st.h>

struct set_tape_position setpos;

/* position to logical block id 10 */
setpos.logical_id_type = LOGICAL_ID_BLOCK_TYPE
setpos.logical_id = 10;
ioctl(dev_fd, SET_TAPE_POSITION, &setpos);

/* position to logical filemark 4 */
setpos.logical_id_type = LOGICAL_ID_FILE_TYPE
setpos.logical_id = 4;
ioctl(dev_fd, SET_TAPE_POSITION, &setpos);

QUERY_LOGICAL_BLOCK_PROTECTION
The ioctl queries whether the drive is capable of supporting this feature, what lbp
method is used, and where the protection information is included.

The lbp_capable field indicates whether or not the drive has logical block
protection (LBP) capability. The lbp_method field displays if LBP is enabled and
what the protection method is. The LBP information length is shown in the
lbp_info_length field. The fields of lbp_w, lbp_r, and rbdp present that the
protection information is included in write, read or recover buffer data.

The data structure used with this ioctl is:
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

Examples of the QUERY_LOGICAL_BLOCK_PROTECTION ioctl:

Solaris Device Driver (IBMtape)

262 IBM Tape Device Drivers: Programming Reference

#include <sys/st.h>

int rc;
struct logical_block_protection lbp_protect;

printf("Querying Logical Block Protection....\n");

if (rc=ioctl(dev_fd, QUERY_LOGICAL_BLOCK_PROTECTION, &lbp_protect))
return rc;

printf(" Logical Block Protection capable........ %d\n",lbp_protect.lbp_capable);
printf(" Logical Block Protection method.......... %d\n",lbp_protect.lbp_method);
printf(" Logical Block Protection Info Length... %d\n",lbp_protect.lbp_info_length);
printf(" Logical Block Protection for Write........ %d\n",lbp_protect.lbp_w);
printf(" Logical Block Protection for Read....... %d\n",lbp_protect.lbp_r);
printf(" Logical Block Protection for RBDP...... %d\n",lbp_protect.rbdp);

SET_LOGICAL_BLOCK_PROTECTION
The ioctl enables or disables Logical Block Protection, sets up what method is used,
and where the protection information is included.

The lbp_capable field is ignored in this ioctl by the IBMtape driver. If the
lbp_method field is 0 (LBP_DISABLE), all other fields are ignored and not used.
When the lbp_method field is set to a valid non-zero method, all other fields are
used to specify the setup for LBP.

The data structure used with this ioctl is:
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

Examples of the SET_LOGICAL_BLOCK_PROTECTION ioctl:
#include <sys/st.h>

int rc;
struct logical_block_protection lbp_protect;

printf("Setting Logical Block Protection....\n\n");

printf ("Enter Logical Block Protection method: ");
gets (buf);
lbp_protect.lbp_method= atoi(buf);
printf ("Enter Logical Block Protection Info Length: ");
gets (buf);
lbp_protect.lbp_info_length= atoi(buf);
printf ("Enter Logical Block Protection for Write: ");
gets (buf);
lbp_protect.lbp_w= atoi(buf);
printf ("Enter Logical Block Protection for Read: ");
gets (buf);
lbp_protect.lbp_r= atoi(buf);
printf ("Enter Logical Block Protection for RBDP: ");

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 263

gets (buf);
lbp_protect.rbdp= atoi(buf);

rc = ioctl(dev_fd, SET_LOGICAL_BLOCK_PROTECTION, &lbp_protect);

if (rc)
printf ("Set Logical Block Protection Fails (rc %d)",rc);

else
printf ("Set Logical Block Protection Succeeds");

Notes:

1. The drive always expects a CRC attached with a data block when LBP is
enabled for lbp_r and lbp_w. Without the CRC bytes attachment, the drive will
fail the Read and Write command. To prevent the CRC block transfer between
the drive and application, the maximum block size limit should be determined
by application. Call the STIOC_GET_PARM ioctl to get the parameter of
MAX_SCSI_XFER (the system maximum block size limit), and call
STIOC_READ_BLKLIM ioctl to get the value of max_blk_lim (the drive
maximum block size limit). Then use the minimum of the two limits.

2. When a unit attention with a power-on and device reset (Sense key/Asc-Ascq
x6/x2900) occurs, the LBP enable bits (lbp_w, lbp_r and rbdp) is reset to OFF
by default. The IBMtape tape driver returns EIO for an ioctl call in this
situation. Once the application determines it is a reset unit attention in the
sense data, it responds to query LBP setup again and re-issues this ioctl to
setup LBP properly.

3. The LBP setting is controlled by the application and not the device driver. If an
application enables LBP, it should also disable LBP when it closes the drive, as
this is not performed by the device driver.

VERIFY_TAPE_DATA
The ioctl issues a VERIFY command to cause data to be read from the tape and
passed through the drive’s error detection and correction hardware to determine
whether it can be recovered from the tape, or whether the protection information is
present and validates correctly on logical block on the medium. The driver returns
the ioctl a failure or a success if the VERIFY SCSI command is completed in a
Good SCSI status.

Notes:

1. When an application sets the VBF method, it should consider the driver’s close
operation in which the driver may write filemark(s) in its close which the
application didn't explicitly request. For example, some drivers write two
consecutive filemarks marking the end of data on the tape in its close, if the
last tape operation was a WRITE command.

2. Per the user's or application's request, the IBMtape driver sets the block size in
the field of "Block Length" in mode block descriptor for Read and Write
commands and maintains this block size setting in a whole open. For instance,
the tape driver set a zero in the "Block Length" field for the variable block size.
This will cause the missing of an overlength condition on a SILI Read (and
cause problems for LTFS). Block Length should be set to a non-zero value.
Prior to set Fixed bit ON with VTE or VBF ON in Verify ioctl, the application is
also requested to set the block size in mode block descriptor, so that the drive
uses it to verify the length of each logical block. For example, a 256 KB length
is set in "Block Length" field to verify the data. The setup will override the
early setting from the IBM tape driver.
Once the application completes Verify ioctl call, the original block size setting
needs to be restored for Read and Write commands, the application either
issues "set block size" ioctl, or closes the drive immediately and reopens the

Solaris Device Driver (IBMtape)

264 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

drive for the next tape operation. It is strongly recommended to reopen the
drive for the next tape operation. Otherwise, it will cause Read and Write
command misbehavior.

3. To support DPF for Verify command with FIXED bit on, it is requested to issue
IBM tape driver to set “ blksize" standard ioctl to set the block size. The IBM
tape driver will set the "block length" in mode block descriptor same as the
block size and save the block size in kernel memory, so that the driver restores
the "block length" before it retries the Verify SCSI command. Otherwise, the
retry Verify command will fail.

4. The ioctl may be returned longer than the timeout when DPF occurs.

The data structure used with this ioctl is:
typedef struct
{

uchar : 2, /* reserved */
vte: 1, /* verify to end-of-data */
vlbpm: 1, /* verify logical block protection information */

vbf: 1, /* verify by filemarks */
immed: 1, /* return SCSI status immediately */
bytcmp: 1, /* Reserved for IBM future use. */
fixed: 1; /* set Fixed bit to verify the length of each logical block */

uchar reseved[15]; /* Reserved for IBM future use. */
uint verify_length; /* amount of data to be verified */

}verify_data_t ;

Examples of the VERIFY_TAPE_DATA ioctl:
#include<sys/st.h>

char buf[60];
verify_data_t vd;
unsigned int vlength=0;
int i;

bzero((void *) &vd, sizeof(verify_data_T));

printf("Enable field \’Verify to End Of Data\’[y/n]: ");
gets(buf);
vd.vte = (tolower(buf[0]) == ’y’);

printf("Enable field \’verify logical block protection information\’[y/n]: ");
gets(buf);
vd.vlbpm = (tolower(buf[0]) == ’y’);

printf("Enable field \’verify by filemarks\’[y/n]: ");
gets(buf);
vd.vbf = (tolower(buf[0]) == ’y’);

printf("Enable field \’return SCSI status immediately\’[y/n]: ");
gets(buf);
vd.immed = (tolower(buf[0]) == ’y’);

printf("Enable field \’set Fixed bit to verify the length of each
logical block\’[y/n]: ");
gets(buf);
vd.fixed = (tolower(buf[0]) == ’y’);

printf("Get the amount of data to be verified: ");
gets(buf);
vlength = atoi(buf);

vd.verify_length = vlength;

printf("Data dump:\n");

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 265

|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

for(i = 0; i < sizeof(struct verify_data); i++)
printf("byte %d: 0x%02x\n", i, *(((char *) vd;) + i));

if (!ioctl (dev_fd, VERIFY_TAPE_DATA, (void *) &vd)){
printf ("The VERIFY_DATA ioctl succeeded\n");

}
else{

perror ("The VERIFY_DATA ioctla failed");
}

Base Operating System Tape Drive IOCTL Operations
The set of native magnetic tape ioctl commands that is available through the Solaris
base operating system is provided for compatibility with existing applications.

The following commands are supported:

Name Description

MTIOCTOP Perform the magnetic tape drive operations.

MTIOCGET Return the status information about the tape drive.

MTIOCGETDRIVETYPE Return the configuration information about the
tape drive.

USCSICMD User SCSI Command interface.

These commands and associated data structures are defined in the mtio.h system
header file in the /usr/include/sys directory and in the uscsi.h system header file in
/usr/include/sys/scsi/imple directory. Any application program that issues these
commands must include this header file.

MTIOCTOP
This command performs the magnetic tape drive operations. It is identical to the
STIOC_TAPE_OP ioctl command that is defined in the /usr/include/sys/st.h header
file. The STIOC_TAPE_OP and MTIOCTOP commands both use the same data
structure defined in the /usr/include/sys/mtio.h system header file. The two ioctl
commands are interchangeable. See “STIOC_TAPE_OP” on page 230.

MTIOCGET
This command returns the status information about the tape drive. It is identical to
the STIOC_GET_DEVICE_STATUS ioctl command defined in the /usr/include/sys/st.h
header file. The STIOC_GET_DEVICE_STATUS and MTIOCGET commands both
use the same data structure defined in the /usr/include/sys/mtio.h system header file.
The two ioctl commands are interchangeable. See “STIOC_GET_DEVICE_STATUS”
on page 232.

MTIOCGETDRIVETYPE
This command returns the configuration information about the tape drive. It is
identical to the STIOC_GET_DEVICE_INFO ioctl command defined in the
/usr/include/sys/st.h header file. The STIOC_GET_DEVICE_INFO and MTIOCTOP
commands both use the same data structure defined in the /usr/include/sys/mtio.h
system header file. The two ioctl commands are interchangeable. See
“STIOC_GET_DEVICE_INFO” on page 233.

Solaris Device Driver (IBMtape)

266 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|
|
|
|
|

|

USCSICMD
This command provides the user a SCSI command interface.

Attention: The uscsi command is very powerful, but somewhat dangerous, and
so its use is restricted to processes running as root, regardless of the file
permissions on the device node. The device driver code expects to own the device
state, and uscsi commands can change the state of the device and confuse the
device driver. It is best to use uscsi commands only with no side effects, and avoid
commands such as Mode Select, as they may cause damage to data stored on the
drive or system panics. Also, as the commands are not checked in any way by the
device driver, any block may be overwritten, and the block numbers are absolute
block numbers on the drive regardless of which slice number is used to send the
command.

The following data structure is returned by the driver:
/* from uscsi.h */
struct uscsi_cmd {

int uscsi_flags; /* read, write, etc. see below */
short uscsi_status; /* resulting status */
short uscsi_timeout; /* Command Timeout */
caddr_t uscsi_cdb; /* cdb to send to target */
caddr_t uscsi_bufaddr; /* i/o source/destination */
size_t uscsi_buflen; /* size of i/o to take place */
size_t uscsi_resid; /* resid from i/o operation */
uchar_t uscsi_cdblen; /* # of valid cdb bytes */
uchar_t uscsi_rqlen; /* size of uscsi_rqbuf */
uchar_t uscsi_rqstatus; /* status of request sense cmd */
uchar_t uscsi_rqresid; /* resid of request sense cmd */
caddr_t uscsi_rqbuf; /* request sense buffer */
void *uscsi_reserved_5; /* Reserved for Future Use */

};

An example of the USCSICMD command is:
#include <sys/scsi/impl/uscsi.h>

int rc, i, j, cdb_len, option, ubuf_fg, rq_fg;
struct uscsi_cmd uscsi_cmd;
uchar cdb[64] = "";
char cdb_byte[3] = "";
char buf[64] = "";
char rq_buf[255];
char uscsi_buf[255];

memset ((char *)&uscsi_cmd, (char)0, sizeof(uscsi_cmd));
memset ((char *)&rq_buf, (char)0, sizeof(rq_buf));
memset ((char *)&uscsi_buf, (char)0, sizeof(uscsi_buf));

printf("Enter the SCSI cdb in hex (f.g.: INQUIRY 12 00 00 00 80 00) ");
gets (buf);
cdb_len = j = 0;
for (i=0;i<64;i++) {

if (buf[i] != ’ ’) {
cdb_byte[j] = buf[i];
j += 1;

}
else {

if (j != 2) {
printf ("Usage Error: Enter the command byte more or less

than two digitals.\n");
return (0);

}
cdb_byte[2] = ’\0’;
cdb[cdb_len] = strtol(cdb_byte,NULL,16);

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 267

cdb_len += 1;
j = 0;

}
if (buf[i] == ’\0’) {

cdb[cdb_len] = strtol(cdb_byte,NULL,16);
break;

}
}
uscsi_cmd.uscsi_cdblen = cdb_len + 1;
uscsi_cmd.uscsi_cdb = (char *)cdb;

printf("Set the uscsi_flagsg: \n");
printf(" 1. no read and no write \n");
printf(" 2. read (USCSI_READ) \n");
printf(" 3. write (USCSI_WRITE) \n");
printf(" 4. read/write (USCSI_READ | USCSI_WRITE) \n");
printf(" \n");
printf("Select operation or <enter> q to quit: ");
gets (buf);
if (buf[0]==’q’) return(0);
option = atoi(buf);
switch(option) {

case 1:
uscsi_cmd.uscsi_flags = 0;
break;

case 2:
uscsi_cmd.uscsi_flags = USCSI_READ;
break;

case 3:
uscsi_cmd.uscsi_flags = USCSI_WRITE;
break;

case 4:
uscsi_cmd.uscsi_flags = USCSI_READ | USCSI_WRITE;
break;

}

printf("Set the USCSI_RQENABLE flag on ? (y/n) ");
gets (buf);
if (buf[0]==’y’) {

uscsi_cmd.uscsi_flags = uscsi_cmd.uscsi_flags | USCSI_RQENABLE;
rq_fg = TRUE;

}

printf("Enter the value of the command timeout: ");
gets (buf);
uscsi_cmd.uscsi_timeout = atoi(buf);

printf("Any data to be read from or written to the device? (y/n) ");
gets (buf);
if (buf[0]==’y’) {

uscsi_cmd.uscsi_bufaddr = (char *)&uscsi_buf
uscsi_cmd.uscsi_buflen = sizeof(uscsi_buf);
ubuf_fg = TRUE;

}
else {

uscsi_cmd.uscsi_bufaddr = NULL;
uscsi_cmd.uscsi_buflen = 0;
ubuf_fg = FALSE;

}

if (device.ultrium)
uscsi_cmd.uscsi_rqlen = 36;

else if (device.t3590 || device.t3570)
uscsi_cmd.uscsi_rqlen = 96;

else if (device.t3490)
uscsi_cmd.uscsi_rqlen = 54;

uscsi_cmd.uscsi_rqbuf = (char *)&rq_buf

Solaris Device Driver (IBMtape)

268 IBM Tape Device Drivers: Programming Reference

PRINTF ("\nData in struct uscsi_cmd before to issue the cmd:");
DUMP_BYTES ((char *)&uscsi_cmd, sizeof(uscsi_cmd));

if (!(rc = ioctl (dev_fd, USCSICMD, &uscsi_cmd))) {
PRINTF ("\nUSCSICMD command succeeded.\n");
if (ubuf_fg)

DUMP_BYTES ((char *)&uscsi_buf,
(uscsi_cmd.uscsi_buflen - uscsi_cmd.uscsi_resid));

PRINTF ("\nData in struct uscsi_cmd after to issue the cmd:");
DUMP_BYTES ((char *)&uscsi_cmd, sizeof(uscsi_cmd));

}
else {
PRINTF ("\n");
PERROR ("USCSICMD command failed");
PRINTF ("SCSI statuss returned by the device is %d\n", uscsi_cmd.uscsi_status);
PRINTF ("Untransferred data length of the uscsi_cmd data is %d\n",
uscsi_cmd.uscsi_resid);
PRINTF ("Data in struct uscsi_cmd after to issue the cmd:");
DUMP_BYTES ((char *)&uscsi_cmd, sizeof(uscsi_cmd));
if (rq_fg) {

PRINTF ("\nUntransferred length of the sense data is %d\n",
uscsi_cmd.uscsi_rqresid);

PRINTF ("Sense data from the struct uscsi_cmd:\n");
DUMP_BYTES ((char *)&rq_buf, uscsi_cmd.uscsi_rqlen);
}

}

return (rc);

Downward Compatibility Tape Drive IOCTL Operations
This set of ioctl commands is provided only for compatibility with previous
versions of the IBM SCSI Tape Device Driver (IBMDDAst) that supported the IBM
3490E Magnetic Tape Subsystem on the SunOS 4.1.3 operating system. The
applications written for IBMDDAst are compatible with the device driver (IBMtape)
on a source level only. Binary compatibility is not guaranteed.

Recompile the application using the /usr/include/sys/oldtape.h header file (in place of
the previously used /usr/include/sys/Atape.h).

Note: This interface is obsolete. It was superseded by the interface defined in the
/usr/include/sys/st.h header file. New development efforts must use the st.h
interface to ensure its compatibility with future releases of the Solaris Tape
and Medium Changer Device Driver.

The following commands are supported:

Name Description

STIOCQRYP Query the working parameters of the tape drive.

STIOCSETP Set the working parameters of the tape drive.

STIOCSYNC Flush the drive buffers to the tape.

STIOCDM Display messages on the tape drive console.

STIOCQRYPOS Query the physical position on the tape.

STIOCSETPOS Set the physical position on the tape.

STIOCQRYSENSE Return the sense data collected from the tape drive.

STIOCQRYINQUIRY Return the inquiry data collected from the tape
drive.

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 269

These commands and associated data structures are defined in the oldtape.h header
file in the /usr/include/sys directory that is installed with the IBMtape package. Any
application program that issues these commands must include this header file.

Note: The oldtape.h header file replaces the Atape.h header file.

STIOCQRYP or STIOCSETP
These commands allow a program to query and set the working parameters of the
tape drive.

First issue the query command to fill the fields of the data structure with the
current data that you do not want to change. Make the changes to the required
fields and issue the set command to process the required changes.

Changing certain fields (such as buffered_mode or compression) can affect the
drive performance. If buffered_mode is disabled, each block written to the tape drive
is immediately transferred to the tape. This process guarantees that each record is
on the tape, but it degrades performance. If compression mode is enabled, the
write performance can increase based on the compressibility of the data written.

The changes made through this ioctl are effective only during the current open
session. The tape drive reverts to the default working parameters established by
the configuration file at the time of the next open operation.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver):
struct stchgp_s {

int blksize; /* block size */
struct sttrc_s {

boolean trace; /* not used */
ulong hkwrd; /* not used */

} sttrc;
int sync_count; /* OBSOLETE AND UNSUPPORTED */
boolean autoload; /* OBSOLETE AND UNSUPPORTED */
boolean buffered_mode; /* on/off buffered mode */
boolean compression; /* on/off compression mode */
boolean trailer_labels; /* on/off write past EOM mode */
boolean rewind_immediate; /* on/off immediate rewind mode */
boolean reserved[64]; /* reserved */

};

The data structure has the following fields:
v blksize

This field defines the effective block size for the tape drive (0=variable).
v sync_count

This field is obsolete. It is set to 0 by the Query command and ignored by the
Change command.

v autoload
This field is obsolete. It is set to 0 by the Query command and ignored by the
Change command.

v buffered_mode
This field enables or disables the buffered write mode
(0=disable, 1=enable).

v compression
This field enables or disables the hardware compression mode

Solaris Device Driver (IBMtape)

270 IBM Tape Device Drivers: Programming Reference

(0=disable, 1=enable).
v trailer_labels

This field enables or disables the trailer-label processing mode
(0=disable, 1=enable).
If this mode is enabled, writing records past the early warning mark on the tape
is allowed. The first write operation to detect EOM returns ENOSPC. This write
operation will not complete successfully. All subsequent write operations are
allowed to continue despite the check conditions that result from EOM. When
the end of the physical volume is reached, EIO is returned.

v rewind_immediate
This field enables or disables the immediate rewind mode
(0=disable, 1=enable).
If this mode is enabled, a rewind command returns with the status prior to the
completion of the physical rewind operation by the tape drive.

An example of the STIOCQRYP and STIOCSETP commands is:
#include <sys/oldtape.h>

struct stchgp_s stchgp;

/* QUERY OLD PARMS */
if (ioctl (tapefd, STIOCQRYP, &stchgp) < 0) {

printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

/* SET NEW PARMS */
stchgp.rewind_immediate = rewind_immediate;
stchgp.trailer_labels = trailer_labels;

if (ioctl (tapefd, STIOCSETP, &stchgp) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

STIOCSYNC
This command immediately flushes the drive buffers to the tape (commits the data
to the media).

No data structure is required for this command.

An example of the STIOCSYNC command is:
#include <sys/oldtape.h>

if (ioctl (tapefd, STIOCSYNC, NULL) < 0) {
printf("IOCTL failure, errno = %d", errno);
exit (errno);

}

STIOCDM
This command displays and manipulates one or two messages on the tape drive
console.

The message sent using this call does not always remain on the display. It depends
on the current drive activity.

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 271

Note: All messages must be padded to eight bytes. Otherwise, garbage characters
(meaningless data) can be displayed in the message.

The following data structure is filled out and supplied by the caller:
struct stdm_s {

char dm_func; /* message function codes */
/* Function Selection */

#define DMSTATUSMSG 0x00 /* general status message */
#define DMDVMSG 0x20 /* demount/verify message */
#define DMMIMMED 0x40 /* mount with immediate action */
#define DMDEMIMMED 0xE0 /* demount with immediate action */

/* Message Control */
#define DMMSG0 0x00 /* display message 0 */
#define DMMSG1 0x04 /* display message 1 */
#define DMFLASHMSG0 0x08 /* flash message 0 */
#define DMFLASHMSG1 0x0C /* flash message 1 */
#define DMALTERNATE 0x10 /* alternate messages 0 and 1 */
#define MAXMSGLEN 8
char dm_msg0[MAXMSGLEN]; /* message 0 */
char dm_msg1[MAXMSGLEN]; /* message 1 */

};

An example of the STIOCDM command is:
#include <sys/oldtape.h>

struct stdm_s stdm;

stdm.dm_func = DMSTATUSMSG | DMMSG0;
bcopy ("SSD", stdm.dm_msg0, 8);

if (ioctl (tapefd, STIOCDM, &stdm) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

STIOCQRYPOS or STIOCSETPOS
These commands allow a program to query and set the physical position on the
tape.

Tape position is defined as where the next read or write operation occurs. The
STIOCQRYPOS command and the STIOCSETPOS command can be used
independently or in conjunction with each other.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver):
struct stpos_s

{
char block_type; /* format of block ID information */

#define QP_LOGICAL 0
#define QP_PHYSICAL 1

boolean eot; /* early warning EOT */
#define blockid_t unsigned int
blockid_t curpos; /* current or new tape position */
blockid_t lbot; /* last block written to tape */

#define LBOT_NONE 0xFFFFFFFF
#define LBOT_UNKNOWN 0xFFFFFFFE

char reserved[64]; /* reserved */
};

The block_type field is set to QP_LOGICAL for standard SCSI logical tape positions
or QP_PHYSICAL for composite tape positions used for high-speed locate
operations implemented by the tape drive.

Solaris Device Driver (IBMtape)

272 IBM Tape Device Drivers: Programming Reference

For STIOCSETPOS commands, the block_type and curpos fields must be filled out
by the caller. The other fields are ignored. The type of position specified in the
curpos field must correspond with the type specified in the block_type field. Use the
QP_PHYSICAL type for better performance. High-speed locate positions can be
obtained with the STIOCQRYPOS command, saved, and used later with the
STIOCSETPOS command to quickly return to the same location on the tape.

Following a STIOCQRYPOS command, the lbot field indicates the last block of data
that was transferred physically to the tape. For example, if the application has
written 12 blocks and lbot equals 8, four blocks are in the tape buffer. This field is
valid only if the last command was a write operation. Otherwise,
LBOT_UNKNOWN is returned. It does not reflect the number of application write
operations because a single write operation can translate to multiple blocks.

An example of the STIOCQRYPOS and STIOCSETPOS commands is:
#include <sys/oldtape.h>

struct stpos_s stpos;
stpos.block_type = QP_PHYSICAL;

if (ioctl (tapefd, STIOCQRYPOS, &stpos) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

oldposition = stpos.curpos;

/* do other stuff... */

stpos.curpos = oldposition;
stpos.block_type = QP_PHYSICAL;

if (ioctl (tapefd, STIOCSETPOS, &stpos) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit(errno);

}

STIOCQRYSENSE
This command returns the sense data collected from the tape drive.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver):
struct stsense_s {

/* INPUT */
char sense_type; /* new sense or last error sense */

#define FRESH 1
#define LASTERROR 2

/* OUTPUT */
#define MAXSENSE 128
char sense[MAXSENSE]; /* actual sense data */
int len; /* length of sense data returned */
char reserved[64]; /* reserved */

};

If sense_type is set to LASTERROR, the last sense data collected from the device is
returned. If it is set to FRESH, a new Request Sense command is issued and the
sense data is returned.

An example of the STIOCQRYSENSE command is:

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 273

#include <sys/oldtape.h>

struct stsense_s stsense;
stsense.sense_type = LASTERROR;

#define MEDIUM_ERROR 0x03

if (ioctl (tapefd, STIOCQRYSENSE, &stsense) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

if (SENSE_KEY (&stsense.sense) == MEDIUM_ERROR) {
printf ("We’re in trouble now!");
exit (SENSE_KEY (&stsense.sense));

}

STIOCQRYINQUIRY
This command returns the inquiry data collected from the tape drive.

The following data structure is filled out and returned by the driver:
struct inq_data_s {

BYTE b0; /* peripheral device byte */
#define PERIPHERAL_QUALIFIER(x) ((x->b0 & 0xE0)>>5)
#define PERIPHERAL_CONNECTED 0x00
#define PERIPHERAL_NOT_CONNECTED 0x01
#define LUN_NOT_SUPPORTED 0x03
#define PERIPHERAL_DEVICE_TYPE(x) (x->b0 & 0x1F)
#define DIRECT_ACCESS 0x00
#define SEQUENTIAL_DEVICE 0x01
#define PRINTER_DEVICE 0x02
#define PROCESSOR_DEVICE 0x03
#define CD_ROM_DEVICE 0x05
#define OPTICAL_MEMORY_DEVICE 0x07
#define MEDIUM_CHANGER_DEVICE 0x08
#define UNKNOWN 0x1F

BYTE b1; /* removable media/device type byte */
#define RMB(x) ((x->b1 & 0x80)>>7)
#define FIXED 0
#define REMOVABLE 1
#define device_type_qualifier(x) (x->b1 & 0x7F)

BYTE b2; /* standards version byte */
#define ISO_Version(x) ((x->b2 & 0xC0)>>6)
#define ECMA_Version(x) ((x->b2 & 0x38)>>3)
#define ANSI_Version(x) (x->b2 & 0x07)
#define NONSTANDARD 0
#define SCSI1 1
#define SCSI2 2

BYTE b3; /* asynchronous event notification */
#define AENC(x) ((x->b3 & 0x80)>>7)
#define TrmIOP(x) ((x->b3 & 0x40)>>6)
#define Response_Data_Format(x) (x->b3 & 0x0F)
#define SCSI1INQ 0
#define CCSINQ 1
#define SCSI2INQ 2

BYTE additional_length;
BYTE res56[2]; /* reserved bytes */
BYTE b7; /* protocol byte */

#define RelAdr(x) ((x->b7 & 0x80)>>7)
#define WBus32(x) ((x->b7 & 0x40)>>6)
#define WBus16(x) ((x->b7 & 0x20)>>5)
#define Sync(x) ((x->b7 & 0x10)>>4)
#define Linked(x) ((x->b7 & 0x08)>>3)
#define CmdQue(x) ((x->b7 & 0x02)>>1)
#define SftRe(x) (x->b7 & 0x01)

Solaris Device Driver (IBMtape)

274 IBM Tape Device Drivers: Programming Reference

char vendor_identification[8]; /* vendor identification */
char product_identification[16]; /* product identification */
char product_revision_level[4]; /* product revision level */

};

struct st_inquiry {
struct inq_data_s standard;
BYTE vendor_specific[255-sizeof(struct inq_data_s)];

};

An example of the STIOCQRYINQUIRY command is:
#include <sys/oldtape.h>

struct st_inquiry inqd;

if (ioctl (tapefd, STIOCQRYINQUIRY, &inqd) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

if (ANSI_Version (((struct inq_data_s *)&(inqd;standard))) == SCSI2) {
printf ("Hey! We have a SCSI-2 device\n");

}

Service Aid IOCTL Operations
A set of service aid ioctl commands gives applications access to serviceability
operations for IBM tape subsystems.

The following commands are supported:

Name Description

STIOC_DEVICE_SN Query the serial number of the device.

IOC_FORCE_DUMP Force the device to perform a diagnostic dump.

IOC_STORE_DUMP Force the device to write the diagnostic dump to
the currently mounted tape cartridge.

IOC_READ_BUFFER Read data from the specified device buffer.

IOC_WRITE_BUFFER Write data to the specified device buffer.

IOC_DEVICE_PATH Query the path information for a particular path or
all of the paths for a particular parent device.

IOC_CHECK_PATH Display the enable or disable information for each
path in the path table.

IOC_ENABLE_PATH Enable a path in the path table.

IOC_DISABLE_PATH Disable a path in the path table.

These commands and associated data structures are defined in the svc.h header file
in the /usr/include/sys directory that is installed with the IBMtape package. Any
application program that issues these commands must include this header file.

STIOC_DEVICE_SN
This command returns the device number as used by the IBM Enterprise Tape
Library and the Enterprise Model B18 Virtual Tape Server.

The following data structure is filled out and returned by the driver:
typedef uint device_sn_t;

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 275

An example of the STIOC_DEVICE_SN command is:
#include <sys/svc.h>

device_sn_t device_sn;

if (!(ioctl (dev_fd, STIOC_DEVICE_SN, &device_sn))) {
printf ("Tape device %s serial number: %x\n", dev_name, device_sn);

}

else {
perror ("Failure obtaining tape device serial number");
scsi_request_sense ();

}

IOC_FORCE_DUMP
This command forces the device to perform a diagnostic dump.

No data structure is required for this command.

An example of the IOC_FORCE_DUMP command is:
#include <sys/svc.h>

if (!(ioctl (dev_fd, IOC_FORCE_DUMP, 0))) {
printf ("Dump completed successfully.\n");

}

else {
perror ("Failure performing device dump");
scsi_request_sense ();

}

IOC_STORE_DUMP
This command forces the device to write the diagnostic dump to the currently
mounted tape cartridge. The IBM 3490E Magnetic Tape Subsystem and the IBM
Enterprise Model B18 Virtual Tape Server do not support this command.

No data structure is required for this command.

An example of the STIOC_STORE_DUMP command is:
#include <sys/svc.h>

if (!(ioctl (dev_fd, STIOC_STORE_DUMP, 0))) {
printf ("Dump store on tape successfully.\n");

}

else {
perror ("Failure storing dump on tape");
scsi_request_sense ();

}

IOC_READ_BUFFER
This command reads data from the specified device buffer.

The following data structure is filled out and supplied by the caller:
typedef struct {

uchar mode; /* transfer mode */
uchar id; /* device buffer id */
uint offset; /* buffer offset */
uint size; /* byte count */
uchar *buffer; /* data buffer */

} buffer_io_t;

Solaris Device Driver (IBMtape)

276 IBM Tape Device Drivers: Programming Reference

The mode field should be set to one of the following values:

Value Description

VEND_MODE Vendor specific mode

DSCR_MODE Descriptor mode

DNLD_MODE Download mode

The id field should be set to one of the following values:

Value Description

ERROR_ID Diagnostic dump buffer

UCODE_ID Microcode buffer

An example of the STIOC_READ_BUFFER command is:
#include <sys/svc.h>

buffer_io_t buffer_io;

if (!(ioctl (dev_fd, STIOC_READ_BUFFER, &buffer_io))) {
printf ("Buffer read successfully.\n");

}

else {
perror ("Failure reading buffer");
scsi_request_sense ();

}

IOC_WRITE_BUFFER
This command writes data to the specified device buffer.

The following data structure is filled out and supplied by the caller:
typedef struct {

uchar mode; /* transfer mode */
uchar id; /* device buffer id */
uint offset; /* buffer offset */
uint size; /* byte count */
uchar *buffer; /* data buffer */

} buffer_io_t;

The mode field should be set to one of the following values:

Value Description

VEND_MODE Vendor-specific mode

DSCR_MODE Descriptor mode

DNLD_MODE Download mode

The id field should be set to one of the following values:

Value Description

ERROR_ID Diagnostic dump buffer

UCODE_ID Microcode buffer

An example of the STIOC_WRITE_BUFFER command is:
#include <sys/svc.h>

buffer_io_t buffer_io; /* buffer_io should be initialized

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 277

per the hardware ref*/
if (!(ioctl (dev_fd, STIOC_WRITE_BUFFER, &buffer_io))) {

printf ("Buffer written successfully.\n");
}

else {
perror ("Failure writing buffer");
scsi_request_sense ();

}

IOC_DEVICE_PATH
This command returns the information about the path information for a particular
path or all of the paths for a particular parent device.

The following data structure is filled out and returned by the driver:
typedef struct {
int instance; /* Instance Number of this path */
int tgt; /* SCSI target for this path */
int lun; /* SCSI LUN for this path */
uint64_t wwnn; /* WWNN for this fc path */
uint64_t wwpn; /* WWPN for this fc path */
int path_type; /* primary 0 or

alt 1, 2, 3, ..., 15 */
/* none 0xFF */

int enable; /* path enable 1, disable 0 */
char devpath[125]; /* devices path of this path */
char dev_ser[33]; /* Device serial number */
char ucode_level[32]; /* Device microcode level */
} device_path_t;

typedef struct {
int number_paths; /* number of paths configured */

An example of the IOC_DEVICE_PATH command is:
#include <sys/svc.h>

device_paths_t device_paths;

if (rc = ioctl(dev_fd,IOC_DEVICE_PATHS, %device_paths)){
perror ("IOC_DEVICE_PATHS failed");
printf ("\n");
return (rc);
}

printf ("\nEnter path number or <enter> for all of the paths:");
gets (buf);
if (buf[0] == ’\0’) {

for (i=0; i<device_paths.number_paths)i++) {
show_path (&device_paths.device_path[i]);
printf ("\n---more---")

if (interactive) getchar ();
}

}
else {

i = atoi(buf);
if ((i>=device_paths.number_paths||(i<0) {

printf ("\nInvalid Path Number selection.\n");
return (FALSE);

}
show path (&device_paths_.device_path[i]);

}

Solaris Device Driver (IBMtape)

278 IBM Tape Device Drivers: Programming Reference

IOC_CHECK_PATH
This command is used to display the enable or disable information for each path in
the path table.

The following data structure is filled out and returned by the driver:
typedef struct {

int number_paths; /* number of paths configured */
path_enable_t path_enable[MAX_SCSI_PATH];

} check_path_t;

See the example of the IOC_CHECK_PATH command in “IOC_ENABLE_PATH
and IOC_DISABLE_PATH.”

IOC_ENABLE_PATH and IOC_DISABLE_PATH
This command is used to enable or disable a path in the path table.

The following data structure is filled out and returned by the driver:
typedef struct {

int path; /* Failover path: primary path: 0 */
/* alternate path: 1, 2, 3, ..., 15 */
/* No failover path : 0xFF */

int enable; /* path enable 1, disable 0 */
} path_enable_t;

An example of the commands is:
#include <sys/svc.h>

check_path_t check_path;
path_enable_t path_enable;

if (!(rc = ioctl (dev_fd, IOC_CHECK_PATHS, &check_path))) {
printf ("IOC_CHECK_PATHS succeeded.\n");

}

printf ("Enter selection (0=disable, 1=enable): ");
gets (buf);
if (*buf != ’\0’) {

if (path_enable.enable) {
if (rc = ioctl (dev_fd, IOC_ENABLE_PATH, &path_enable)) {

perror ("IOC_ENABLE_PATH failed");
printf ("\n");
return (rc);

}
}
else {

if (rc = ioctl (dev_fd, IOC_DISABLE_PATH, &path_enable)) {
perror ("IOC_DISABLE_PATH failed");
printf ("\n");
return (rc);

}
}

}

Return Codes
The calls to the IBMtape device driver returns error codes describing the outcome
of the call. The error codes returned are defined in the errno.h system header file in
the /usr/include/sys directory.

For the open, close, and ioctl calls, the return code of the function call is either 0 for
success, or -1 for failure, in which case the system global variable errno contains

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 279

the error value. For the read and write calls, the return code of the function call
contains the actual number of bytes read or written if the operation was successful,
or 0 if no data was transferred due to encountering end of file or end of tape. If
the read or write operation completely failed, the return code is set to -1 and the
error value is stored in the system global variable errno.

The error codes returned from IBMtape are described in the following section.

Note: The EIO return code indicates that a device-related input/output (I/O) error
has occurred. Further information about the error may be obtained using the
IOC_REQUEST_SENSE ioctl command to retrieve sense data. This sense data
can then be interpreted using the device hardware or SCSI reference.

General Error Codes
The following codes and their descriptions apply in general to all operations:

Name Description

[EACCES] An operation to modify the media was attempted
illegally.

[EBADF] A bad file descriptor was specified for the device.

[EBUSY] An excessively busy state was encountered for the
device.

[ECONNRESET] A SCSI bus reset was detected by the device.

[EFAULT] A memory failure occurred due to an invalid
pointer or address.

[EINVAL] The requested operation or specified parameter
was invalid.

[EIO] A general I/O failure occurred for the device.

[ENOMEM] Insufficient memory was available for an internal
operation.

[ENOSPC] The write operation exceeds the remaining
available space.

[ENXIO] The device was not configured or it is not receiving
requests.

[EPROTO] A SCSI command or data transfer protocol error
has occurred.

[ETIMEDOUT] A SCSI command timed out waiting for the device.

Open Error Codes
The following codes and their descriptions apply to the open operation:

Name Description

[EACCES] An attempt to open the device for write or append
mode failed because the currently mounted tape is
write protected.

[EBUSY] The device is reserved by another initiator or
already opened by another process.

Solaris Device Driver (IBMtape)

280 IBM Tape Device Drivers: Programming Reference

[EINVAL] The requested operation is not supported, or the
specified parameter or flag was invalid.

[EIO] A general failure occurred during the open
operation for the device. (If it was opened with the
O_APPEND flag, the tape is full.)

[ENXIO] The device was not configured, or it is not
receiving requests.

Close Error Codes
The following codes and their descriptions apply to the close operation:

Name Description

[EBADF] A bad file descriptor was specified for the device.

[EIO] A general failure occurred during the close
operation for the device.

[ENXIO] The device was not configured or it is not receiving
requests.

Read Error Codes
The following codes and their descriptions apply to the read operation:

Name Description

[EBADF] A bad file descriptor was specified for the device.

[EFAULT] A memory failure occurred due to an invalid
pointer or address.

[EINVAL] The requested operation is not supported, or the
specified parameter or flag was invalid.

The number of bytes requested was not a multiple
of the block size for a fixed block transfer.

The number of bytes requested was greater than
the maximum size allowed by the device for
variable block transfers.

[EIO] A SCSI or device failure occurred.

The physical end of the media was detected.

[ENOMEM] Insufficient memory was available for an internal
operation.

The number of bytes requested for a variable block
transfer was less than the size of the block
(overlength condition).

[ENXIO] The device was not configured or it is not receiving
requests.

A read operation was attempted after the device
reached the logical end of the media.

Write Error Codes
The following codes and their descriptions apply to the write operation:

Name Description

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 281

[EACCES] An operation to modify the media was attempted
on a write protected tape.

[EBADF] A bad file descriptor was specified for the device.

[EFAULT] A memory failure occurred due to an invalid
pointer or address.

[EINVAL] The requested operation is not supported, or the
specified parameter or flag was invalid.

The number of bytes requested was not a multiple
of the block size for a fixed block transfer.

The number of bytes requested was greater than
the maximum size allowed by the device for
variable block transfers.

A write operation was attempted on a device that
has been opened for O_RDONLY.

[EIO] A SCSI or device failure occurred.

The physical end of the media was detected.

[ENOMEM] Insufficient memory was available for an internal
operation.

[ENOSPC] The write operation failed because the logical end
of the media was encountered while trailer label
mode was not enabled and early warning (0 return
code) was already provided.

[ENXIO] The device was not configured or it is not receiving
requests.

A write operation was attempted after the device
reached the logical end of the media.

Solaris Device Driver (IBMtape)

282 IBM Tape Device Drivers: Programming Reference

IOCTL Error Codes
The following codes and their descriptions apply to the ioctl operations:

Name Description

[EACCES] An operation to modify the media was attempted
on a write protected tape or on a device opened for
read only.

[EBADF] A bad file descriptor was specified for the device.

[EFAULT] A memory failure occurred due to an invalid
pointer or address.

[EINVAL] The requested operation is not supported, or the
specified parameter or combination of parameters
was invalid.

[EIO] A general failure occurred for the device.

[ENXIO] The device was not configured or it is not receiving
requests.

Opening a Special File
The open system call provides the mechanism for beginning an I/O session with a
tape drive or medium changer. For example:
fd = open ("/dev/rmt/0st", O_FLAGS);

If the open system call fails, it returns -1, and the system errno value contains the
error code as defined in the /usr/include/sys/errno.h header file.

The O_FLAGS parameters are defined in the /usr/include/sys/fcntl.h system header
file. Use bitwise inclusive OR to combine individual values together. The IBMtape
device driver special files recognize and support the following O_FLAG values:
v O_RDONLY

This flag allows only operations that do not alter the content of the tape. All
special files support this flag.

v O_RDWR
This flag allows the tape to be accessed and altered completely. The smc special
file does not support this flag. An open call to the smc special file, or to any st
special file where the tape device has a write protected cartridge mounted fails.

v O_WRONLY
This flag does not allow the tape to be read. All other tape operations are
allowed. The smc special file does not support this flag. An open call to the smc
special file, or to any st special file where the tape device has a write protected
cartridge mounted fails.

v O_NDELAY or O_NONBLOCK
These two flags perform the same function. This option indicates to the driver
not to wait until the tape drive is ready before opening the device and sending
commands. Until the drive is ready, subsequent commands that require a
physical tape to be loaded and ready will fail. Other commands that do not
require a tape to be loaded, such as inquiry or move medium commands, will
succeed. All special files support these flags.

v O_APPEND
This flag is used in conjunction with the O_WRONLY flag to append data to the
end of the current data on the tape. This flag is illegal in combination with the

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 283

O_RDONLY or O_RDWR flag. The smc special file does not support this flag. An
open call to the smc special file, or to any st special file where the tape device
has a write protected cartridge mounted fails.
During an open for append operation, the tape is rewound and positioned after
the last block or filemark that was written to the tape. This process can take
several minutes to complete for a full tape.

Writing to a Special File
The write system call provides the mechanism for writing data to a tape. This call
is not applicable to the smc special file and fails. An example of writing to a tape
drive is:
count = write (fd, buffer, numbytes);

where:
count is the return code from the write command.
fd is the file descriptor of a previously opened special file.
buffer is a pointer to the source data buffer.
numbytes is the number of bytes requested to be written.

If the device has been configured to use a fixed block size, numbytes must be a
whole number multiple of the block size. If the block size is variable, the value
specified in numbytes is the size of the block written.

After each call to write is issued, the return code tells how many bytes were
actually written. Normally, the return code will be the same as the number of bytes
requested in the write command. There are some exceptions, however. If the device
has been configured to use fixed block size, and a write is for multiple blocks, it is
possible that only some of the requested blocks may be written. This is called a
short write. The return code from a short write is less than the number of bytes
requested, but always a whole number multiple of the block size. Applications
writing multiple fixed blocks must be prepared to handle short writes, and
calculate from the return code which blocks were not transferred to tape. Short
writes are not an error condition, and IBMtape does not set a value for the errno
system variable.
v A return code of zero indicates that the logical end of medium (LEOM) has been

reached. None of the requested bytes were written. Note that a return code of
zero is not an error condition, and IBMtape does not set a value for the errno
system variable.

v If the return code is less than zero, the write operation failed. None of the
requested bytes were written. IBMtape sets an error code in the errno system
variable.

The writev system call is also supported.

Reading from a Special File
The read system call provides the mechanism for reading data from a tape. This
call is not applicable to the smc special file and fails. An example of reading from a
tape drive is:
count = read (fd, buffer, numbytes);

where:
count is the return code from the read command.
fd is the file descriptor of a previously opened special file.

Solaris Device Driver (IBMtape)

284 IBM Tape Device Drivers: Programming Reference

buffer is a pointer to the destination data buffer.
numbytes is the maximum number of bytes requested to be read.

If the device has been configured for variable block size, a single block of up to
numbytes bytes will be read. However, if the block size on tape is greater than
numbytes, the read will fail, with errno set to ENOMEM. This is called an overlength
read condition.

If the device is configured to use a fixed block size, numbytes must be a whole
number multiple of that block size. If numbytes is not such a multiple, IBMtape
fails the read and sets errno to EINVAL. If the block size on tape does match the
configured block size, whether larger or smaller, the read will fail, with errno set to
EIO. This is called an incorrect length condition.

After issuing the read, if count is less than zero, the read failed, no data is returned,
and the system variable errno is set to indicate the type of error. See “Read Error
Codes” on page 281 for a complete list of errno values and their meanings.

If count equals zero, then the end of medium (EOM) or a filemark was encountered
before any data was read. This is not an error condition, and IBMtape does not set
errno. If a second read returns zero, the application may infer that EOM has been
reached. Otherwise, the application may infer that a filemark was encountered.
When a filemark is encountered while reading, the tape is left positioned on the
end of medium (EOM) side of the filemark.

If greater than zero, count reports how many bytes were read from tape. Even
though greater than zero, it may still be less than numbytes. If the device is
configured for variable blocks, count may be any value between 1 and numbytes. If
configured to use a fixed block size, count will always be a whole number multiple
of that block size. In either case, such a condition is called an underlength read or
short read.

Underlength reads are not error conditions, and IBMtape does not set errno.
However, for variable block mode, some overhead processing incurred by
underlength reads can be eliminated by setting the SILI parameter to 1. This can
improve read performance. See “STIOC_GET_PARM” on page 236 for more
information on the SILI parameter.

The readv system call is also supported.

Closing a Special File
The close system call provides the mechanism for ending an I/O session with a
tape drive or medium changer. Closing a device special file is a simple process.
The file descriptor that is returned from the open system call is supplied to the close
system call as in the following example:
rc = close (fd);

An application should explicitly issue the close call when the I/O resource is no
longer necessary, or in preparation for termination. The operating system implicitly
issues the close call for an application which terminates without closing the
resource itself. If an application terminates unexpectedly, but leaves behind child
processes that had inherited the file descriptor for the open resource, the operating
system will not implicitly close the file descriptor because it believes it is still in
use.

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 285

If the close system call fails, it returns -1 and the system errno value contains the
error code as defined in the /usr/include/sys/errno.h header file. The close operation
attempts to perform as many of the necessary tasks as possible even if there are
failures during portions of the close operation. The IBMtape device driver is
guaranteed to leave the device instance in the closed mode providing that the close
system call is in fact invoked either explicitly or implicitly. If the close system call
returns with a -1, assume that the device is indeed closed and that another open is
required to continue processing the tape. After a close failure, assume that the tape
position may be inconsistent.

The close operation behavior depends on which special file was used during the
open operation and which tape operation was last performed while it was opened.
The commands are issued to the tape drive during the close operation according to
the following logic and rules:
if last operation was WRITE FILEMARK

WRITE FILEMARK
BACKWARD SPACE 1 FILEMARK

if last operation was WRITE
WRITE FILEMARK
WRITE FILEMARK
BACKWARD SPACE 1 FILEMARK

if last operation was READ
if special file is NOT BSD

if EOF was encountered
FORWARD SPACE 1 FILEMARK

SYNC BUFFER

if special file is REWIND ON CLOSE
REWIND

Rules:
1. Return EIO and release the drive when an unit attention happens before the

close().
2. Fail the command, return EIO and release the drive if an unit attention occurs

during the close().
3. If a SCSI command fails during close processing, only the SCSI RELEASE will

be attempted thereafter.
4. If the tape is already unloaded from the driver, no SYNC BUFFER (WFM(0)) or

rewinding (only for rewind-on-close special files) of the tape will be done.
5. The return code from the SCSI RELEASE command is ignored.

Solaris Device Driver (IBMtape)

286 IBM Tape Device Drivers: Programming Reference

Issuing IOCTL Operations to a Special File
The ioctl system call provides the mechanism for performing special I/O control
operations to the tape drive or medium changer device. An example of issuing an
ioctl to a tape drive or medium changer device is:
rc = ioctl (fd, command, buffer);

The fd is the file descriptor returned from the open system call. The command is the
value of the ioctl operation defined in the appropriate header file, and buffer is the
address of the user memory where data is passed to the device driver and
returned to the application.

The rc indicates the outcome of the operation upon return. An rc of 0 indicates
success, and any other value indicates a failure as defined in the
/usr/include/sys/errno.h header file.

The ioctl operations supported by the Solaris Tape and Medium Changer Device
Driver are defined in the following header files included with the IBMtape package
and installed in the /usr/include/sys subdirectory. These header files should be
included by any application source files requiring to access the ioctl functions
supported by the IBMtape device driver. (Existing applications which make use of
the standard Solaris tape drive ioctl operations defined in the native mtio.h header
file in the /usr/include/sys are fully supported by the IBMtape device driver.)
v st.h (tape drive operations)
v smc.h (medium changer operations)
v svc.h (service aid operations)
v oldtape.h (downward compatible tape drive operations, obsolete)

Solaris Device Driver (IBMtape)

Chapter 5. Solaris Tape and Medium Changer Device Driver 287

Solaris Device Driver (IBMtape)

288 IBM Tape Device Drivers: Programming Reference

Chapter 6. Windows Tape Device Drivers

Windows Programming Interface
The programming interface conforms to the standard Microsoft Windows Server
2003 and Windows Server 2008 tape device drivers interface. It is detailed in the
Microsoft Developer Network (MSDN) Software Development Kit (SDK) and
Driver Development Kit (DDK). Common documentation for these similar devices
will be indicated by 200x.

Windows IBMTape is conformed by two sets of device drivers:
v ibmtpxxx.sys, which supports the IBM TotalStorage or Magstar Tape Drives,

where
– ibmtp2k3.sys, ibmtpbs2k3.sys, ibmtpft2k3.sys are used for Windows Server 2003
– ibmtp2k8.sys, ibmtpbs2k8.sys, ibmtpft2k8.sys are used for Windows Server 2008

v ibmcgxxx.sys, which supports the IBM TotalStorage or Magstar medium changer,
where
– ibmcg2k3.sys, ibmcgbs2k3.sys, ibmcgft2k3.sys are used for Windows Server 2003
– ibmcg2k8.sys, ibmcgbs2k8.sys, ibmcgft2k8.sys are used for Windows Server 2008

The programming interface conforms to the standard Microsoft Windows 200x tape
device driver interface. It is detailed in the Microsoft Developer Network (MSDN)
Software Development Kit (SDK), and Driver Development Kit (DDK).

User Callable Entry Points
The following user-callable tape driver entry points are supported under
ibmtpxxx.sys:
v CreateFile
v CloseHandle
v DeviceIoControl
v EraseTape
v GetTapeParameters
v GetTapePosition
v GetTapeStatus
v PrepareTape
v ReadFile
v SetTapeParameters
v SetTapePosition
v WriteFile
v WriteTapemark

Tape Media Changer Driver Entry Points
If the Removable Storage Manager is stopped, then the following user-callable tape
media changer driver entry points are supported under ibmcgxxx.sys:
v CreateFile
v CloseHandle
v DeviceIoControl

© Copyright IBM Corp. 1999, 2012 289

Users who want to write application programs to issue commands to IBM
TotalStorage device drivers should obtain a license to the MSDN and the Microsoft
Visual C++ Compiler. Users will also need access to IBM hardware reference
manuals for IBM TotalStorage devices.

Programs that access the IBM TotalStorage device driver should perform the
following steps:
1. Include the following files in the application:

#include <ntddscsi.h>
#include <ntddchgr.h>
#include <ntddtape.h> /* Modified as indicated below */

2. Add the following lines to ntddtape.h:
#define IOCTL_TAPE_OBTAIN_SENSE CTL_CODE(IOCTL_TAPE_BASE, 0x0819,\

METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_OBTAIN_VERSION CTL_CODE(IOCTL_TAPE_BASE, 0x081a,\

METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_LOG_SELECT CTL_CODE(IOCTL_TAPE_BASE, 0x081c,\

METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_TAPE_LOG_SENSE CTL_CODE(IOCTL_TAPE_BASE, 0x081d,\

METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_REPORT_MEDIA_DENSITY CTL_CODE(IOCTL_TAPE_BASE, 0x081e,\

METHOD_BUFFERED, FILE_READ_ACCESS)

CreateFile
The CreateFile entry point is called to make the driver and device ready for
input/output (I/O). Only one CreateFile at a time is allowed for each LUN on a
TotalStorage device. Additional opens of the same LUN on a device fails. The
following code fragment illustrates a call to the CreateFile routine:
HANDLE ddHandle0, ddHandle1; // file handle for LUN0 and LUN1

/*
** Open for reading/writing on LUN0,
** where the device special file name is in the form of tapex and
** x is the logical device 0 to n - can be determined from Registry
**
** Open for media mover operations on LUN1,
** where the device special file name is in the form of
** changerx and x is the logical device 0 to n - can be determined from Registry
*/
ddHandle0 = CreateFile(

"\\\\.\\tape0",
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile
);

ddHandle1 = CreateFile(
"\\\\.\\changer0",
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

);
/* Print msg if open failed for handle 0 or 1 */
if(ddHandlen == INVALID_HANDLE_VALUE)
{

Windows 200x Device Driver

290 IBM Tape Device Drivers: Programming Reference

printf("open failed for LUNn\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

CloseHandle

The CloseHandle entry point is called to terminate I/O to the driver and device.
The following code fragment illustrates a call to the CloseHandle routine:
BOOL rc;

rc = CloseHandle(
ddHandle0
);

if (!rc)
{

printf("close failed\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

where ddHandle0 is the open file handle returned by the CreateFile call.

ReadFile
The ReadFile entry point is called to read data from tape. The caller provides a
buffer address and length, and the driver returns data from the tape to the buffer.
The amount of data returned never exceeds the length parameter.

See “Variable and Fixed Block Read Write Processing” on page 313 for a full
discussion of the read write processing feature.

The following code fragment illustrates a ReadFile call to the driver:
BOOL rc;

rc = ReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nBufferSize,
LPDWORD lpBytesRead,
LPOVERLAPPED lpOverlapped

);
if(rc)
{

if (*lpBytesRead > 0)
printf("Read %d bytes\n", *lpBytesRead);

else
printf("Read found file mark\n");

}
else
{

printf("Error on read\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

where hFile is the open file handle, lpBuffer is the address of a buffer in which to
place the data, nBufferSize, is the number of bytes to be read and lpBytesRead is
the number of bytes read.

If the function succeeds, the return value rc is nonzero.

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 291

WriteFile
The WriteFile entry point is called to write data to the tape. The caller provides the
address and length of the buffer to be written to tape. The physical limitations of
the drive can cause the write to fail. One example is attempting to write past the
physical end of the tape.

See “Variable and Fixed Block Read Write Processing” on page 313 for a full
discussion of the read write processing feature.

The following code fragment illustrates a call to the WriteFile routine:
BOOL rc;

rc = WriteFile(
HANDLE hFile,
LPCVOID lpBuffer,
DWORD nBufferSize,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped
);

if (!rc)
{

printf("Error on write\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

where hFile is the open file handle, lpBuffer is the buffer address, and nBufferSize
is the size of the buffer in bytes.

If the function succeeds, the return value rc is nonzero. The application should also
verify that all the requested data was written by examining the
lpNumberOfBytesWritten parameter. See “Write Tapemark” for details on
committing data on the media.

Write Tapemark
Application writers who are using the WriteFile entry point to write data to tape
should understand that the tape device buffers data in its memory and writes that
data to the media as those device buffers fill. Thus, a WriteFile call may return a
successful return code, but the data may not be on the media yet. Calling the
WriteTapemark entry point and receiving a good return code, however, ensures that
data has been committed to tape media properly if all previous WriteFile calls were
successful. However, applications writing large amounts of data to tape may not
want to wait until writing a tapemark to know whether or not previous data was
written to the media properly. For example:
WriteTapemark(
HANDLE hDevice,
DWORD dwTapemarkType,
DWORD dwTapemarkCount,
BOOL bImmediate
);

dwTapemarkType is the type of operation requested.

The only type supported is:

TAPE_FILEMARKS

The WriteTapemark entry point may also be called with the dwTapemarkCount
parameter set to 0 and the bImmediate parameter set to FALSE. This has the effect

Windows 200x Device Driver

292 IBM Tape Device Drivers: Programming Reference

of committing any uncommitted data written by previous WriteFile calls (since the
last call to WriteTapemark) to the media. If no error has been returned by the
WriteFile calls and the WriteTapemark call, the application can assume that all data
is committed to the media successfully.

SetTapePosition
The SetTapePosition entry point is called to seek to a particular block of media data.
For example:
SetTapePosition(
HANDLE hDevice,
DWORD dwPositionMethod,
DWORD dwPartition,
DWORD dwOffsetLow,
DWORD dwOffsetHigh,
BOOL bImmediate
);

dwPositionMethod is the type of positioning.

For Magstar devices the following types of tapemarks and immediate values are
supported.

TAPE_ABSOLUTE_BLOCK bImmediate TRUE or FALSE
TAPE_LOGICAL_BLOCK bImmediate TRUE or FALSE

For Magstar devices, there is no difference between the absolute and logical block
addresses.

TAPE_REWIND bImmediate TRUE or FALSE
TAPE_SPACE_END_OF_DATA bImmediate FALSE
TAPE_SPACE_FILEMARKS bImmediate FALSE
TAPE_SPACE_RELATIVE_BLOCKS bImmediate FALSE
TAPE_SPACE_SEQUENTIAL_FMKS

GetTapePosition
The GetTapePosition entry point is called to retrieve the current tape position. For
example:
GetTapePosition(
HANDLE hDevice,
DWORD dwPositionType,
LPDWORD lpdwPartition,
LPDWORD lpdwOffsetLow,
LPDWORD lpdwOffsetHigh
);

dwPositionType is the type of positioning.

TAPE_ABSOLUTE_POSITION or TAPE_LOGICAL_POSITION may be specified
but only the absolute position is returned.

SetTapeParameters
The SetTapeParameters entry point is called to either specify the block size of a tape
or set tape device data compression. The data structures are:
struct{ // structure used by operation SET_TAPE_MEDIA_INFORMATION
ULONG BlockSize;
}TAPE_SET_MEDIA_PARAMETERS;

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 293

struct{ // structure used by operation SET_TAPE_DRIVE_INFORMATION
BOOLEAN ECC; // Not Supported
BOOLEAN Compression; // Only compression can be set
BOOLEAN DataPadding; // Not Supported
BOOLEAN ReportSetmarks; // Not Supported
ULONG EOTWarningZoneSize; // Not Supported
}TAPE_SET_DRIVE_PARAMETERS;

SetTapeParameters(
HANDLE hDevice,
DWORD dwOperation,
LPVOID lpParameters
);

dwOperation is the type of information to set (SET_TAPE_MEDIA_INFORMATION
or SET_TAPE_DRIVE_INFORMATION). For SET_TAPE_DRIVE_INFORMATION,
only compression is changeable.

lpParameters is the address of either a TAPE_SET_MEDIA_PARAMETERS or a
TAPE_SET_DRIVE_PARAMETERS data structure that contains the parameters.

GetTapeParameters
The GetTapeParameters entry point is called to get information that describes the
tape or the tape drive.

The data structures are:
struct{ // structure used by GET_TAPE_MEDIA_INFORMATION

LARGE_INTEGER Capacity; /* invalid for Magstar */
LARGE_INTEGER Remaining; /* invalid for Magstar */
DWORD BlockSize;
DWORD PartitionCount;
BOOLEAN WriteProtected;

}TAPE_GET_MEDIA_PARAMETERS;

struct{ // structure used by GET_TAPE_DRIVE_INFORMATION
BOOLEAN ECC;
BOOLEAN Compression;
BOOLEAN DataPadding;
BOOLEAN ReportSetmarks;
ULONG DefaultBlockSize;
ULONG MaximumBlockSize;
ULONG MinimumBlockSize;
ULONG MaximumPartitionCount;
ULONG FeaturesLow;
ULONG FeaturesHigh;
ULONG EOTWarningZoneSize;

}TAPE_GET_DRIVE_PARAMETERS;

The following code fragment illustrates a call to the GetTapeParameters routine:
DWORD rc;

rc = GetTapeParameters(
HANDLE hDevice,
DWORD dwOperation,
LPDWORD lpdwSize,
LPVOID lpParameters

);
if (rc)
{

printf("Error on GetTapeParameters\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

Windows 200x Device Driver

294 IBM Tape Device Drivers: Programming Reference

where hDevice is the open file handle, dwOperation is the type of information
requested (GET_TAPE_MEDIA_INFORMATION or
GET_TAPE_DRIVE_INFORMATION), and lpParameters is the address of the
returned data parameter structure.

If the function succeeds, the return value rc is ERROR_SUCCESS.

PrepareTape
The PrepareTape entry point is called to either prepare the tape for access or
removal. For example:
PrepareTape(
HANDLE hDevice,
DWORD dwOperation,
BOOL bImmediate
);

dwOperation is the type of operation requested.

The following types of operations and immediate values are supported:

TAPE_LOAD bImmediate TRUE or FALSE
TAPE_LOCK bImmediate FALSE
TAPE_UNLOAD bImmediate TRUE or FALSE
TAPE_UNLOCK bImmediate FALSE

EraseTape
The EraseTape entry point is called to erase all or a part of a tape. The erase is
performed from the current location. For example:
EraseTape(
HANDLE hDevice,
DWORD dwEraseType,
BOOL bImmediate
);

dwEraseType is the type of operation requested.

The following types of operations and immediate values are supported:

TAPE_ERASE_LONG bImmediate TRUE or FALSE

GetTapeStatus
The GetTapeStatus entry point is called to determine whether the tape device is
ready to process tape commands. For example:
GetTapeStatus(
HANDLE hDevice
);

hDevice is the handle to the device for which to get the device status.

DeviceIoControl
The DeviceIoControl function is described in the Microsoft Developer Network
(MSDN) Software Developer Kit (SDK) and Device Driver Developer Kit (DDK).

The DeviceIoControl function sends a control code directly to a specified device
driver, causing the corresponding device to perform the specified operation.

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 295

BOOL DeviceIoControl(
HANDLE hDevice, // handle to device of interest
DWORD dwIoControlCode, // control code of operation to perform
LPVOID lpInBuffer, // pointer to buffer to supply input data
DWORD nInBufferSize, // size of input buffer
LPVOID lpOutBuffer, // pointer to buffer to receive output data
DWORD nOutBufferSize, // size of output buffer
LPDWORD lpBytesReturned, // pointer to variable to receive output byte count
LPOVERLAPPED lpOverlapped // pointer to overlapped structure for \

asynchronous operation
);

Following is a list of the supported dwIoControlCode codes that are described in
the MSDN DDK and used through the DeviceIoControl API:

IOCTL_SCSI_PASS_THROUGH
tape and medium changer

IOCTL_SCSI_PASS_THROUGH_DIRECT
tape and medium changer

IOCTL_STORAGE_RESERVE
tape and medium changer

IOCTL_STORAGE_RELEASE
tape and medium changer

IOCTL_CHANGER_EXCHANGE_MEDIUM
medium changer not all changers

IOCTL_CHANGER_GET_ELEMENT_STATUS
medium changer if Bar Code Reader then VolTags supported

IOCTL_CHANGER_GET_PARAMETERS
medium changer

IOCTL_CHANGER_GET_PRODUCT_DATA
medium changer

IOCTL_CHANGER_GET_STATUS
medium changer

IOCTL_CHANGER_INITIALIZE_ELEMENT_STATUS
medium changer with range not supported by all changers

IOCTL_CHANGER_MOVE_MEDIUM
medium changer

IOCTL_CHANGER_SET_ACCESS
medium changer for IE Port only and not for all changers

IOCTL_CHANGER_SET_POSITION
medium changer only some devices support the transport object

An example of the use of SCSI Pass Through is contained in the sample code
SPTI.C in the DDK.

The function call DeviceIoControl is described in the SDK and examples of its use
are shown in the DDK.

Medium Changer IOCTLs
The Removable Storage Manager (RSM) must be stopped to use these ioctl
commands. RSM can be stopped from Computer Management (Local) —>Services
and Applications—>Services—>Removable Storage.

Windows 200x Device Driver

296 IBM Tape Device Drivers: Programming Reference

IOCTL Commands
Not all source or destination addresses, exchanges, moves, or operations are
allowed for a particular IBM Medium Changer. The user must issue an
IOCTL_CHANGER_GET_PARAMETER to determine the type of operations
allowed by a specific changer device. Further information on allowable commands
for a particular changer may be found in the IBM hardware reference for that
device. It is strongly recommended that the user have a copy of the hardware
reference before constructing any applications for the changer device

IOCTL_CHANGER_EXCHANGE_MEDIUM: The media from the source element
is moved to the first destination element, and the medium that occupied the first
destination element previously is moved to the second destination element (the
second destination element may be the same as the source) by sending an
ExchangeMedium (0xA6) SCSI command to the device. The input data is a
structure of CHANGER_EXCHANGE_MEDIUM. This command is not supported
by all devices.

IOCTL_CHANGER_GET_ELEMENT_STATUS: Returns the status of all elements
or of a specified number of elements of a particular type by sending a
ReadElementStatus (0xB8) SCSI command to the device. The input and output data
is a structure of CHANGER_ELEMENT_STATUS

IOCTL_CHANGER_GET_PARAMETERS: Returns the capabilities of the changer.
The output data is in a structure of GET_CHANGER_PARAMETERS.

IOCTL_CHANGER_GET_PRODUCT_DATA: Returns the product data for the
changer. The output data is in a structure of CHANGER_PRODUCT_DATA.

IOCTL_CHANGER_GET_STATUS: Returns the current status of the changer by
sending a TestUnitReady (0x00) SCSI command to the device.

IOCTL_CHANGER_INITIALIZE_ELEMENT_STATUS: Initializes the status of
all elements or a range of a particular element by sending an
InitializeElementStatus (0x07) or IntializeElementStatusWithRange (0xE7) SCSI
command to the device. The input data is a structure of
CHANGER_INITIALIZE_ELEMENT_STATUS.

IOCTL_CHANGER_MOVE_MEDIUM: Moves a piece of media from a source to
a destination by sending a MoveMedia (0xA5) SCSI command to the device. The
input data is a structure of CHANGER_MOVE_MEDIUM.

IOCTL_CHANGER_REINITIALIZE_TRANSPORT: Physically recalibrates a
transport element by sending a RezeroUnit (0x01) SCSI command to the device.
The input data is a structure of CHANGER_ELEMENT. This command is not
supported by all devices.

IOCTL_CHANGER_SET_ACCESS: Sets the access state of the changers IE port
by sending a PrevenAllowMediumRemoval (0x1E) SCSI command to the device.
The input data is a structure of CHANGER_SET_ACCESS.

IOCTL_CHANGER_SET_POSITION: Sets the changers robotic transport to a
specified address by sending a PositionToElemen (0x2B) SCSI command to the
device. The input data is a structure of CHANGER_SET_POSITION.

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 297

Vendor Specific (IBM) Device IOCTLs for DeviceIoControl
The following are descriptions of the IBM vendor-specific ioctl requests for tape
and changer.
/*

This macro is defined in ntddk.h and devioctl.h
#define CTL_CODE(DeviceType, Function, Method, Access) \

(((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method))
*/

The following ioctl commands are supported by the ibmtp.sys driver thru
DeviceIoControl:
/*
FILE_DEVICE_TAPE is defined in ntddk.h and devioctl.h
#define FILE_DEVICE_TAPE 0x0000001f
*/
#define IOCTL_TAPE_BASE FILE_DEVICE_TAPE
#define IOCTL_BASE 33792
#define LB_ACCESS FILE_READ_ACCESS | FILE_WRITE_ACCESS
#define M_MTI(x) CTL_CODE(IOCTL_BASE+2,x,METHOD_BUFFERED, LB_ACCESS)

#define IOCTL_TAPE_OBTAIN_SENSE CTL_CODE(IOCTL_TAPE_BASE, 0x0819,
METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_TAPE_OBTAIN_VERSION CTL_CODE(IOCTL_TAPE_BASE, 0x081a,
METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_TAPE_LOG_SELECT CTL_CODE(IOCTL_TAPE_BASE, 0x081c,
METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)

#define IOCTL_TAPE_LOG_SENSE CTL_CODE(IOCTL_TAPE_BASE, 0x081d,
METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_TAPE_LOG_SENSE10 CTL_CODE(IOCTL_TAPE_BASE, 0x0833,
METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_TAPE_REPORT_MEDIA_DENSITY CTL_CODE(IOCTL_TAPE_BASE, 0x081e,
METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_TAPE_OBTAIN_MTDEVICE (M_MTI(16))
#define IOCTL_CREATE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0826, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_QUERY_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0825, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_SET_ACTIVE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0827, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_QUERY_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0823, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_SET_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0824, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_ALLOW_DATA_OVERWRITE CTL_CODE(IOCTL_TAPE_BASE, 0x0828, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_SET_PEW_SIZE

CTL_CODE(IOCTL_TAPE_BASE, 0x082C, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_QUERY_PEW_SIZE

CTL_CODE(IOCTL_TAPE_BASE, 0x082B, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_VERIFY_TAPE_DATA

CTL_CODE(IOCTL_TAPE_BASE, 0x082A, METHOD_BUFFERED, FILE_READ_ACCESS)

IOCTL_TAPE_OBTAIN_SENSE
Issue this command after an error occurs to obtain sense information associated
with the most recent error. To guarantee that the application can obtain sense
information associated with an error, the application should issue this command
before issuing any other commands to the device. Subsequent operations (other
than IOCTL_TAPE_OBTAIN_SENSE) reset the sense data field before executing the
operation.

This ioctl is only available for the tape path.

Windows 200x Device Driver

298 IBM Tape Device Drivers: Programming Reference

|

|
|

|
|
|
|
|
|
|
|

The following output structure is filled in by the IOCTL_TAPE_OBTAIN_SENSE
command passed by the caller:
#define MAG_SENSE_BUFFER_SIZE 96 /* Default request sense buffer size for \

Windows 200x */

typedef struct _TAPE_OBTAIN_SENSE {
ULONG SenseDataLength;
// The number of bytes of valid sense data.
// Will be zero if no error with sense data has occurred.
// The only sense data available is that of the last error.
CHAR SenseData[MAG_SENSE_BUFFER_SIZE];
} TAPE_OBTAIN_SENSE, *PTAPE_OBTAIN_SENSE;

An example of the IOCTL_TAPE_OBTAIN_SENSE command is:
DWORD cb;
TAPE_OBTAIN_SENSE sense_data;
DeviceIoControl(hDevice,

IOCTL_TAPE_OBTAIN_SENSE,
NULL,
0,
&sense_data,
(long)sizeof(TAPE_OBTAIN_SENSE),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_OBTAIN_VERSION
Issue this command to obtain the version of the device driver. It is in the form of a
null terminated string.

This ioctl is only for the tape path.

The following output structure is filled in by the IOCTL_TAPE_OBTAIN_VERSION
command:
#define MAX_DRIVER_VERSIONID_LENGTH 12

typedef struct _TAPE_OBTAIN_VERSION {
CHAR VersionId[MAX_DRIVER_VERSIONID_LENGTH];
} TAPE_OBTAIN_VERSION, *PTAPE_OBTAIN_VERSION;

An example of the IOCTL_TAPE_OBTAIN_VERSION command is:
DWORD cb;
TAPE_OBTAIN_VERSION code_version;
DeviceIoControl(hDevice,

IOCTL_TAPE_OBTAIN_VERSION,
NULL,
0,
&code_version,
(long)sizeof(TAPE_OBTAIN_VERSION),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_LOG_SELECT
This command resets all log pages that can be reset on the device to their default
values. This ioctl is only for the tape path.

An example of this command to reset all log pages follows:
DWORD cb;
DeviceIoControl(hDevice,

IOCTL_TAPE_LOG_SELECT,
NULL,
0,

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 299

NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_LOG_SENSE
Issue this command to obtain the log data of the requested log page from IBM
Magstar tape device. The data returned is formatted according to the IBM Magstar
hardware reference.

This ioctl is only for the tape path.

The following input/output structure is used by the IOCTL_TAPE_LOG_SENSE
command:
#define MAX_LOG_SENSE 1024 // Maximum number of bytes the command will return
typedef struct _TAPE_LOG_SENSE_PARAMETERS{

UCHAR PageCode; // The requested log page code
UCHAR PC; // PC = 0 for maximum values, 1 for current value, 3 for power-on values
UCHAR PageLength[2]; /* Length of returned data, filled in by the command */
UCHAR LogData[MAX_LOG_SENSE]; /* Log data, filled in by the command */

} TAPE_LOG_SENSE_PARAMETERS, *PTAPE_LOG_SENSE_PARAMETERS;

An example of the IOCTL_TAPE_LOG_SENSE COMMAND is:
DWORD cb;
TAPE_LOG_SENSE_PARAMETERS logsense;
logsense.PageCode=0;
logsense.PC = 1;

DeviceIoControl(hDevice,
IOCTL_TAPE_LOG_SENSE,
&logsense,
(long)sizeof(TAPE_LOG_SENSE_PARAMETERS,
&logsense,
(long)sizeof(TAPE_LOG_SENSE_PARAMETERS,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_LOG_SENSE10
Issue this command to obtain the log data of the requested log page/subpage from
IBM Magstar tape device. The data returned is formatted according to the IBM
Magstar hardware reference. This ioctl is only for the tape path.

The following input/output structure is used by the IOCTL_TAPE_LOG_SENSE10
command:
#define MAX_LOG_SENSE 1024 // Maximum number of bytes the command will return
typedef struct _TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE{

UCHAR PageCode; /* [IN] Log sense page */
UCHAR SubPageCode; /* [IN] Log sense subpage */
UCHAR PC; /* [IN] PC bit to be consistent with

previous Log Sense IOCTL*/
UCHAR reserved[2]; /* unused */
ULONG PageLength; /* [OUT] number of valid bytes in data

(log_page_header_size+page_length)*/
ULONG parm_pointer; /* [IN] specific parameter number at which the data begins */
CHAR LogData[MAX_LOG_SENSE_DATA]; /* [OUT] log sense data */

} TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE, *PTAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE;
An example of the IOCTL_TAPE_LOG_SENSE10 COMMAND is:
DWORD cb;
TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE logsense;
logsense.PageCode=0x10;
logsense.PageCode=0x01;
logsense.PC = 1;

Windows 200x Device Driver

300 IBM Tape Device Drivers: Programming Reference

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DeviceIoControl(hDevice,
IOCTL_TAPE_LOG_SENSE10,
&logsense, (long)sizeof(TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE,
&logsense, (long)sizeof(TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE,
&cb, (LPOVERLAPPED) NULL);

IOCTL_TAPE_REPORT_MEDIA_DENSITY
Issue this command to obtain the media density information on the loaded media
in the drive. If there is no media load, the command fails. This ioctl is only for the
tape path.

The following output structure is filled in by the
IOCTL_TAPE_REPORT_MEDIA_DENSITY command:
typedef struct_TAPE_REPORT_DENSITY{
ULONG PrimaryDensityCode; /* Primary Density Code */
ULONG SecondaryDensityCode; /* Secondary Density Code */
BOOLEAN WriteOk; /* 0 = does not support writing in this format */

/* 1 = support writing in this format */
ULONG BitsPerMM; /* Bits Per mm */
ULONG MediaWidth; /* Media Width */
ULONG Tracks; /* Tracks */
ULONG Capacity; /* Capacity in MegaBytes */

} TAPE_REPORT_DENSITY, *PTAPE_REPORT_DENSITY;

An example of the IOCTL_TAPE_REPORT_MEDIA_DENSITY command is:
DWORD cb;
TAPE_REPORT_DENSITY tape_reportden;

DeviceIoControl (hDevice,
IOCTL_TAPE_REPORT_MEDIA_DENSITY,
NULL,
0,
&tape_reportden,
(long)sizeof(TAPE_REPORT_DENSITY),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_OBTAIN_MTDEVICE
Issue this command to obtain the device number of a 3590 TotalStorage device in
an IBM 3494 Enterprise Tape Library. An error is returned if it is issued against a
3570 drive.

The following output structure is filled in by the
IOCTL_TAPE_OBTAIN_MTDEVICE command:

typedef ULONG TAPE_OBTAIN_MTDEVICE, *PTAPE_OBTAIN_MTDEVICE;

An example of the IOCTL_TAPE_OBTAIN_MTDEVICE command is:
int *rc_ptr
DWORD cb;
TAPE_OBTAIN_MTDEVICE mt_device;

*rc_ptr = DeviceIoControl(gp->ddHandle0,
IOCTL_TAPE_OBTAIN_MTDEVICE,
NULL,
0,
&mt_device,
(long)sizeof(TAPE_OBTAIN_MTDEVICE),
&cb,
(LPOVERLAPPED) NULL);

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 301

|
|
|
|
|

|

if(*rc_ptr)
printf(fp, "\nntutil MTDevice Info : %x\n\n", mt_device);

else
/* Error handling code */

IOCTL_TAPE_GET_DENSITY
The IOCTL code for IOCTL_TAPE_GET_DENSITY is defined as follows:
#define IOCTL_TAPE_GET_DENSITY \
CTL_CODE(IOCTL_TAPE_BASE, 0x000c, METHOD_BUFFERED, \
FILE_READ_ACCESS | FILE_WRITE_ACCESS).

The IOCTL reports density for supported devices using the following structure:
typedef struct _TAPE_DENSITY
{

UCHAR ucDensityCode;
UCHAR ucDefaultDensity;
UCHAR ucPendingDensity;

} TAPE_DENSITY, *PTAPE_DENSITY;

An example of the IOCTL_TAPE_GET_DENSITY command is
TAPE_DENSITY tape_density = {0};

rc = DeviceIoControl(hDevice,
IOCTL_TAPE_GET_DENSITY,
NULL,
0,
&tape_density,
sizeof(TAPE_DENSITY),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_SET_DENSITY
The IOCTL code for IOCTL_TAPE_SET_DENSITY is defined as follows:
#define IOCTL_TAPE_SET_DENSITY \
CTL_CODE(IOCTL_TAPE_BASE, 0x000d, METHOD_BUFFERED, \
FILE_READ_ACCESS | FILE_WRITE_ACCESS)

The IOCTL sets density for supported devices using the following structure:
typedef struct _TAPE_DENSITY
{

UCHAR ucDensityCode;
UCHAR ucDefaultDensity;
UCHAR ucPendingDensity;

} TAPE_DENSITY, *PTAPE_DENSITY;

ucDensityCode is ignored. ucDefaultDensity and ucPendingDensity are set using
the tape drive’s mode page 0x25. Caution should be taken when issuing this
IOCTL. An incorrect tape density may lead to data corruption.

An example of the IOCTL_TAPE_SET_DENSITY command is
TAPE_DENSITY tape_density;

// Modify fields of tape_density. For details, see the SCSI specification
// for your hardware.

rc = DeviceIoControl(hDevice,
IOCTL_TAPE_SET_DENSITY,
&tape_density,
sizeof(TAPE_DENSITY),

Windows 200x Device Driver

302 IBM Tape Device Drivers: Programming Reference

NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_GET_ENCRYPTION_STATE
This IOCTL command queries the drive's encryption method and state.

The IOCTL code for IOCTL_TAPE_GET_ENCRYPTION_STATE is defined as
follows:
#define IOCTL_TAPE_GET_ENCRYPTION_STATE CTL_CODE(IOCTL_TAPE_BASE, 0x0820,

METHOD_BUFFERED, FILE_READ_ACCESS)

The IOCTL gets encryption states for supported devices using the following
structure:
typedef struct _ENCRYPTION_STATUS
{

UCHAR ucEncryptionCapable; /* (1)Set this field as a boolean based on
the capability of the drive */

UCHAR ucEncryptionMethod; /* (2)Set this field to one of the
defines METHOD_* below */

UCHAR ucEncryptionState; /* (3)Set this field to one of the
#defines STATE_* below */

UCHAR aucReserved[13];
} ENCRYPTION_STATUS, *PENCRYPTION_STATUS;

#defines for METHOD:
#define ENCRYPTION_METHOD_NONE 0 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_METHOD_LIBRARY 1 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_ METHOD_SYSTEM 2 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_ METHOD_APPLICATION 3 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_ METHOD_CUSTOM 4 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_ METHOD_UNKNOWN 5 /* Only used in

GET_ENCRYPTION_STATE */

#defines for STATE:
#define ENCRYPTION_STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */
#define ENCRYPTION_STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define ENCRYPTION_STATE_NA 2 /* Only used in GET_ENCRYPTION_STATE*/

An example of the IOCTL_TAPE_GET_ENCRYPTION_STATE command is:
ENCRYPTION_STATUS scEncryptStat;
DeviceIoControl(hDevice,

IOCTL_TAPE_GET_ENCRYPTION_STATE,
&scEncryptStat,
sizeof(ENCRYPTION_STATUS),
&scEncryptStat,
sizeof(ENCRYPTION_STATUS),
,&cb
(LPOVERLAPPED) NULL);

IOCTL_TAPE_SET_ENCRYPTION_STATE
This IOCTL command only allows set encryption state for application-managed
encryption.

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 303

Note: On unload, some drive settings may be reset to default. To set the
encryption state, the application should issue this IOCTL after a tape is
loaded and at BOP.

The data structure used for this IOCTL is the same as for
IOCTL_GET_ENCRYPTION_STATE:
#define IOCTL_TAPE_SET_ENCRYPTION_STATE CTL_CODE(IOCTL_TAPE_BASE, 0x0821,

METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)

An example of the IOCTL_TAPE_SET_ENCRYPTION_STATE command is:
ENCRYPTION_STATUS scEncryptStat;
DeviceIoControl(hDevice,

IOCTL_TAPE_SET_ENCRYPTION_STATE,
&scEncryptStat,
sizeof(ENCRYPTION_STATUS),
,&scEncryptStat
sizeof(ENCRYPTION_STATUS),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_SET_DATA_KEY
This IOCTL command only allows you to set the data key for application-managed
encryption.

The IOCTL sets data keys for supported devices using the following structure:
#define IOCTL_TAPE_SET_DATA_KEY CTL_CODE(IOCTL_TAPE_BASE, 0x0822,

METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)

#define DATA_KEY_INDEX_LENGTH 12
#define DATA_KEY_RESERVED1_LENGTH 15
#define DATA_KEY_LENGTH 32
#define DATA_KEY_RESERVED2_LENGTH 48
typedef struct _DATA_KEY
{

UCHAR aucDataKeyIndex[DATA_KEY_INDEX_LENGTH];
UCHAR ucDataKeyIndexLength;
UCHAR aucReserved1[DATA_KEY_RESERVED1_LENGTH];
UCHAR aucDataKey[DATA_KEY_LENGTH];
UCHAR aucReserved2[DATA_KEY_RESERVED2_LENGTH];

} DATA_KEY, *PDATA_KEY;

An example of the IOCTL_TAPE_SET_DATA_KEY command is:
DATA_KEY scDataKey;
/* fill in your data key and data key length, then issue DeviceIoControl */
DeviceIoControl(hDevice,

IOCTL_TAPE_SET_DATA_KEY,
&scDataKey,
sizeof(DATA_KEY),
&scDataKey,
sizeof(DATA_KEY),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_CREATE_PARTITION
This command is used to create one or more partitions on the tape. The tape must
be at BOT (partition 0 logical block id 0) prior to issuing the command or it will
fail. The application should either issue this IOCTL_CREATE_PARTITION after a
tape has been initially loaded or issue the IOCTL_SET_ACTIVE_PARTITION with
the partition_number and logical_clock_id fields set to 0 first.

Windows 200x Device Driver

304 IBM Tape Device Drivers: Programming Reference

The structure used to create partitions is:
#define IOCTL_CREATE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0826,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _TAPE_PARTITION{

UCHAR type; /* Type of tape partition to create */
UCHAR number_of_partitions; /* Number of partitions to create */
UCHAR size_unit; /* IDP size unit of partition sizes below */
USHORT size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
/* Size can not be 0 and one partition */
/* size must be 0xFFFF to use the */
/* remaining capacity on the tape. */

UCHAR partition_method; /* partitioning type for 3592 E07 and later generation */
char reserved [31];

} TAPE_PARTITION, *PTAPE_PARTITION;

An example of the IOCTL_CREATE_PARTITION command is:
DWORD cb;
TAPE_PARTITION tape_partition

...
DeviceIoControl(gp->ddHandle0,

IOCTL_CREATE_PARTITION,
&tape_partition,
(long)sizeof(TAPE_PARTITION),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_QUERY_PARTITION
This command returns partition information for the current loaded tape.

The following output structure is filled in by the IOCTL_QUERY_PARTITION
command:
#define IOCTL_QUERY_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0825,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _QUERY_PARTITION{

UCHAR max_partitions; /* Max number of supported partitions */
UCHAR active_partition; /* current active partition on tape */
UCHAR number_of_partitions; /* Number of partitions from 1 to max */
UCHAR size_unit; /* Size unit of partition sizes below */
USHORT size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
UCHAR partition_method; /* partitioning type for 3592 E07 and later generation */
char reserved [31];

} QUERY_PARTITION, *PQUERY_PARTITION;

An example of the IOCTL_QUERY_PARTITION command is:
DWORD cb;
QUERY_PARTITION tape_query_partition;
DeviceIoControl(gp->ddHandle0,

IOCTL_QUERY_PARTITION,
NULL,
0,
&tape_query_partition,
(long)sizeof(QUERY_PARTITION),
&cb,
(LPOVERLAPPED) NULL);

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 305

IOCTL_SET_ACTIVE_PARTITION
This command is used to set the current active partition being used on tape and
locate to a specific logical block id within the partition. If the logical block id is 0,
the tape will be positioned at BOP. If the partition number specified is 0 along with
a logical block id 0, the tape will be positioned at both BOP and BOT.

The structure for IOCTL_SET_ACTIVE_PARTITION command is:
#define IOCTL_SET_ACTIVE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0827,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _SET_ACTIVE_PARTITION{

UCHAR partition_number; /* Partition number 0-n to change to */
ULONGLONG logical_block_id; /* Blockid to locate to within partition */
char reserved[32];

} SET_ACTIVE_PARTITION, *PSET_ACTIVE_PARTITION;

An example of the IOCTL_SET_ACTIVE_PARTITION command is:
DWORD cb;
SET_ACTIVE_PARTITION set_partition;
...
DeviceIoControl(gp->ddHandle0,

IOCTL_SET_ACTIVE_PARTITION,
&set_partition,
(long)sizeof(SET_ACTIVE_PARTITION),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_QUERY_DATA_SAFE_MODE
This command reports if the Data Safe Mode is enabled or disabled.

The following output structure is filled in by the
IOCTL_QUERY_DATA_SAFE_MODE command:
#define IOCTL_QUERY_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0823,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _DATA_SAFE_MODE{

ULONG value;
} DATA_SAFE_MODE, *PDATA_SAFE_MODE;

An example of the IOCTL_QUERY_DATA_SAFE_MODE command is:
DWORD cb;
DATA_SAFE_MODE tapeDataSafeMode;
DeviceIoControl(gp->ddHandle0,

IOCTL_QUERY_DATA_SAFE_MODE,
NULL,
0,
&tapeDataSafeMode,
(long)sizeof(DATA_SAFE_MODE),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_SET_DATA_SAFE_MODE
This command enables or disables Data Safe Mode.

The structure used to enable or disable Data Safe Mode is the same from
IOCTL_QUERY_DATA_SAFE_MODE.

An example of the IOCTL_SET_DATA_SAFE_MODE command is:

Windows 200x Device Driver

306 IBM Tape Device Drivers: Programming Reference

#define IOCTL_SET_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0824,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
DATA_SAFE_MODE tapeDataSafeMode;
...
DeviceIoControl(gp->ddHandle0,

IOCTL_SET_DATA_SAFE_MODE,
&tapeDataSafeMode,
(long)sizeof(DATA_SAFE_MODE),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_ALLOW_DATA_OVERWRITE
This command allows previously written data on the tape to be overwritten when
append only mode is enabled on the drive with either a write type command or to
allow a format command on the IOCTL_CREATE_PARTITION. Prior to issuing this
IOCTL the application must locate to the desired partition number and logical
block id within the partition where the data overwrite or format should occur.

The data structure used for IOCTL_ALLOW_DATA_OVERWRITE to enable or
disable is:
#define IOCTL_ALLOW_DATA_OVERWRITE CTL_CODE(IOCTL_TAPE_BASE, 0x0828,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct ALLOW_DATA_OVERWRITE{

UCHAR partition_number; /* Partition number 0-n to overwrite */
ULONGULONG logical_block_id; /* Blockid to overwrite to within partition */
UCHAR allow_format_overwrite; /* allow format if in data safe mode */
UCHAR reserved[32];

} ALLOW_DATA_OVERWRITE, *PALLOW_DATA_OVERWRITE;

An example of the IOCTL_ALLOW_DATA_OVERWRITE command is:
ALLOW_DATA_OVERWRITE tapeAllowDataOverwrite;
...
DeviceIoControl(gp->ddHandle0,

IOCTL_ALLOW_DATA_OVERWRITE,
&tapeAllowDataOverwrite,
(long)sizeof(ALLOW_DATA_OVERWRITE),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_READ_TAPE_POSITION
This command returns Position data in either the short, long, or extended form.
The type of data to return is specified by setting the data_format field to either
RP_SHORT_FORM, RP_LONG_FORM, or RP_EXTENDED_FORM.

The data structures used with this IOCTL are:
#define IOCTL_READ_TAPE_POSITION CTL_CODE(IOCTL_TAPE_BASE, 0x0829,
METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define RP_SHORT_FORM 0x00
#define RP_LONG_FORM 0x06
#define RP_EXTENDED_FORM 0x08

typedef struct _SHORT_DATA_FORMAT {
UCHAR bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 307

rsvd :1,
lolu:1, /* 1 means the first and last logical obj position fields are unknown */
perr: 1, /* 1 means the position fields have overflowed and cannot be reported */
bpew :1; /* beyond programmable early warning */

UCHAR active_partition; /* current active partition */
UCHAR reserved[2];
UCHAR first_logical_obj_position[4]; /* current logical object position */
UCHAR last_logical_obj_position[4]; /* next logical object to be transferred to tape */
UCHAR num_buffer_logical_obj[4]; /* number of logical objects in buffer */
UCHAR num_buffer_bytes[4]; /* number of bytes in buffer */
UCHAR reserved1; /* instead of the commented reserved1 */

} SHORT_DATA_FORMAT, *PSHORT_DATA_FORMAT;

typedef struct _LONG_DATA_FORMAT {
UCHAR bop:1, /* beginning of partition */

eop:1, /* end of partition */
rsvd1:2,
mpu:1, /* 1 means the logical file id field in unknown */
lonu:1,/* 1 means either the partition number or logical obj number field

are unknown */
rsvd2:1,
bpew :1;/* beyond programmable early warning */

CHAR reserved[6];
UCHAR active_partition; /* current active partition */
UCHAR logical_obj_number[8];/* current logical object position */
UCHAR logical_file_id[8]; /* number of filemarks from bop and

current logical position */
UCHAR obsolete[8];

}LONG_DATA_FORMAT, *PLONG_DATA_FORMAT;

typedef struct _EXTENDED_DATA_FORMAT {
UCHAR bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */
rsvd :1,
lolu:1, /* 1 means the first and last logical obj position fields are unknown */
perr: 1,/* 1 means the position fields have overflowed and can not be reported */
bpew :1;/* beyond programmable early warning */

UCHAR active_partition; /* current active partition */
UCHAR additional_length[2];
UCHAR num_buffer_logical_obj[4]; /* number of logical objects in buffer */
UCHAR first_logical_obj_position[8];/* current logical object position */
UCHAR last_logical_obj_position[8]; /* next logical object to be transferred to tape */
UCHAR num_buffer_bytes[8]; /* number of bytes in buffer */
UCHAR reserved;

} EXTENDED_DATA_FORMAT, *PEXTENDED_DATA_FORMAT;

typedef struct READ_TAPE_POSITION{
UCHAR data_format; /* Specifies the return data format either short, long or extended*/
union
{

SHORT_DATA_FORMAT rp_short;
LONG_DATA_FORMAT rp_long;
EXTENDED_DATA_FORMAT rp_extended;
UCHAR reserved[64];

} rp_data;
} READ_TAPE_POSITION, *PREAD_TAPE_POSITION;

An example of the READ_TAPE_POSITION command is:
DWORD cb;
READ_TAPE_POSITION tapePosition;
*rc_ptr = DeviceIoControl(gp->ddHandle0,

IOCTL_READ_TAPE_POSITION,
&tapePosition,
(long)sizeof(READ_TAPE_POSITION),

Windows 200x Device Driver

308 IBM Tape Device Drivers: Programming Reference

&tapePosition,
(long)sizeof(READ_TAPE_POSITION),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_SET_TAPE_POSITION
This command is used to position the tape in the current active partition to either
a logical block id or logical filemark. The logical_id_type field in the ioctl structure
specifies either a logical block or logical filemark.

The data structure used with this IOCTL is:
#define IOCTL_SET_TAPE_POSITION_LOCATE16 CTL_CODE(IOCTL_TAPE_BASE, 0x0830,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define LOGICAL_ID_BLOCK_TYPE 0x00
#define LOGICAL_ID_FILE_TYPE 0x01

typedef struct _SET_TAPE_POSITION{
UCHAR logical_id_type; /* Block or file as defined above */
ULONGLONG logical_id; /* logical object or logical file to position to */
UCHAR reserved[32];

} SET_TAPE_POSITION, *PSET_TAPE_POSITION;

An example of the SET_TAPE_POSITION command is:
DWORD cb;
SET_TAPE_POSITION tapePosition;

*rc_ptr = DeviceIoControl(gp->ddHandle0,
IOCTL_SET_TAPE_POSITION_LOCATE16,
&tapePosition,
(long)sizeof(SET_TAPE_POSITION)
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_QUERY_LBP
This command returns logical block protection information. The following output
structure is filled in by the IOCTL_QUERY_LBP command:
#define IOCTL_QUERY_LBP CTL_CODE(IOCTL_TAPE_BASE, 0x0831,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _LOGICAL_BLOCK_PROTECTION {

UCHAR lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
UCHAR lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

UCHAR lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
UCHAR lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
UCHAR lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
UCHAR rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
UCHAR reserved[26];

}LOGICAL_BLOCK_PROTECTION, *PLOGICAL_BLOCK_PROTECTION;

An example of the IOCTL_QUERY_LBP command is:
*rc_ptr = DeviceIoControl(gp->ddHandle0,

IOCTL_QUERY_LBP,
NULL,
0,
&tape_query_LBP,

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 309

(long)sizeof(LOGICAL_BLOCK_PROTECTION),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_SET_LBP
This command sets logical block protection information. The following input
structure is sent to the IOCTL_SET_LBP command:
#define IOCTL_SET_LBP CTL_CODE(IOCTL_TAPE_BASE, 0x0832,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _LOGICAL_BLOCK_PROTECTION {

UCHAR lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
UCHAR lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

UCHAR lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
UCHAR lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
UCHAR lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
UCHAR rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
UCHAR reserved[26];

}LOGICAL_BLOCK_PROTECTION, *PLOGICAL_BLOCK_PROTECTION;

An example of the IOCTL_SET_LBP command is:
*rc_ptr = DeviceIoControl(gp->ddHandle0,
IOCTL_SET_LBP,
&tape_set_LBP,
(long)sizeof(LOGICAL_BLOCK_PROTECTION),
NULL,
0,
&cb,
LPOVERLAPPED) NULL);

IOCTL_SET_PEW_SIZE
This command is used to set Programmable Early Warning size.
#define IOCTL_SET_PEW_SIZE

CTL_CODE(IOCTL_TAPE_BASE, 0x082C, METHOD_BUFFERED, FILE_READ_ACCESS)

The structure used to set PEW size is:
typedef struct _PEW_SIZE{

USHORT value;
} PEW_SIZE, *PPEW_SIZE;

An example of the IOCTL_SET_PEW_SIZE command is:
DWORD cb;
PEW_SIZE pew_size;
...
DeviceIoControl(gp->ddHandle0,
IOCTL_SET_PEW_SIZE,
&pew_size, (long)sizeof(PEW_SIZE),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_QUERY_PEW_SIZE
This command is used to query Programmable Early Warning size.
#define IOCTL_QUERY_PEW_SIZE

CTL_CODE(IOCTL_TAPE_BASE, 0x082B, METHOD_BUFFERED, FILE_READ_ACCESS)

Windows 200x Device Driver

310 IBM Tape Device Drivers: Programming Reference

|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

The structure used to query PEW size is:
typedef struct _PEW_SIZE{

USHORT value;
} PEW_SIZE, *PPEW_SIZE;

An example of the IOCTL_QUERY_PEW_SIZE command is:
DWORD cb;
PEW_SIZE pew_size;
...
DeviceIoControl(gp->ddHandle0,
IOCTL_QUERY_PEW_SIZE,
NULL,
0,
&pew_size,
(long)sizeof(PEW_SIZE),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_VERIFY_TAPE_DATA
This command is used to verify tape data, through the drive's error detection and
correction hardware to determine whether it can be recovered from the tape or
whether the protection information is present and validates correctly on logical
block on the medium. It returns a failure or a success.
#define IOCTL_VERIFY_TAPE_DATA

CTL_CODE(IOCTL_TAPE_BASE, 0x082A, METHOD_BUFFERED, FILE_READ_ACCESS)

The structure used to verify tape data is:
typedef struct _VERIFY_DATA {

UCHAR reserved : 2; /* Reserved */
UCHAR vte: 1; /* [IN] verify to end-of-data */
UCHAR vlbpm: 1; /* [IN] verify logical block protection information */
UCHAR vbf: 1; /* [IN] verify by filemarks */
UCHAR immed: 1; /* [IN] return SCSI status immediately */
UCHAR bytcmp: 1; /* No use currently */
UCHAR fixed: 1; /* [IN] set Fixed bit to verify the length of each logical block */
UCHAR reseved[15];
ULONG verify_length; /* [IN] amount of data to be verified */

}VERIFY_DATA, *PVERIFY_DATA;

An example of the IOCTL_VERIFY_DATA command is:
DWORD cb;
VERIFY_DATA verify_data;
...
DeviceIoControl(gp->ddHandle0,
IOCTL_VERIFY_TAPE_DATA,
&verify_data,
sizeof(VERIFY_DATA),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_CHANGER_OBTAIN_SENSE
Issue this command after an error occurs to obtain sense information associated
with the most recent error. To guarantee that the application can obtain sense
information associated with an error, the application should issue this command
before issuing any other commands to the device. Subsequent operations (other
than IOCTL_CHANGER_OBTAIN_SENSE) reset the sense data field before
executing the operation.

This ioctl is only available for the changer path.

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 311

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

#define IOCTL_CHANGER_BASE FILE_DEVICE_CHANGER
#define IOCTL_CHANGER_OBTAIN_SENSE

CTL_CODE(IOCTL_CHANGER_BASE, 0x0819, METHOD_BUFFERED, FILE_READ_ACCESS)

The following output structure is filled in by the
IOCTL_CHANGER_OBTAIN_SENSE command passed by the caller:
#define MAG_SENSE_BUFFER_SIZE 96 /* Default request sense buffer size for \
Windows 200x */
typedef struct _CHANGER_OBTAIN_SENSE {
ULONG SenseDataLength; // The number of bytes of valid sense data.

// Will be zero if no error with sense data has occurred.
// The only sense data available is that of the last error.

CHAR SenseData[MAG_SENSE_BUFFER_SIZE];
} CHANGER_OBTAIN_SENSE, *PCHANGER_OBTAIN_SENSE;

An example of the IOCTL_CHANGER_OBTAIN_SENSE command is:
DWORD cb;
CHANGER_OBTAIN_SENSE sense_data;
DeviceIoControl(hDevice,
IOCTL_CHANGER_OBTAIN_SENSE,
NULL,
0,
&sense_data,
(long)sizeof(CHANGER_OBTAIN_SENSE),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_MODE_SENSE
This command is used to get Mode Sense Page/Subpage.
/**************************** GENERIC SCSI IOCTLS ****************************/
#define IOCTL_IBM_BASE ((’IBM’ << 8) | FILE_DEVICE_SCSI)

#define DEFINE_IBM_IOCTL(x) CTL_CODE(IOCTL_IBM_BASE, x, METHOD_BUFFERED, \
FILE_READ_ACCESS | FILE_WRITE_ACCESS)

#define IOCTL_MODE_SENSE DEFINE_IBM_IOCTL(0x003)

The structure used for this IOCTL is:
typedef struct _MODE_SENSE_PARAMETERS
{

UCHAR page_code; /* [IN] mode sense page code */
UCHAR subpage_code; /* [IN] mode sense subpage code */
UCHAR reserved[6];
UCHAR cmd_code; /* [OUT] SCSI Command Code: this field is set with */

/* SCSI command code which the device responded. */
/* x’5A’ = Mode Sense (10) */
/* x’1A’ = Mode Sense (6) */

CHAR data[MAX_MODESENSEPAGE]; /* [OUT] whole mode sense data include header,
block descriptor and page */

} MODE_SENSE_PARAMETERS, *PMODE_SENSE_PARAMETERS;

An example of the IOCTL_MODE_SENSE command is:
DWORD cb;
MODE_SENSE_PARAMETERS mode_sense;
...
DeviceIoControl(gp->ddHandle0,
IOCTL_MODE_SENSE,
&mode_sense,
sizeof(MODE_SENSE_PARAMETERS),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

Windows 200x Device Driver

312 IBM Tape Device Drivers: Programming Reference

|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

Variable and Fixed Block Read Write Processing
In Windows 200x, tape APIs can be configured to manipulate tapes that use either
fixed block size or variable block size.

If variable block size is desired, the block size must be set to zero. The
SetTapeParameters function must be called specifying the
SET_TAPE_MEDIA_INFORMATION operation. The function requires the use of a
TAPE_SET_MEDIA_PARAMETERS structure. The BlockSize member of the
structure must be set to the desired block size. Any block size other than 0 sets the
media parameters to fixed block size. The size of the block will be equal to the
BlockSize member.

In fixed block mode, the size of all data buffers used for reading and writing must
be a multiple of the block size. To determine the fixed block size, the
GetTapeParameters function must be used. Specifying the
GET_TAPE_MEDIA_INFORMATION operation yields a
TAPE_GET_MEDIA_PARAMETERS structure. The BlockSize member of this
structure reports the block size of the tape. The size of buffers used in read and
write operations must be a multiple of the block size. This mode allows multiple
blocks to be transferred in a single operation. In fixed block mode, transfer of odd
block sizes (for example, 999 bytes) are not supported.

When reading or writing variable sized blocks, the operation may not exceed the
maximum transfer length of the Host Bus Adapter. This length is the length of
each transfer page (typically 4K) times the number of transfer pages (the
scatter-gather variable, typically 16-17). Thus the typical maximum transfer length
for variable sized transfers is 64K. This may be modified by changing the
scatter-gather variable in the system registry, but this is not recommended because it
uses up scarce system resources.

Reading a tape containing variable sized blocks can be accomplished even without
knowing what size the blocks are. If a buffer is large enough to read the data in a
block, then the data is read without any errors. If the buffer is larger than a block,
then only data in a single block is read and the tape is advanced to the next block.

The size of the block is returned by the read operation in the *pBytesRead
parameter. If, on the other hand, a data buffer is too small to contain all of the data
in a block, then a couple of things occur. First, the data buffer contains data from
the tape, but the read operation fails and GetLastError returns
ERROR_MORE_DATA. This error value indicates that there is more data in the
block to be read. Second, the tape is advanced to the next block. To reread the
previous block, the tape must be repositioned to the desired block and a larger
buffer must be specified. It is best to specify as large a buffer as possible so that
this does not occur.

If a tape has fixed size blocks, but the tape media parameters are set to variable
block size, then no assumptions are made regarding the size of the blocks on the
tape. Each read operation behaves as described above. The size of the blocks on the
tape are treated as variable, but happen to be the same size. If a tape has variable
size blocks, but the tape media parameters are set to fixed block size, then the size
of all blocks on the tape are expected to be the same fixed size. Reading a block of
a tape in this situation fails and GetLastError returns
ERROR_INVALID_BLOCK_LENGTH. The only exception to this is if the block size
in the media parameters is the same as the size of the variable block and the size
of the read buffer happens to be a multiple of the size of the variable block.

Windows 200x Device Driver

Chapter 6. Windows 200x Programming Interface 313

|

If ReadFile encounters a tapemark, the data up to the tapemark is read and the
function fails. (The GetLastError function returns an error code indicating that a
tapemark was encountered.) The tape is positioned past the tapemark, and an
application can call ReadFile again to continue reading.

Windows 200x Device Driver

314 IBM Tape Device Drivers: Programming Reference

Event Log
The Magstar or ibmtpxxx, ibmcgxxx, and Magchgr device drivers log certain data
to the Event Log when exceptions are encountered.

To interpret this event data, the user needs to be familiar with the following
components:
v Microsoft Event Viewer
v The SDK and DDK components from the Microsoft Development Network

(MSDN)
v Magstar and Magstar MP hardware terminology
v SCSI terminology

Several bytes of "Event Detail" data are logged under Source = Magstar or
Magchgr (for Windows NT), or under Source = ibmtpxxx or ibmcgxxx (for
Windows 2000; Windows Server 2003, 32-bit; and Windows Server 2003, 64-bit).

The following description texts are expected:
v The description for Event ID (0) in Source (MagStar or ibmtpxxx) could not be

found. It contains the following insertion strings: \Device\Tapex.
v The description for Event ID(x) in Source (MagChgr) could not be found.

The user needs to view the event data in Word format to properly decode the data.

Table 6 and Table 7 on page 316 indicate the hexadecimal offsets, names, and
definitions for Magstar or ibmtpxxx and ibmcgxxx event data. Magchgr event data
has a unique format that will appear later in this chapter.

Table 6. Magstar ,ibmtpxxx, and ibmcgxxx Event Data

Offset Name Definition

0x00–0x01 DumpDataSize Indicates the size in bytes required for any
DumpData the driver will place in the
packet.

0x02 RetryCount Indicates how many times the driver has
retried the operation and encountered this
error.

0x03 MajorFunctionCode Indicates the IRP_MJ_XXX from the driver’s
I/O stack location in the current IRP (from
NTDDK.H).

0x0C–0x0F ErrorCode For the Magstar device driver, it is 0. For
the Magchgr device driver, it is always
0xC00400B
(IO_ERR_CONTROLLER_ERROR, from
NTIOLOGC.H).

0x10–0x13 UniqueErrorValue Reserved

0x14–0x17 FinalStatus Indicates the value set in the I/O status
block of the IRP when it was completed or
the STATUS_XXX returned by a support
routine the driver called (from
NTSTATUS.H).

Windows NT Device Driver (IBMmag)

Chapter 6. Windows 200x Programming Interface 315

Table 6. Magstar ,ibmtpxxx, and ibmcgxxx Event Data (continued)

Offset Name Definition

0x1C–0x1F IoControlCode For the Magstar device driver, it indicates
the I/O control code from the driver’s I/O
stack location in the current IRP if the
MajorFunctionCode is
IRP_MJ_DEVICE_CONTROL. Otherwise,
this value will be 0. For the Magchgr device
driver, it indicates the I/O control code
from the driver’s I/O stack location in the
current IRP.

0x28 Beginning of Dump
Data

The following items are variable in length.
See the DDK and SCSI documentation for
details.

0x38 Beginning of SRB
structure

The SCSI Request Block (from NTDDK.H).

0X68 Beginning of CDB
structure

The Command Descriptor Block (from
SCSI.H).

0x78 Beginning of SCSI
Sense Data

(from SCSI.H). If the first word in this field
is 0x00DF0000 (SCSI error marker) or
0x00EF0000 (Non-SCSI error marker), no
valid sense information was available for
this error.

For example, ibmcgxxx logs the following error when a move medium is
attempted and the destination element is full. Explanations of selected fields
follow:
0000: 006c000f 00c40001 00000000 c004000b
0010: bcde7f48 c0000284 00000000 00000000
0020: 00000000 00000000 00000000 000052f4
0030: 00000000 00000000 004000c4 02000003
0040: 600c00ff 00000028 00000000 00000258
0050: 00000000 814dac28 00000000 bcde7f48
0060: 81841000 00000000 a5600000 00200010
0070: 00000000 00000000 70000500 00000058
0080: 00000000 3b0dff02 00790000 0000093e
0090: 00000000

Table 7. Magstar , ibmtpxxx, and ibmcgxxx Event Data

Field Value Definition

DumpDataSize 0x006C 6C hex (108 dec) bytes of dump data, beginning
at byte 28 hex.

RetryCount 0x00 This is the first time the operation has been
attempted (no retries).

MajorFunctionCode 0x0F IRP_MJ_INTERNAL_DEVICE_CONTROL

FinalStatus 0xC0000284 STATUS_DESTINATION_ELEMENT_FULL

IoControlCode 0x00000000 –

SRB 0x004000C4... From NTDDK.H, the first word of the SRB
indicates the length of the SRB (40 hex bytes, 64
dec bytes), the function code (0x00), and the
SrbStatus (from SRB.H, 0xC4 =
SRB_STATUS_AUTOSENSE_VALID,
SRB_STATUS_QUEUE_FROZEN,
SRB_STATUS_ERROR).

Windows NT Device Driver (IBMmag)

316 IBM Tape Device Drivers: Programming Reference

Table 7. Magstar , ibmtpxxx, and ibmcgxxx Event Data (continued)

Field Value Definition

CDB 0xA5... From SCSI.H, the first byte of the CDB is the
operation code. 0xA5 =
SCSIOP_MOVE_MEDIUM.

Sense Data 0x70000500... From SCSI.H, the first word of the sense data
indicates the error code (0x70), the segment
number (0x00), and the sense key (0x05,
corresponding to an illegal SCSI request).

Table 8 on page 317 and Table 9 on page 318 contain definitions for event data
logged under Magchgr.

Table 8. Magchgr Event Data

Offset Name Definition

0x00–0x01 DumpDataSize Indicates the size in bytes required for any
DumpData the driver places in the packet.

0x02 RetryCount Indicates how many times the driver has
retried the operation and encountered this
error.

0x03 MajorFunctionCode Indicates the IRP_MJ_XXX from the driver’s
I/O stack location in the current IRP (from
NTDDK.H).

0x0C–0x0F ErrorCode For the Magstar device driver, it is 0. For
the Magchgr device driver, it is always
0xC00400B (IO_ERR_CONTROLLER_ERR)
(from NTIOLOGC.H).

0x10–0x13 UniqueErrorValue Reserved

0x14–0x17 FinalStatus Indicates the value set in the I/O status
block of the IRP when it was completed or
the STATUS_XXX returned by a support
routine the driver called (from
NTSTATUS.H).

0x1C–0x1F IoControlCode For the Magstar device driver, it indicates
the I/O control code from the driver I/O
stack location in the current IRP if the
MajorFunctionCode is
IRP_MJ_DEVICE_CONTROL. Otherwise,
this value is 0. For the Magchgr device
driver, it indicates the I/O control code
from the driver’s I/O stack location in the
current IRP.

0x29 PathId SCSI Path ID

0x2A TargetId SCSI Target ID

0x2B LUN SCSI Logical Unit Number

0x2D CDB[0] Command Operation Code

0x2E SRB_STATUS See MINITAPE.H or SRB.H.

0x2F SCSI_STATUS See SCSI.H or a SCSI specification.

Windows NT Device Driver (IBMmag)

Chapter 6. Windows 200x Programming Interface 317

Table 8. Magchgr Event Data (continued)

Offset Name Definition

0x30–0x33 Timeout Value For the Magstar device driver, this value is
always 0. For the Magchgr device driver,
this value is the command timeout value in
seconds.

0x38 FRU or Sense Byte 14 For the Magstar device driver, this value is
the Field Replaceable Unit Code. For the
Magchgr device driver, this value is Sense
Byte 14.

0x39 SenseKeySpecific[0] Indicates Sense Key Specific byte (Sense
Byte 15).

0x3A SenseKeySpecific[1]
or CDB length

If valid sense data was returned,
SenseKeySpecific[1] (Sense Byte 16) is
displayed. Otherwise, the CDB length is
displayed. See offset 0x3D to determine
whether valid sense data has been returned.

0x3B SenseKeySpecific[2]
or CDB[0]

If valid sense data was returned,
SenseKeySpecific[2] (Sense Byte 17) is
displayed. Otherwise, the CDB operation
code is displayed. See offset 0x3D to
determine whether valid sense data has
been returned.

0x3C Sense Byte 0 Indicates the first byte of returned sense
data.

0x3D Sense Byte 2 Indicates the second byte of returned sense
data. This byte contains the Sense Key and
other flags. If this is set to 0xDF (SCSI Error
Marker) or 0xEF (Non-SCSI Error Marker),
no valid sense information was available for
the error.

0x3E ASC or SRB_STATUS Indicates Sense Byte 12, if there was valid
sense information. Otherwise, the SRB
status value is given here. See offset 0x3D
to determine whether valid sense data has
been returned.

0x3F ASCQ or
SCSI_STATUS

Indicates Sense Byte 13, if there was valid
sense information. Otherwise, the SCSI
status value is given here. See offset 0x3D
to determine whether valid sense data has
been returned.

For example:
0000: 0018000f 006c0001 00000000 00000000
0010: 00000000 c0000185 00000000 00000000
0020: 00000000 00000000 00000300 0015c402
0030: 00000000 00000000 f50ac607 700b4b00

Table 9. Magchgr Event Data

Field Value Definition

DumpDataSize 0x0018 –

RetryCount 0x00 –

MajorFunctionCode 0x0F IRP_MJ_INTERNAL_DEVICE_CONTROL

Windows NT Device Driver (IBMmag)

318 IBM Tape Device Drivers: Programming Reference

Table 9. Magchgr Event Data (continued)

Field Value Definition

FinalStatus 0xC0000185 STATUS_IO_DEVICE_ERROR

IoControlCode 0x00000000 –

PathId 0x00 –

TargetId 0x03 –

LUN 0x00 –

CDB[0] 0x15 Mode Select, Byte 6

SRB_STATUS 0xC4 SRB_STATUS_AUTOSENSE_VALID,
SRB_STATUS_QUEUE_FROZEN,
SRB_STATUS_ERROR

SCSI_STATUS 0x02 Check condition

FRU 0xF5 –

Sense Key Specific
Sense Bytes 15 to 17

0x0AC607 –

Sense Byte 0 0x70 –

Sense Key Sense Byte
2

0xb4 –

ASC 0x4B –

ACSQ 0x00 –

Windows NT Device Driver (IBMmag)

Chapter 6. Windows 200x Programming Interface 319

Windows NT Device Driver (IBMmag)

320 IBM Tape Device Drivers: Programming Reference

Chapter 7. 3494 Enterprise Tape Library Driver

AIX 3494 Enterprise Tape Library Driver
After the driver is installed and a library manager control point (LMCP) is
configured and made available for use, access is provided through the special files.
These special files, which are the standard AIX special files for the character device
driver, are in the dev directory. Each instance of an LMCP has exactly one special
file associated with it.

Opening the Special File for I/O
The LMCP special file is opened for access by the standard AIX open command.
The device driver ignores any flags associated with the open call (although the
calling convention specifies that the flags parameter must be present). The open
command is:
fd = open("/dev/lmcp0", O_RDONLY);

Header Definitions and Structure
The input/output control (ioctl) request has the following header definition and
structure:
#include <sys/mtlibio.h>

The syntax of the ioctl request is:
int ioctl(int fildes, int request, void *arg);

Parameters
You can set some of the parameters for the header definitions and structure as
follows:

fildes Specifies the file descriptor returned from an open system call.

request Specifies the command performed on the device.

arg Specifies the individual operation.

Reading and Writing the Special File
The read and write entry points are not available in the library device driver. Any
call made to the read or write subroutine results in a return code of ENODEV.

Closing the Special File
The file descriptor that is returned by the open command is used as the parameter
for the close routine:
rc = close(fd);

The errno value set during a close operation indicates if a problem occurred while
closing the special file. In the case of the LMCP device, the only value of errno is
ENXIO (error occurs from internal code bug).

See “3494 Enterprise Tape Library System Calls” on page 331 for more information.

© Copyright IBM Corp. 1999, 2012 321

HP-UX 3494 Enterprise Tape Library Driver
After the HP-UX 3494 Enterprise Tape Library Driver is installed and started, an
application may use subroutines provided with the software to access an
Enterprise Tape Library.

Opening the Library Device
Before you can issue commands to the library, you must first use the open_ibmatl
subroutine to open it. This subroutine call is similar in structure to the open system
call. The syntax of the command is:
int open_ibmatl(char *lib_name);

The lib_name is a symbolic name for a library defined in the /etc/ibmatl.conf file. If it
is successful, the subroutine returns a positive integer that is used as the file
descriptor for future library operations. If it is not successful, the subroutine
returns -1 and sets errno to one of the following values:

Name Description

ENODEV The library specified by the lib_name parameter is
not known to the lmcpd.

EIO The lmcpd is not running or a socket error occurred
communicating with the lmcpd.

Closing the Library Device
In the same manner that you close a file with the UNIX close system call, close the
library file descriptor when you are finished issuing commands to the library. The
syntax of the close_ibmatl command is:
int close_ibmatl(int ld);

The ld is the library file descriptor that is returned for the open_ibmatl command. If
it is successful, the close_ibmatl command returns 0. If it is not successful, this
command returns -1, and the errno variable is set to EBADF. (The library file
descriptor passed to the close_ibmatl is not valid.)

Issuing the Library Commands
To issue commands to the library, use the ioctl_ibmatl command. The format of the
command is the same as the UNIX input/output control (ioctl) system call. The
syntax of the command is:
int ioctl_ibmatl (

int ld,
int request,
void *arg);

HP-UX

322 IBM Tape Device Drivers: Programming Reference

Parameters
There are certain parameters that can be set for the library commands, as follows:

ld Specifies the library file descriptor returned from an open_ibmatl
call.

request Specifies the command performed on the device.

arg Specifies the pointer to the data associated with the particular
command.

Building and Linking Applications with the Library
Subroutines

An application using HP-UX Tape Library Driver commands and functions should
include the driver interface definition header file provided with the lmcpd package
and installed in the /usr/include/sys subdirectory. Include this header file in the
application as follows:
#include <sys/mtlibio.h>

An application using the HP-UX 3494 Enterprise Tape Library Driver commands
and functions should also be linked with either the 32 bit (/usr/lib/libibm.o) or the 64
bit (/usr/lib/libibm64.o) driver interface C object module provided with the lmcpd
package, depending on whether the application is a 32 bit or a 64 bit application.
Link a 32 bit application program with the 3494 object module as follows:
cc -c -o myapp.o myapp.c
cc -o myapp myapp.o /usr/lib/libibm.o

The first cc command compiles the user application but suppresses the link
operation, producing the myapp.o object module. The second cc command links the
libibm.o library object module to the myapp.o object module to create the executable
myapp file.

A 64 bit application program is built by following the instructions for a 32 bit
application, except it uses /usr/lib/libibm64.o instead of /usr/lib/libibm.o when linking.

The two 3494 driver interface C object modules containing position independent
code (PIC) are also created with the +z or +Z compiler option. An application can
use either the 32 bit (usr/lib/libibmz.o) or the 64 bit (usr/lib/libibm64z.o) in the lmcpd
package. Which one is used to make a shared library with its own PIC object files
will depend on whether the application is a 32 bit or a 64 bit application. Create a
32 bit shared library with the 3494 PIC object module as follows:
ld -b -o lib3494.sl myappz1.o myappz2.o /usr/lib/libibmz.o

The ld command combines the libibmz.o library PIC object module with the
myappz1.o and myappz2.o PIC object modules to build the shared library named
lib3494.sl.

A 64 bit shared library is created by following the instructions for a 32 bit shared
library, except it uses /usr/lib/libibm64z.o instead of /usr/lib/libibmz.o.

Linux 3494 Enterprise Tape Library Driver
After the Linux 3494 Enterprise Tape Library Driver is installed and started, an
application may use subroutines provided with the software to access an
Enterprise Tape Library.

HP-UX

Chapter 7. 3494 Enterprise Tape Library Driver 323

Opening the Library Device
Before you can issue commands to the library, you must first use the open_ibmatl
subroutine to open it. This subroutine call is similar in structure to the open system
call. The syntax of the command is:
int open_ibmatl(char *lib_name);

The lib_name is a symbolic name for a library defined in the /etc/ibmatl.conf file. If it
is successful, the subroutine returns a positive integer that is used as the file
descriptor for future library operations. If it is not successful, then the subroutine
returns -1 and sets errno to one of the following values:

Name Description

ENODEV The library specified by the lib_name parameter is
not known to the lmcpd.

EIO The lmcpd is not running or a socket error occurred
communicating with the lmcpd. This is an
input/output error.

Closing the Library Device
In the same manner that you close a file with the Linux close system call, close the
library file descriptor when you are finished issuing commands to the library. The
syntax of the close_ibmatl command is:
int close_ibmatl(int ld);

The ld is the library file descriptor that is returned for the open_ibmatl command. If
it is successful, the close_ibmatl command returns 0. If it is not successful, this
command returns -1, and the errno variable is set to EBADF. (The library file
descriptor passed to the close_ibmatl is not valid.)

Issuing the Library Commands
To issue commands to the library, use the ioctl_ibmatl command. The format of the
command is the same as the UNIX input/output control (ioctl) system call. The
syntax of the command is:
int ioctl_ibmatl(

int ld,
int request,
void *arg);

HP-UX

324 IBM Tape Device Drivers: Programming Reference

Parameters
You can set some parameters on the library commands, as follows:

ld Specifies the library file descriptor returned from an open_ibmatl
call.

request Specifies the command performed on the device.

arg Specifies the pointer to the data associated with the particular
command.

Building and Linking Applications with the Library
Subroutines

An application using Linux Tape Library Driver commands and functions should
include the driver interface definition header file provided with the lmcpd package
and installed in the /usr/include/sys subdirectory. Include this header file in the
application as follows:
#include <sys/mtlibio.h>

A 32- or 64-bit application using the library driver commands and functions should
be linked with the /usr/lib/libibm.o driver interface C object module provided with
the ibmatl package. Link a 32- or 64-bit application program with the 3494 object
module as follows:
cc -c -o myapp.o myapp.c
cc -o myapp myapp.o /usr/lib/libibm.o

Note: libibm.o is a 64-bit object file for Intel IA64 and 64-bit zSeries® architectures,
but is a 32-bit object file for the other architectures.

The first cc command compiles the user application but suppresses the link
operation, producing the myapp.o object module. The second cc command links the
libibm.o library object module to the myapp.o object module to create the executable
myapp file.

SGI IRIX 3494 Enterprise Tape Library
The following software development files are installed with the IBM Automated
Tape Library software:
/usr/include/sys/mtlibio.h
/usr/lib/libibm.o

If you are developing software applications for the IBM Enterprise Tape Library,
you must include the mtlibio.h header file in your source program by adding the
following line:
#include <sys/mtlibio.h>

In addition, you must include the libibm.o object file when you compile and link
your program. For example:
cc -o myprogram myprogram.c /usr/lib/libibm.o

The libibm.o object file provides the open_ibmatl, ioctl_ibmatl, and close_ibmatl
functions for interfacing with the IBM Enterprise Tape Library. The function
prototypes are defined mtlibio.h. These functions use the same system call
conventions as open, ioctl, and close. If the function fails, -1 is returned and the
global errno value is set to indicate the error. Otherwise, a nonnegative value is
returned.

HP-UX

Chapter 7. 3494 Enterprise Tape Library Driver 325

The following example uses these functions:
#include <sys/mtlibio.h>

int myfunction(char *libname)
{

int rc,fd;
struct mtdevinfo devices;
/* open a library defined in the ibmatl.conf file */
fd=open_ibmatl(libname);
if(fd<0) return errno;

/* query devices */
rc=ioctl_ibmatl(fd,MTIOCLDEVINFO,&devices);
if(rc<0) rc=errno;

/* close library */
close_ibmatl(fd);
return rc;

}

Solaris 3494 Enterprise Tape Library
After the Solaris 3494 Enterprise Tape Library driver is installed and started, an
application may access an Enterprise Tape Library by using subroutines provided
with the software installation.

Opening the Library Device
Before you can issue commands to the library, you must first open it by using the
open_ibmatl subroutine. This subroutine call is similar in structure to the open
system call. The syntax of the command is:
int open_ibmatl(char *lib_name);

The lib_name is a symbolic name for a library defined in the /etc/ibmatl.conf file. If it
is successful, the subroutine returns a positive integer that is used as the file
descriptor for future library operations. If it is not successful, the subroutine
returns -1 and sets errno to one of the following values:

Name Description

ENODEV The library specified by the lib_name parameter is
not known to the lmcpd.

EIO The lmcpd is not running or a socket error occurred
communicating with the lmcpd. This is an
input/output error.

Closing the Library Device
In the same manner that you close a file with the UNIX close system call, close the
library file descriptor when you are finished issuing commands to the library. The
syntax of the close_ibmatl command is:
int close_ibmatl(int ld);

The ld is the library file descriptor that was returned for the open_ibmatl command.
If it is successful, the close_ibmatl command returns 0. If it is not successful, this
command returns -1, and the errno variable is set to EBADF. (The library file
descriptor passed to the close_ibmatl is not valid.)

SGI IRIX 3494 Enterprise Library

326 IBM Tape Device Drivers: Programming Reference

Issuing the Library Commands
To issue commands to the library, use the ioctl_ibmatl command. The format of the
command is the same as the UNIX input/output control (ioctl) system call. The
syntax of the command is:
int ioctl_ibmatl(

int ld,
int request,
void *arg);

SGI IRIX 3494 Enterprise Library

Chapter 7. 3494 Enterprise Tape Library Driver 327

Parameters
Some parameters can be set for the library commands, as follows:

ld Specifies the library file descriptor returned from an open_ibmatl
call

request Specifies the command performed on the device

arg Specifies the pointer to the data associated with the particular
command

Building and Linking Applications with the Library
Subroutines

An application using the Solaris 3494 Enterprise Tape Library Driver commands
and functions should include the driver interface definition header file provided
with the lmcpd package and installed in the /usr/include/sys subdirectory. Include
this header file in the application as follows:
#include <sys/mtlibio.h>

An application using the library driver commands and functions should be linked
with either the 32–bit (/usr/lib/libibm.o) or the 64–bit (/usr/lib/libibm64.o) driver
interface C object module provided with the ibmatl package. Which one is used
depends on whether the application is a 32–bit or a 64–bit application. Link a
32–bit or a 64–bit application program with the 3494 object module as follows:
cc -c -o myapp.o myapp.c
cc -o myapp myapp.o /usr/lib/libibm.o

For 64–bit IBM zSeries systems only, link the application program with the 3494
object module as follows:
cc -c -o myapp64.o myapp64.c
cc -o myapp64 myapp64.o /usr/lib/libibm64.o

The first cc command compiles the user application but suppresses the link
operation, producing the myapp.o object module. The second cc command links the
libibm.o library object module to the myapp.o object module to create the executable
myapp file.

Windows 3494 Enterprise Tape Library Service
After all of the software is installed on the system and the library service is started,
access to the library is accomplished using the subroutines provided in the libibm
module installed in the c:\winnt\system32 directory.

Opening the Library Device
Before you can issue commands to the library, you must first open it using the
open_ibmatl subroutine. This subroutine call is similar in structure to the open
system call. The syntax of the command is:
int open_ibmatl(char *lib_name);

The lib_name is a symbolic name for a library defined in the /etc/ibmatl.conf file. If it
is successful, the subroutine returns a positive integer that is used as the file
descriptor for future library operations. If it is not successful, the subroutine
returns -1 and sets errno to one of the following values:

Name Description

SGI IRIX 3494 Enterprise Library

328 IBM Tape Device Drivers: Programming Reference

ENODEV The library specified by the lib_name parameter is
not known to the library service.

EIO The library service is not running or a socket error
occurred communicating with the library service.
This is an input/output error.

Closing the Library Device
In the same manner that you close a file with the UNIX close system call, close the
library file descriptor when you are finished issuing commands to the library. The
syntax of the close_ibmatl command is:
int close_ibmatl(int ld);

The ld is the library file descriptor that was returned for the open_ibmatl command.
If it is successful, the close_ibmatl command returns zero. If it is not successful, this
command returns -1 and the errno variable is set to EBADF. (The library file
descriptor passed to the close_ibmatl is not valid.)

Issuing Library Commands
To issue commands to the library, use the ioctl_ibmatl command. The format of the
command is the same as the UNIX input/output control (ioctl) system call. The
syntax of the command is:
int ioctl_ibmatl(

int ld,
int request,
void *arg);

SGI IRIX 3494 Enterprise Library

Chapter 7. 3494 Enterprise Tape Library Driver 329

Parameters
You can specify some parameters for library commands, as follows:

ld Specifies the library file descriptor returned from an open_ibmatl call

request Specifies the command performed on the device

See “3494 Enterprise Tape Library System Calls” on page 331 for
commands that can be issued to the library.

arg Specifies the pointer to the data associated with the particular command

Building and Linking Applications with the Library
Subroutines

An application using the library service commands and functions should include
the mtlibio.h driver interface definition header file provided with the package. If
you used the default installation directory, it is now located at C:\Program
Files\IBM Automated Tape Library on 32-bit Windows System or C:\Program Files
(x86)\IBM Automated Tape Library on 64-bit Windows System.. Ensure that the
installation directory is included in the compiler path for included files, and
reference the file as follows:
#include <mtlibio.h>

A 32 or 64–bit application may statically link its application with the libibm.lib or
libibm64.lib driver interface object library during application build time or may
dynamically link to the libibm.dll or libibm64.dll driver interface DLL at run time.

The default directory location for libibm.lib or libibm64.lib is:

On 32-bit Windows systems:
C:\Program Files\IBM Automated Tape Library

On 64-bit Windows systems:
C:\Program Files (x86)\IBM Automated Tape Library

The DLLs (libibm.dll and libibm64.dll) are stored in these locations:

On Windows NT and 2000:
C:\WINNT\system32

On 32-bit Windows 2003:
C:\Windows\system32

On 64-bit Windows 2003:
C:\Windows\SysWOW64 for 32-bit libibm.dll
C:\Windows\System32 for 64-bit libibm64.dll

To link the interface DLL at run time dynamically, locate the executable file of the
application in the same directory of the DLL file. To link the driver interface object
library statically, specify the driver interface object library during the final link of
the application. The following sample may be used as a starting point for an
application that wants to dynamically link to the subroutines in the DLL. The
subroutines must be called through the pointer, rather than their name. For
example:
fd = t_open_ibmatlP("3494b");
static int dynload_lib();

#define T_INTERFACE_MODULE "LIBIBM"
#define T_OPEN_IBMATL "open_ibmatl"
#define T_CLOSE_IBMATL "close_ibmatl"

SGI IRIX 3494 Enterprise Library

330 IBM Tape Device Drivers: Programming Reference

#define T_IOCTL_IBMATL "ioctl_ibmatl"
HINSTANCE t_mod_handle = NULL;
typedef int (* t_open_ibmatlF)(char *devNameP);
typedef int (* t_close_ibmatlF)(int fd);
typedef int (* t_ioctl_ibmatlF)(int fc,

int function,
void *parmsP);

t_open_ibmatlF t_open_ibmatlP = NULL;
t_close_ibmatlF t_close_ibmatlP = NULL;
t_ioctl_ibmatlF t_ioctl_ibmatlP = NULL;

static int dynload_lib()
{
t_mod_handle = LoadLibrary(T_INTERFACE_MODULE);
if (t_mod_handle == NULL) /* Handle error */

t_open_ibmatlP = (t_open_ibmatlF)
GetProcAddress(t_mod_handle, T_OPEN_IBMATL);
if (t_open_ibmatlP == NULL) /* Handle error */

t_close_ibmatlP = (t_close_ibmatlF)
GetProcAddress(t_mod_handle, T_CLOSE_IBMATL);
if (t_close_ibmatlP == NULL) /* Handle error */

t_ioctl_ibmatlP = (t_ioctl_ibmatlF)
GetProcAddress(t_mod_handle, T_IOCTL_IBMATL);
if (t_ioctl_ibmatlP == NULL) /* Handle error */

return 0; /* Good return */
}

3494 Enterprise Tape Library System Calls
The system calls are provided to control the operation of the tape library device.

The set of library commands available with the base operating system is provided
for compatibility with already existing applications. In addition, a set of expanded
library function commands gives applications access to additional features of the
tape drives.

The following library system calls are accepted by the library device driver only if
the special file that is opened by the calling program is a Library Manager Control
Point.

The following library commands are supported:

MTIOCLM Mount a volume on a specified drive.

MTIOCLDM Demount a volume on a specified drive.

MTIOCLQ Return information about the tape library and its
contents.

MTIOCLSVC Change the category of a specified volume.

MTIOCLQMID Query the status of the operation for a given
message ID.

MTIOCLA Verify that a specified volume is in the library.

MTIOCLC Cancel the queued operations of a specified class.

MTIOCLSDC Assign a category to the automatic cartridge loader
for a specified device.

SGI IRIX 3494 Enterprise Library

Chapter 7. 3494 Enterprise Tape Library Driver 331

MTIOCLRC Release a category previously assigned to a
specified host.

MTIOCLRSC Reserve one or more categories for a specified host.

MTIOCLCSA Set the category attributes for a specified category.

MTIOCLDEVINFO Return a list of all devices currently available in
the library.

MTIOCLDEVLIST Return an expanded list of all devices currently
available in the library.

MTIOCLADDR Return the library address, configuration
information, and the current online/offline status
of the library.

MTIOCLEW Wait until an event occurs that requires the tape
device driver to notify the Library Manager.

Library Device Number
The device number used for library system calls consists of the control unit serial
number with a one digit device number appended to it. For example, a device
number for the second device in a library with the control unit serial number of
51582 is 515821. The control unit serial number is a hexadecimal number, where
0123456789ABCDEF are the valid digits. The valid one digit device numbers are
also hexadecimal. For the IBM 3494 Enterprise Tape Library, the drives are
numbered from left to right, starting with 0.

For the Library Mount (MTIOCLM), Library Demount (MTIOCLDM), Library
Cancel (MTIOCLC), and Library Set Device Category (MTIOCLSDC) library system
calls, the device number must be a valid device number obtained by the
MTDEVICE system call or supplied as described in the previous paragraph.

The remaining library system calls are designed for a user supplied device number
or a zero. If the user supplies a zero, the library support selects a device to
perform the operation requested.

The device number can be determined by issuing an OS-specific ioctl to the drive.
For AIX and Linux, use the MTDEVICE ioctl. For HP-UX and Oracle Solaris, use
the STIOC_DEVICE_SN ioctl. For Windows, use the
IOCTL_TAPE_OBTAIN_MTDEVICE vendor-specific device ioctl. The mtlib
command option -D will also display the device numbers.

MTIOCLM (Library Mount)
This library system call mounts a volume on a specified drive. Passed to this call
are the device number of the device on which the volume is mounted, the
VOLSER of the volume to be mounted, a target category to which the VOLSER is
assigned at the time of the mount, and a source category from which a volume is
mounted. If the target category field in the input argument to this call is specified,
the volume is assigned to the category specified at the time of the mount. If the
target category field in the input argument to this call is not specified, the volume
is not assigned to a category at the time of this library system call. If the VOLSER
parameter is not specified, the next available VOLSER from the category (which is
specified in the source_category input parameter) is mounted.

If the wait_flg in the input argument indicates the calling process will wait until the
mount is completed, the calling process is put to sleep after the call that initiates

3494 Enterprise Tape Library Support

332 IBM Tape Device Drivers: Programming Reference

|

the mount command. The subsystem generates an operation completion
notification to indicate the completion status of the mount. The return information
argument is updated to include the completion status of the mount and the calling
process is awakened.

If the wait_flg in the input argument does not indicate the calling process will wait
until the mount is complete, the initial status is updated in the return information
argument and control is returned to the calling process. If the mount command is
initiated successfully, the completion code in the return information argument
indicates success. If it is not successfully initiated, the completion code indicates
the reason for the failure. After the mount completes, the driver determines which
process, if any, is waiting for the status through the MTIOCLEW library system
call. The process, if any, is notified of the completion status of the mount.

Passed to this library system call is a return information argument structure. After
the completion of the call and before control is returned to the calling process, the
return information structure is updated to indicate the completion status of the
mount request.

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 333

Description
arg Points to the mtlmarg structure

The mtlmarg structure is defined in mtlibio.h as follows:
struct mtlmarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int wait_flg; /* indicates requester will wait or not wait */
ushort target_cat; /* category to which the VOLSER is assigned */
ushort source_cat; /* category from which a volume is mounted */
char volser[8]; /* specific VOLSER number to mount */
struct mtlmret mtlmret; /* return information structure */

};

struct mtlmret {
int cc /* completion code */
int up_comp /* reserved */
uint req_id; /* message ID for an asynchronous operation */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read from device */
};

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field contains the device number of the device on which the
operation is performed. See “Library Device Number” on page 332
for all device fields.

wait_flg This field indicates whether or not the process will wait for the
completion status of the operation. A value of zero indicates that
the process will not wait for the final completion status. A value
other than zero indicates that the process will wait for the final
completion status of the operation.

target_cat If this field is non_zero, then it specifies a category to which the
VOLSER is assigned.

source_cat If the field VOLSER contains all blanks, this field specifies the
category from which a volume is mounted. Otherwise, this field is
ignored.

volser This field contains the ASCII value of the specific volume serial
number to be mounted. The field is left aligned and padded with
blanks. If this field is all blanks, the source_cat field is used to
identify a volume to be mounted. In this case, the next volume in
the category specified is mounted.

On Return
The field usage of struct mtlmret is defined as follows:

cc This field contains the completion code for the operation. See
Table 13 on page 359 for possible values.

up_comp This field is reserved for upward compatibility (which is zero).

req_id If the mount operation is performed asynchronously (that is, the
requester will not wait until completion of the command
processing), this field contains the message ID corresponding to the

3494 Enterprise Tape Library Support

334 IBM Tape Device Drivers: Programming Reference

mount request issued. The calling process can use this request ID
to query the status of the mount. The caller must use the Query
Message ID library system call to perform this function.

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes read from the device.

Return Value
When a process will not wait until the mount is complete, the completion code is
set to indicate the request was accepted for processing. The request ID indicates
the message ID associated with the mount request. This request ID can be used to
query the status of the mount operation.

See Table 13 on page 359 for possible return values.

MTIOCLDM (Library Demount)
This library system call demounts a volume from a specified drive. If the target
category field in the mtldarg structure is specified, the volume is assigned to this
category. If the target category field in the mtldarg structure is not specified, the
volume is not assigned to this category.

Description
arg Points to the mtldarg structure.

The mtldarg structure is defined in mtlibio.h as follows:
struct mtldarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int wait_flg; /* indicates requester will wait or not wait */
ushort target_cat; /* category to which the VOLSER is assigned */
ushort pad; /* pad to maintain alignment */
char volser[8]; /* specific VOLSER number to demount */
struct mtldret mtldret; /* return information structure */

};

struct mtldret {
int cc /* completion code */
int up_comp /* reserved */
uint req_id; /* message ID for an asynchronous operation */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read from device */
};

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field contains the device number of the device on which the
operation is performed. See “Library Device Number” on page 332
for all device fields.

wait_flg This field indicates whether or not the process will wait for the
completion status of the operation. A value of zero indicates that
the process will not wait for the final completion status. A value
other than zero indicates that the process will wait for the final
completion status of the operation.

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 335

target_cat If this field is non_zero, it specifies a category to which the VOLSER
is assigned when the demount operation begins. If this field is
0x0000, the volume category assignment is unchanged.

pad This field contains the pad to maintain alignment.

volser This field contains the ASCII value of the specific volume serial
number to be demounted. The field is left aligned and padded
with blanks. If this field is all blanks, the volume is demounted. If
a target category is specified, the category assignment of the
volume is updated.

On Return
The field usage of struct mtldret is defined as follows:

cc This field contains the completion code for the operation. See
Table 13 on page 359 for possible values.

up_comp This field is reserved for upward compatibility (which is zero).

req_id If the demount operation is performed asynchronously (that is, the
requester will not wait until completion of the command
processing), this field contains the message ID corresponding to the
demount request issued.

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes read from the device.

Return Value
See Table 13 on page 359 for possible return values.

When the demount command is performed asynchronously, the completion code is
set to indicate the request was accepted for processing. The request ID indicates
the message ID associated with the demount request. This request ID can be used
to query the status of the demount operation.

MTIOCLQ (Library Query)
This library system call returns information about the Library Manager and its
contents. Depending on the value of the subcommand passed to this call, the
following information is returned:

Volume Data Information about a specific volume.

Library Data Configuration data.

Device Data Information about a specific drive.

Library Statistics Performance statistics.

Inventory Data Inventory report for up to 100 volumes.

Category Inventory Data Category information for up to 100 volumes.

Inventory Volume Count Data
Total number of volumes in the library or the
number of volumes in a specified category.

Expanded Volume Data Status of commands for the volume that was
accepted by the library, but not completed.

Reserved Category List List of categories reserved for a specific host.

Category Attribute List List of category attributes.

3494 Enterprise Tape Library Support

336 IBM Tape Device Drivers: Programming Reference

Description
arg Points to the mtlqarg structure

The mtlqarg structure is defined in mtlibio.h as follows:
struct mtlqarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int cat_seqno; /* category sequence number */
int subcmd; /* subcommand field */
ushort source_cat; /* source category */
ushort cat_to_read;
char hostid[8] /* host identifier */
char volser[8]; /* VOLSER number */
struct mtlqret mtlqret; /* return information from query system call */

};

struct mtlqret {
int cc /* completion code */
int up_comp /* reserved */
int device; /* device number */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
struct lib_query_info info; /* query information */
};

See mtlibio.h for struct lib_query_info.

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field contains the device number of the device on which to
perform the Query Device Data operation. It is ignored for all
other query commands. See “Library Device Number” on page 332
for all device fields.

cat_seqno This field contains the category sequence number. This field is used
only for the Category Inventory Data subcommand. The inventory
records are provided from the specified source category after this
category sequence number. If X'0000' or the number is beyond the
last volume in the category, the inventory records start with the
first VOLSER in the category. This number is represented in
hexadecimal.

subcmd This field contains the subcommand that directs the device driver
action. The possible values are:

MT_QVD Query Volume Data. Request information about the
presence and use of the specific volume and its
affinity to the subsystem in the library. The volume
subsystem affinity is a prioritized list of
subsystems closest to the physical storage location
of the specified VOLSER.

MT_QLD Query Library Data. Request information about the
current operational status of the library.

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 337

MT_QSD Query Statistical Data. Request information about
the workload and performance characteristics of
the library.

MT_QID Query Inventory Data. Request information about
up to 100 inventory data records for the library.
The end of the list is indicated with a returned
VOLSER name of “ ” all blanks. If the list contains
100 records, the next set is obtained by setting the
VOLSER field in the input/output control (ioctl) to
the last volume name in the list (number 100). If
the VOLSER field in the ioctl is set to 0, the first set
will be returned.

MT_QCID Query Category Inventory Data. Request
information about up to 100 inventory data records
for the VOLSERs assigned to the category
specified. The end of the list is indicated with a
returned category of 0. If the list contains 100
records, the next set is obtained by setting the
cat_seqno in the ioctl to the last category sequence
number in the list (number 100). If the cat_seqno in
the ioctl is set to 0, the first set will be returned.

MT_QDD Query Device Data. Request information about the
device specified in the device field.

MT_QIVCD Query Inventory Volume Count Data. Request
either the total number of volumes in the library or
the number of volumes in a specified category.

MT_QEVD Query Expanded Volume Data. Request expanding
information about the specified VOLSER in the
library.

MT_QRCL Query Reserved Category List. Request a list of
categories reserved for the specified host identifier.

MT_QCAL Query Category List. Request a list of categories
with their attributes that are reserved by the
specified host identifier.

source_cat This field contains a category number. It is used in the Category
Inventory Data, Volume Count Data, Reserved Category List, and
Category Attribute List subcommands. The effect on each
subcommand is as follows:
v Category Inventory Data. The source_cat parameter specifies the

category from which to return the inventory records. See the
cat_seqno parameter for related information.

v Inventory Volume Count Data. If the source_cat parameter
contains X'0000', a count of all volumes in the library is returned.
If this parameter is not zero, a count of all volumes in the
category is returned.

v Reserved Category List. If the source_cat parameter is not zero,
the categories after this value are returned in the response. If this
parameter is X'0000' or beyond the last category reserved for the
specified host identifier, the returned data starts with the first
category reserved for the host identifier.

3494 Enterprise Tape Library Support

338 IBM Tape Device Drivers: Programming Reference

v Category Attribute List. If the source_cat parameter is not zero,
the categories after this value are returned in the response. If this
parameter is X'0000' or beyond the last category reserved for the
specified host identifier, the list of attributes for the categories
starts with the first category reserved for the host identifier. See
the cat_to_read parameter for additional information.

cat_to_read If this field is not zero, the category is read and returned in the
response. If this field is zero, then the source_cat field is used to
determine which data to return.

hostid This field indicates which reserved category list or category
attribute list is returned to the caller. A process can request a
reserved category or category attribute list for any host connected
to the dataserver if the proper host identifier is passed in this
parameter. If the hostid parameter is NULL, the data is returned for
the host that issued the command.

volser This field contains the volume serial number. The field is left
justified and padded with blanks. This field is ignored when the
subcmd parameter specifies MT_QLD, MT_QSD, MT_QCID,
MT_QIVCD, MT_QDD, MT_QRCL, and MT_QCAL.

On Return
The field usage of struct mtlqret is defined as follows:

cc This field contains the completion code. See Table 13 on page 359
for possible values.

up_comp This field is reserved for upward compatibility (which is zero).

device This field is ignored.

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes read from the device.

info This field contains the query information requested based on the
subcmd parameter. The possible values are shown in the following
table:

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 339

Table 10. Subcmd Parameter Values.

Value Description

MT_QVD
Query Volume Data.

Provides detailed information about the
VOLSER specified in the tape library. This
information includes:

v the current state of the specified VOLSER

v the class of the volume (for example, IBM
3480 1/2-inch cartridge tape)

v the volume type (for example, 160m
nominal length tape

v the ASCII VOLSER

v the category to which the VOLSER is
assigned

v the subsystem affinity list (which is a
prioritized list of up to 32 subsystems
closest to the physical storage location of
the specified VOLSER)

MT_QLD
Query Library Data

Provides information about the following:

v current library operational state

v number of input/output stations installed
in the library

v status of the input/output stations in the
library

v library machine type

v library sequence number

v total number of cells in the library

v number of cells available for inserting
new volumes into the library

v number of subsystem IDs in the library

v number of cartridge positions in each
convenience station

v configuration type of the accessor

v accessor status

v status of the optional components in the
library

MT_QSD
Query Statistical Data

Provides detailed information about the
workload and performance characteristics of
the tape library. The statistical information
returned includes:

v device

v mount

v demount

v eject

v audit

v input

3494 Enterprise Tape Library Support

340 IBM Tape Device Drivers: Programming Reference

Table 10. Subcmd Parameter Values. (continued)

MT_QID
Query Inventory Data

Provides up to 100 inventory data records
for the tape library. The information
returned includes:

v library sequence number

v number of VOLSERs in the library

v volume inventory data records

The individual volume data records include:

v category value

v ASCII physical VOLSER name

v state of the volume

v type or class of the volume

MT_QCID
Query Category Inventory Data

Provides up to 100 inventory data records
for the VOLSERs that are assigned to a
specified category. The information returned
is identical to the information from a Query
Inventory Data call. In addition to this
information, the following is returned:
category sequence number, which can be
used to obtain the next 100 inventory data
records in the category.

MT_QDD
Query Device Data

Provides information about the device to
which the command was issued. The
information returned includes:

v mounted VOLSER if it is available

v mounted category if a VOLSER is
mounted

v assigned device category if the device is
assigned

v device states

v device class

MT_QIVCD
Query Inventory Volume Count Data

Provides either the total number of volumes
in the library or the number of volumes in a
specified category.

MT_QEVD
Query Expanded Volume Data

Provides expanded information about a
specific VOLSER in the tape library. The
information returned includes:

v volume states

v volume class

v volume type

v VOLSER

v category to which the VOLSER is assigned

MT_QRCL
Query Reserved Category List

Provides a list of categories reserved for the
host specified in the hostid parameter. The
total number of categories is returned with a
list of the categories that are reserved.

MT_QCAL
Query Category Attribute List

Provides a list of category attributes for the
categories reserved for the host identifier
specified in the hostid parameter. The total
number of categories reserved for the host
and a list of reserved categories and their
attributes are returned to the calling process.

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 341

Return Value
See Table 13 on page 359 for possible return values.

MTIOCLSVC (Library Set Volume Category)
This library system call changes the category of a specified volume in the tape
library. This process includes assigning a volume to the EJECT category or BULK
EJECT category so it can be removed from the tape library. If the EJECT category
or BULK EJECT category is specified, the command is executed asynchronously.
Otherwise, the command is executed synchronously.

Description
arg Points to the mtlsvcarg structure

The mtlsvcarg structure is defined in mtlibio.h as follows:
struct mtlsvcarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int wait_flg; /* indicates requester will wait or not wait */
ushort target_cat; /* category to which the VOLSER is assigned */
ushort source_cat; /* source category of the VOLSER */
char volser[8]; /* VOLSER number assigned to a category */
struct mtlsvcret mtlsvcret; /* return information structure */

};

struct mtlsvcret {
int cc /* completion code */
int up_comp /* reserved */
uint req_id; /* message ID for an asynchronous operation */
int device; /* device number */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field is ignored.

wait_flg This field indicates whether or not the process will wait for the
final completion status of the operation. A value of zero indicates
the process will not wait for the final completion status. A value
other than zero indicates the process will wait for the final
completion status of the operation. This field is ignored unless the
target category specifies the eject category.

target_cat This field contains the target category to which the VOLSER is
assigned.

source_cat This field contains the category to which the volume is currently
assigned. This field must contain X'FF00' if the volume is in the
insert category. If this field contains X'0000', it is ignored.

volser This field contains the volume serial number to be assigned to a
category. The field is left aligned and padded with blanks.

On Return
The field usage of struct mtlsvcret is defined as follows:

3494 Enterprise Tape Library Support

342 IBM Tape Device Drivers: Programming Reference

cc This field contains the completion code for the operation. See
Table 13 on page 359 for possible values.

up_comp This field is reserved for upward compatibility (which is zero).

req_id If the operation is performed asynchronously (that is, the requester
will not wait until completion of the command processing), then
this field contains the message ID corresponding to the operation
issued. This field is defined only when the target category specified
is an eject category.

device This field is ignored.

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes read from the device.

Return Value
See Table 13 on page 359 for possible return values.

MTIOCLQMID (Library Query Message ID)
This library system call queries the status of a given message ID. The two types of
status responses are:
v Delayed Response Message Status. The Library Manager keeps a list of the last

600 delayed response messages for mount, demount, audit, and eject commands. If
the message ID is for a command with a delayed response message, all the
delayed response information is returned to the calling application.

v Unknown or Pending Status. If the message ID supplied to the Library
Manager is pending execution or is no longer in the 600 item delayed response
message list, a single status byte is returned as a response to this command.

Description
arg Points to the mtlqmidarg structure

The mtlqmidarg structure is defined in mtlibio.h as follows:
struct mtlqmidarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
uint req_id; /* message ID for an asynchronous operation */
struct mtlqmidret mtlqmidret; /* return information structure */

};

struct mtlqmidret {
int cc; /* completion code */
int up_comp; /* reserved */
int device; /* device number the operation was performed on */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
struct qmid_info info; /* information about queried message id */

};

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 343

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field is ignored.

req_id This field contains the ID of a request that was previously initiated.

On Return
The field usage of struct mtlqmidret is defined as follows:

cc This field contains the completion code. See Table 13 on page 359
for possible values.

up_comp This field is reserved for upward compatibility (which is zero).

device This field is ignored.

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes read from the device.

info See mtlibio.h for a description of the qmid_info structure.

Return Value
See Table 13 on page 359 for possible return values.

MTIOCLA (Library Audit)
This library system call verifies that a specified volume is in the library. The
specified VOLSER is physically verified as being in the tape library. The operation
is asynchronous and complete when the volume is audited.

Description
arg Points to the mtlaarg structure

The mtlaarg structure is defined in mtlibio.h as follows:
struct mtlaarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int wait_flg; /* indicates requester will wait or not wait */
int audit_type; /* audit type */
char volser[8]; /* specific VOLSER number to audit */
struct mtlaret mtlaret; /* return information structure */

};

struct mtlaret {
int cc /* completion code */
int up_comp /* reserved */
uint req_id; /* message ID for an asynchronous operation */
int device; /* device number */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

3494 Enterprise Tape Library Support

344 IBM Tape Device Drivers: Programming Reference

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field is ignored.

wait_flg This field indicates whether or not the process will wait for the
final completion status of the operation. A value of zero indicates
that the process will not wait for the final completion status. A
value other than zero indicates that the process will wait for the
final completion status of the operation.

audit_type This field contains the type of audit. The only possible value is
VOL_AUDIT.

volser This field contains the volume serial number to be audited. The
field is left aligned and padded with blanks.

On Return
The field usage of struct mtlaret is defined as follows:

cc This field contains the completion code. See Table 13 on page 359
for possible values.

up_comp This field is reserved for upward compatibility (which is zero).

req_id If the operation is performed asynchronously (that is, the requester
will not wait until completion of the command processing), then
this field contains the message ID corresponding to the operation
issued.

device This field is ignored.

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes read from the device.

Return Value
See Table 13 on page 359 for possible return values.

MTIOCLC (Library Cancel)
This library system call cancels all queued operations of a specified class. The
caller can request this function for a specific device or a specific asynchronous
operation. If an operation completion notification was owed for any operation
canceled before execution, a notification indicates that the operation was canceled
at the program’s request. Any operation that began or completed execution is not
canceled.

Description
arg Points to the mtlcarg structure

The mtlcarg structure is defined in mtlibio.h as follows:
struct mtlcarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 345

uint req_id; /* message ID for an asynchronous operation */
int cancel_type /* type of cancel requested */
struct mtlcret mtlcret; /* return information structure */

};

struct mtlcret {
int cc /* completion code */
int up_comp /* reserved */
int device; /* device number */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field is ignored unless the cancel_type field specifies CDLA.
This field contains the device number. See “Library Device
Number” on page 332 for all device fields.

req_id This field contains the message ID of the queued operation to
cancel. This field is ignored unless the cancel type specified in the
cancel_type field is Message ID Cancel (MIDC).

cancel_type This field defines the type of cancel. The possible values are:

CDLA Cancel Drive Library Activity. All library mount
operations queued for the specified drive are
canceled.

CAHA Cancel all host related activity. All queued
commands issued by this host are canceled.

MIDC Message ID Cancel. The queued operation
identified by the req_id field is canceled.

On Return
The field usage of struct mtlcret is defined as follows:

cc This field contains the completion code. See Table 13 on page 359
for possible values.

up_comp This field is reserved for upward compatibility (which is zero).

device This field is ignored.

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes read from the device.

Return Value
See Table 13 on page 359 for possible return values.

MTIOCLSDC (Library Set Device Category)
This library system call assigns a category to a device in the IBM 3494 Enterprise
Tape Library. This command also specifies how and when cartridges are mounted
on the device when the assignment takes place. The following parameters can be
set with this command:
v Enable Category Order

3494 Enterprise Tape Library Support

346 IBM Tape Device Drivers: Programming Reference

When active, the Library Manager selects volumes to mount based on the order
in which they were assigned to the category, starting with the first volume
assigned. After the end of the category is reached, the subsequent requests
receive a Category Empty error.
In addition, when this parameter is active, only one device can be assigned to
this category. Therefore, multiple devices can be assigned the same category
when this parameter is not active. If multiple devices are assigned to the same
category, the volumes are picked in the order in which they were assigned.
There is no method to determine which volumes are mounted on a particular
device.
If the specified category is in use by another device and the enable category bit
is set, the operation fails and the command is presented unit check status with
associated sense data indicating ERA X'7F'.

v Clear Out ICL (integrated cartridge loader)

When active, the category assignment previously set on the specified device is
removed. All other parameters specified in the Library Set Device Category
command are ignored when this parameter is active. Any cartridge in the
specified drive is unloaded and returned to a storage cell.

v Generate First Mount

When active, the Library Manager queues a mount for the first volume in the
category specified in the category parameter. A delayed response message is not
generated for this mount. If the mount fails, an unsolicited attention interrupt is
generated and sent to the host. This command can be used in conjunction with
the Enable Auto Mount command.

v Enable Auto Mount

When the device is issued an unload command, the Library Manager queues a
demount for the volume currently mounted in device. Additionally, a mount
command is queued for the next volume in the category. This mount command
does not generate a delayed response message. If the mount fails, an unsolicited
attention interrupt is generated and sent to the host. When Enable Auto Mount
is cleared, an unload command is sent to the device. This parameter can be used
in conjunction with the Generate First Mount command.

Description
arg Points to the mtlsdcarg structure

The mtlsdcarg structure is defined in mtlibio.h as follows:
struct mtlsdcarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int fill_parm; /* fill parameters */
ushort category; /* category to be assigned to the device */
ushort demount_cat;
struct mtlsdcret mtlsdcret; /* return information structure */

};

struct mtlsdcret {
int cc /* completion code */
int up_comp /* reserved */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

On Request
The field usage is defined as follows:

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 347

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field contains the device number of the device on which the
operation is performed. See “Library Device Number” on page 332
for all device fields.

fill_parm This field contains the following fill parameters:

MT_ECO(0x40)
Category Order. When it is active, the Library
Manager fills the loader index stack by selecting
volumes from the specified category based on how
they were assigned to the category.

MT_CACL(0x20)
Clear Automatic Cartridge Loader. The Library
Manager resets the category assignment to the
specified device. If this value is specified, then all
other parameter values sent with this command are
ignored.

MT_GFM (0x10)
Generate First Mount. The Library Manager queues
a mount request for the first volume in the
category. No delayed response message is
generated.

MT_EAM (0x08)
Enable Auto Mount. The Library Manager queues
the mount requests for the next volume in the
category when the device receives a
rewind/unload command. If this field is cleared,
then the Library Manager issues a rewind/unload
command to the specified device.

category This field contains the category to be assigned to the device. If this
field contains X'0000', then it causes the Library Manager to
remove all volumes from the cartridge loader. This operation has
the same effect as specifying MT_CACE_ACL in the fill_parm
parameter.

demount_cat This field specifies the category in which to place the volume when
it is demounted from the device. If this field is X'00', then the
category is not changed for the demount operation.

On Return
The field usage of struct mtlsdcret is defined as follows:

cc This field contains the completion code. See Table 13 on page 359
for possible values.

up_comp This field is reserved for upward compatibility (which is zero).

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes read from the device.

3494 Enterprise Tape Library Support

348 IBM Tape Device Drivers: Programming Reference

Return Value
See Table 13 on page 359 for possible return values.

MTIOCLRC (Library Release Category)
This library system call releases a category that was assigned to the specified host
with the MTIOCLRSC command. Passed to this command are the category
identifier to be released and the host identifier. The category identifier was
reserved when a Library Reserve Category command was issued for the specified
host identifier. The category must not contain any volumes when this command is
issued. If the category contains any tape volumes, the command fails. The host ID
specifies the host for which the category was reserved.

Description
arg Points to the mtlrcarg structure

The mtlrcarg structure is defined as follows:
struct mtlrcarg {
int resvd;
int versn;
int device;
ushort release_cat; /* category to release */
ushort pad; /* maintain alignment */
char hostid [8]; /* host identifier */
struct mtlrcret mtlrcret;
};

struct mtlrcret {
int cc; /* completion code */
int up_comp; /* reserved */
int number_sense; /* number of valid sense bytes */
cha sense_bytes[MT_SENSE_LENGTH]; /* sense bytes */
};

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains zero.

device This field is ignored.

pad This field contains the pad to maintain alignment.

release_cat This field contains the category to be released.

hostid This field specifies the host identifier that reserved the category
being released. Only the same host identifier that reserved the
category can release it.

On Return
The field usage of struct mtlrcret is defined as follows:

cc This field contains the completion code. See Table 13 on page 359
for possible values.

up_comp This field is reserved for upward compatibility.

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes.

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 349

MTIOCLRSC (Library Reserve Category)
This library system call reserves one or more categories for the host issuing this
command. The host issuing this command either chooses the category to reserve or
allows the Library Manager to choose the categories to reserve. If the host chooses
the category, only one category at a time can be reserved. If the host allows the
Library Manager to choose the categories, more than one category at a time can be
reserved.

Description
arg Points to the mtlrscarg structure

The mtlrscarg structure is defined as follows:
struct mtlrscarg {
int resvd /* reserved, must be zero */
int versn /* version number */
int device /* device number */
ushort num_cat /* number of categories to reserve */
ushort category /* category to reserve if num_cat == 1 */
char hostid [8]
struct mtlrscret mtlrscret /* return information structure */
};

struct mtlrscret {
int cc; /* completion code */
int up_comp; /* reserved */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
struct reserve_info info;
};

struct reserve_info
{
char atl_seqno[3]; /* library sequence number */
char ident_token[8]; /* token for which categories are reserved */
char count[2]; /* total number of categories in list */
uchar cat[256][2] /* reserved category records */
};

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains zero.

device This field is ignored.

num_cat The number of categories to reserve.

category If the num_cat field = 1, the library attempts to reserve the
specified category.

hostid Eight character host identifier for which the category is reserved.

On Return
The field usage of struct mtlrscret is defined as follows:

cc This field contains the completion code. See Table 13 on page 359
for possible values.

up_comp This field is reserved for upward compatibility.

number_sense This field contains the number of valid sense bytes.

sense_bytes This field contains the sense bytes.

3494 Enterprise Tape Library Support

350 IBM Tape Device Drivers: Programming Reference

reserve_info This structure contains a list of categories that are reserved with
the Library Reserve Category command.

MTIOCLSCA (Library Set Category Attribute)
This library system call allows the host to specify the attributes for a category
previously reserved for this host with the MTIOCLRSC library system call. The
only attribute that can be set is category name. The name is a 10 character string,
which does not have to end with a null character. The following naming
conventions are allowed:
v Uppercase letters A–Z
v Numbers 0–9
v Blank, underscore (_), or asterisk (*)
v Blanks in any position

Description
arg Points to the mtlscaarg structure

The mtlscaarg structure is defined as follows:
struct mtlscaarg {
int resvd /* reserved, must be zero */
int versn /* version number */
int device /* device number */
ushort attr /* attribute description */
ushort category /* category whose attribute to set */
char attr_data[ATTR_MAXLN] /* data to assign to the category */
struct mtlscaret mtlscaret /* return information structure */
};

struct mtlscaret {
int cc; /* completion code */
int up_comp; /* reserved */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains zero.

device This field is ignored.

attr This field describes the attribute. It contains the following value:
MT_SCM (0x01) Set Category Name

category This field specifies the category.

attr_data This field contains the 10 character category name.

MTIOCLDEVINFO (Device List)
This library system call returns a list of all devices currently available in the library
and their associated device numbers. See“Library Device Number” for a
description of device numbers. The MTIOCLDEVLIST library system call returns
the same device list in an expanded format.

The mtdevinfo structure is defined in mtlibio.h as follows:

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 351

struct mtdevinfo {
struct {

int device; /* device number */
char name[32]; /* device name */

} dev[MAXDEVICES];

On Return
The field usage of struct mtdevinfo is defined as follows:

device This field contains the device number. The end of the list is
indicated with a device number equal to -1.

name This field is the name of the device. It consists of six bytes for the
device type, three bytes for the model number, and two bytes for
the decimal index number in the device list array.

Return Value
See Table 13 on page 359 for possible return values.

Example: The following code is used in the mtlib utility for the -D option:
struct mtdevinfo dinfo;

int devices(int lib_fd)
{
int rc;
int i;

rc = ioctl(lib_fd, MTIOCLDEVINFO, &dinfo);
if (rc)

{
printf("Operation Failed - %s\n", strerror(errno));
return errno;
}

for (i=0; i < MAXDEVICES; i++)
{
if (dinfo.dev[i].device == -1) break;

printf("%3d, %08X %s\n",i, dinfo.dev[i].device, dinfo.dev[i].name);
}

return(0);
}

MTIOCLDEVLIST (Expanded Device List)
This library system call returns a list of all devices currently available in the library
and their associated device numbers in an expanded format. See “Library Device
Number” for a description of device numbers. The MTIOCLDEVINFO library
system call returns the same device list in a different format.

The mtdevlist structure is defined in mtlibio.h as follows:
struct mtdevlist {

struct {
char type[6];
char model[3];
char serial_num[8];
unsigned char cuid;
unsigned char dev;
int dev_number;
int vts_library;

} device[MAXDEVICES];
};

3494 Enterprise Tape Library Support

352 IBM Tape Device Drivers: Programming Reference

On Return
The field usage of struct mtdevinfo is defined as follows:

dev_number This field contains the device number. The end of the list is
indicated with a device number equal to -1.

type This field contains the device type.

model This field contains the model number of the device.

serial_num This field contains the serial number of the device.

cuid and dev These fields contain the library subsystem ID(cuid) and device
(dev) within the subsystem for this device in the library.

vts_library This field indicates if the device is in a VTS library, and if so,
which logical VTS library. A value of 0 indicates the device is not
in a VTS library.

Return Value
See Table 13 on page 359 for possible return values.

Example: The following code is used in the mtlib utility for the -DE option:
struct mtdevlist dlist;

int device_list(int lib_fd)
{
int rc;
int i;
char type[7];
char model[4];
char sn[9];
int pass = 1;

rc = ioctl(lib_fd, MTIOCLDEVLIST, &dlist);
if (rc)

{
printf("Operation Failed - %s\n", strerror(errno));
return errno;
}

for (i=0; i <MAXDEVICES; i++)
{
if (dlist.device[i].dev_number == -1) break;
strncpy(type, dlist.device[i].type,6);
type[6] = ’\0’;
strncpy(model, dlist.device[i].model,3);
model[3] = ’\0’;
strncpy(sn, dlist.device[i].serial_num,8);
sn[8] = ’\0’;
if (pass == 1)

{
printf(" Type Mod Serial # Devnum Cuid Device VTS Library\n");
pass++;
}

if (dlist.device[i].vts_library)
{
printf("%s %s %s %08X %2d %2d %2d\n", type,model,sn,

dlist.device[i].dev_number, dlist.device[i].cuid,
dlist.device[i].dev,
dlist.device[i].vts_library);

}
else

{
printf("%s %s %s %08X %2d %2d \n", type,model,sn,

dlist.device[i].dev_number, dlist.device[i].cuid,

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 353

dlist.device[i].dev);
}

}

return(0);
}

MTIOCLADDR (Library Address Information)
This library system call returns the library address and configuration information
from the ibmatl.conf config file and the current online or offline status of the library.
A 3494 Enterprise Model HA1 (High Availability) will have two addresses
configured, but only one address will be online at a time.

The mtlibaddr structure is defined in mtlibio.h as follows:
#define MT_LIBADDR_INVALID 0 /* Address not configured */
#define MT_LIBADDR_OFFLINE 1 /* Library is offline with this address */
#define MT_LIBADDR_ONLINE 2 /* Library is online with this address */

struct mtlibaddr {
char library_name[32]; /* Logical name of library */
char host_ident[8]; /* Host identification for library */
char primary_addr[16]; /* Primary address of library */
char primary_status; /* Primary status as defined above */
char alternate_addr[16]; /* Alternate address of library */
char alternate_status; /* Alternate status as defined above */
char reserved[32];

};

On Return
The field usage of struct mtlibaddr is defined as follows:

library_name This field contains the logical name of the library defined in the
ibmatl.conf file.

host_ident This field contains the host identification for the logical library.

primary_addr This field contains the primary address for the logical library,
either a tty serial port connection or an Internet address.

primary_status
This field contains the current status of the primary address
connection as defined in the primary_addr field and will always be
either online or offline.

alternate_address
This field contains the alternate address for the logical library if
configured in the ibmatl.conf file. If an alternate address is not
configured, the alternate_status field will be set to
MT_LIBADDR_INVALID.

alternate_status
This field contains the current status of the alternate address
connection as defined in the alternate_address field: either online,
offline, or not configured.

Return Value
See Table 13 on page 359 for possible return values.

Example: The following code is used in the mtlib utility for the -A option:
struct mtlibaddr addrlist;

int libaddr(int lib_fd)

3494 Enterprise Tape Library Support

354 IBM Tape Device Drivers: Programming Reference

{
int rc;

rc = ioctl(lib_fd, MTIOCLADDR, &addrlist);
if (rc)

{
printf("Operation Failed - %s\n", strerror(errno));
return errno;
}

printf("Library Address Information: \n");
printf(" library name...........%0.32s\n",addrlist.library_name);
printf(" host identification....%0.8s\n",addrlist.host_ident);
printf(" primary address........%s\n",addrlist.primary_addr);
if (addrlist.primary_status == MT_LIBADDR_ONLINE)

printf(" primary status.........Online\n");
else

printf(" primary status.........Offline\n");

if (addrlist.alternate_status == MT_LIBADDR_ONLINE)
{
printf(" alternate address......%s\n",addrlist.alternate_addr);
printf(" alternate status.......Online\n");
}

else if (addrlist.alternate_status == MT_LIBADDR_OFFLINE)
{
printf(" alternate address......%s\n",addrlist.alternate_addr);
printf(" alternate status.......Offline\n");
}

else
printf(" alternate address......Not configured\n");

return(0);
}

MTIOCLEW (Library Event Wait)
This library system call reads the state information associated with a logical library
device entry and optionally waits for a state change to occur before returning the
state information.

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 355

Description
arg Points to the mtlewarg structure

The mtlewarg structure is defined in mtlibio.h as follows:
struct mtlewarg {

int resvd /* reserved */
int versn /* version number field */
int subcmd; /* subcommand field */
int timeout; /* timeout in seconds *

/* if set to zero, no timeout is performed */
struct mtlewret mtlewret; /* return information structure */

};

struct mtlewret {
int up_comp /* reserved */
int cc /* completion code */
int lib_event /* detected library event */
int msg_type /* type of message */
struct msg_info msg_info; /* operation completion or unsolicited */
};

See mtlibio.h for struct msg_info.

On Request
The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

subcmd This field contains the LEWTIME subcommand. It is returned only
when an error or exception condition is detected or after a timeout
occurs (whichever happens first).

timeout This field contains the timeout time in seconds. If it is set to zero,
no timeout is performed.

On Return
The field usage of struct mtlewret is defined as follows:

up_comp This field is reserved for upward compatibility (which is zero).

cc This field contains the completion code. See Table 13 on page 359
for possible values.

lib_event This field contains the detected event. The possible values are
shown in Table 11.

msg_type This field contains the type of message if it is reported. The
possible values are:

NO_MSG No message

UNSOL_ATTN_MSG Unsolicited notification

DELAYED_RESP_MSG Operation completion notification.

msg_info This field contains the operation completion or unsolicited
notification.

Table 11. Unsolicited Attention Interrupts

Event ERA Code Description

None 0x27 Command reject

3494 Enterprise Tape Library Support

356 IBM Tape Device Drivers: Programming Reference

Table 11. Unsolicited Attention Interrupts (continued)

Event ERA Code Description

MT_NTF_ERA60 0x60 Library attachment facility equipment check

MT_NTF_ERA62 0x62 Library Manager offline to subsystem

MT_NTF_ERA63 0x63 Control unit and Library Manager incompatible

MT_NTF_ERA64 0x64 Library VOLSER in use

MT_NTF_ERA65 0x65 Library volume reserved

MT_NTF_ERA66 0x66 Library VOLSER not in library

MT_NTF_ERA67 0x67 Library category empty

MT_NTF_ERA68 0x68 Library order sequence check

MT_NTF_ERA69 0x69 Library output stations full

MT_NTF_ERA6B 0x6B Library volume misplaced

MT_NTF_ERA6C 0x6C Library misplaced volume found

MT_NTF_ERA6D 0x6D Library drive not unloaded

MT_NTF_ERA6E 0x6E Library inaccessible volume restored

MT_NTF_ERA6F 0x6F Library vision failure

MT_NTF_ERA70 0x70 Library Manager equipment check

MT_NTF_ERA71 0x71 Library equipment check

MT_NTF_ERA72 0x72 Library not capable – Manual mode

MT_NTF_ERA73 0x73 Library intervention required

MT_NTF_ERA74 0x74 Library informational data

MT_NTF_ERA75 0x75 Library volume inaccessible

MT_NTF_ERA76 0x76 Library all cells full

MT_NTF_ERA77 0x77 Library duplicate VOLSER ejected

MT_NTF_ERA78 0x78 Library duplicate VOLSER in input station

MT_NTF_ERA79 0x79 Library unreadable or invalid VOLSER in input station

MT_NTF_ERA7A 0x7A Read library statistics

MT_NTF_ERA7B 0x7B Library volume ejected manually

MT_NTF_ERA7C 0x7C Library out of cleaner volumes

MT_NTF_ERA7F 0x7F Library category in use

MT_NTF_ERA80 0x80 Library unexpected volume ejected

MT_NTF_ERA81 0x81 Library I/O station door open

MT_NTF_ERA82 0x82 Library Manager program exception

MT_NTF_ERA83 0x83 Library drive exception

MT_NTF_ERA84 0x84 Library drive failure

MT_NTF_ERA85 0x85 Library environmental alert

MT_NTF_ERA86 0x86 Library all categories reserved

MT_NTF_ERA87 0x87 Duplicate volume add requested

MT_NTF_ERA88 0x88 Damaged volume ejected

MT_NTF_ATTN_CSC None Category state change

MT_NTF_ATTN_LMOM None Library Manager operator message

MT_NTF_ATTN_IOSSC None I/O station state change

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 357

Table 11. Unsolicited Attention Interrupts (continued)

Event ERA Code Description

MT_NTF_ATTN_OSC None Operational state change

MT_NTF_ATTN_DAC None Device availability change

MT_NTF_ATTN_DCC None Device category change

MT_NTF_ATTN_VE None Volume exception

MT_NTF_DEL_MC None Mount complete

MT_NTF_DEL_DC None Demount complete

MT_NTF_DEL_AC None Audit complete

MT_NTF_DEL_EC None Eject complete

MT_NTF_TIMEOUT None Timeout

Return Value
If a library system call is successful, the return code is set to zero. If the library
system call is not successful, the return code is set to -1. If the library system call is
not successful, the errno variable is set to indicate the cause of the failure. The
values in Table 12 are returned in the errno variable.

Table 12. MTIOCLEW Errors

Return Code errno cc Value Description

0 ESUCCESS 0 0

X'0'

Completed successfully.

-1 ENOMEM Undefined – Memory allocation failure.

-1 EFAULT Undefined – Memory copy function failure.

-1 EIO MTCC_NO_LMCP 32

X'20'

The Library Manager Control
Point is not configured.

-1 EINVAL MTCC_INVALID_SUBCMD 41

X'29'

An invalid subcommand is
specified.

-1 EIO MTCC_LIB_NOT_CONFIG 42

X'2A'

No library devices are
configured.

-1 EIO MTCC_INTERNAL_ERROR 43

X'2B'

Internal error.

Error Description for the Library I/O Control Requests
If a library system call is successful, the return code is set to zero. If the library
system call is not successful, the return code is set to -1. If the library system call is
not successful, the errno variable is set to indicate the cause of the failure. The
completion code in the return structure of the library system call is set with a
value indicating the result of the library system call.

Table 13 shows the return codes, the errno variables, and the completion codes for
the library I/O control requests. See mtlibio.h for the code values.

3494 Enterprise Tape Library Support

358 IBM Tape Device Drivers: Programming Reference

Table 13. Error Description for the Library I/O Control Requests

Code errno Value cc Value Description

0 ESUCCESS 0 MTCC_COMPLETE 0

X'0'

Completed successfully.

-1 EIO 5 MTCC_COMPLETE_VISION 1

X'1'

Completed. Vision system
not operational.

-1 EIO 5 MTCC_COMPLETE_NOTREAD 2

X'2'

Completed. VOLSER not
readable.

-1 EIO 5 MTCC_COMPLETE_CAT 3

X'3'

Completed. Category
assignment not changed.

-1 EIO 5 MTCC_CANCEL_PROGREQ 4

X'4'

Canceled program
requested.

-1 EIO 5 MTCC_CANCEL_ORDERSEQ 5

X'5'

Canceled order sequence.

-1 EIO 5 MTCC_CANCEL_MANMODE 6

X'6'

Canceled manual mode.

-1 EIO 5 MTCC_FAILED_HARDWARE 7

X'7'

Failed. Unexpected
hardware failure.

-1 EIO 5 MTCC_FAILED_VISION 8

X'8'

Failed. Vision system not
operational.

-1 EIO 5 MTCC_FAILED_NOTREAD 9

X'9'

Failed. VOLSER not
readable.

-1 EIO 5 MTCC_FAILED_INACC 10

X'A'

Failed. VOLSER
inaccessible.

-1 EIO 5 MTCC_FAILED_MISPLACED 11

X'B'

Failed. VOLSER misplaced
in library.

-1 EIO 5 MTCC_FAILED_CATEMPTY 12

X'C'

Failed. Category empty.

-1 EIO 5 MTCC_FAILED_MANEJECT 13

X'D'

Failed. Volume ejected
manually.

-1 EIO 5 MTCC_FAILED_INVENTORY 14

X'E'

Failed. Volume not in
inventory.

-1 EIO 5 MTCC_FAILED_NOTAVAIL 15

X'F'

Failed. Device not
available.

-1 EIO 5 MTCC_FAILED_LOADFAIL 16

X'10'

Failed. Irrecoverable load
failure.

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 359

Table 13. Error Description for the Library I/O Control Requests (continued)

Code errno Value cc Value Description

-1 EIO 5 MTCC_FAILED_DAMAGED 17

X'11'

Failed. Cartridge damaged
and queued for eject.

-1 EIO 5 MTCC_COMPLETE_DEMOUNT 18

X'12'

Completed. Demount
signaled before execution.

-1 EIO 5 MTCC_NO_LMCP 32

X'20'

Failed. LMCP not
configured.

-1 EINVAL 22 MTCC_NOT_CMDPORT_LMCP 33

X'21'

Failed. Device not
command-port LMCP.

-1 EIO 5 MTCC_NO_DEV 34

X'22'

Failed. Device not
configured.

-1 EIO 5 MTCC_NO_DEVLIB 35

X'23'

Failed. Device not in
library.

-1 ENOMEM 12 MTCC_NO_MEM 36

X'24'

Failed. Memory failure.

-1 EIO 5 MTCC_DEVINUSE 37

X'25'

Failed. Device in use.

-1 EIO 5 MTCC_IO_FAILED 38

X'26'

Failed. Unexpected I/O
failure.

-1 EIO 5 MTCC_DEV_INVALID 39

X'27'

Failed. Invalid device.

-1 EIO 5 MTCC_NOT_NTFPORT_LMCP 40

X'28'

Failed. Device not
notification-port LMCP.

-1 EIO 5 MTCC_INVALID_SUBCMD 41

X'29'

Failed. Invalid
subcommand parameter.

-1 EIO 5 MTCC_LIB_NOT_CONFIG 42

X'2A'

Failed. No library device
configured.

-1 EIO 5 MTCC_INTERNAL_ERROR 43

X'2B'

Failed. Internal error.

-1 EIO 5 MTCC_INVALID_CANCELTYPE 44

X'2C'

Failed. Invalid cancel type.

-1 EIO 5 MTCC_NOT_LMCP 45

X'2D'

Failed. Not LMCP device.

-1 EIO 5 MTCC_LIB_OFFLINE 46

X'2E'

Failed. Library is offline to
host.

3494 Enterprise Tape Library Support

360 IBM Tape Device Drivers: Programming Reference

Table 13. Error Description for the Library I/O Control Requests (continued)

Code errno Value cc Value Description

-1 EIO 5 MTCC_DRIVE_UNLOAD 47

X'2F'

Failed. Volume is still
loaded in drive.

-1 ETIMEDOUT 78 MTCC_COMMAND_TIMEOUT 48

X'30'

Failed. Command timed
out by the device driver.

-1 EIO 5 MTCC_UNDEFINED -1

X'FF'

Failed. Undefined
completion code.

3494 Enterprise Tape Library Support

Chapter 7. 3494 Enterprise Tape Library Driver 361

362 IBM Tape Device Drivers: Programming Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any references to an IBM program or other IBM product in this publication is not
intended to state or imply that only IBM’s program or other product may be used.
Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product. Evaluation
and verification of operation in conjunction with other products, except those
expressly designed by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX ESCON® IBM Magstar
pSeries System P System Storage TotalStorage
Virtualization Engine zSeries

© Copyright IBM Corp. 1999, 2012 363

Microsoft, Windows, Windows NT, Windows 2000, Windows Server 2003, and the
Windows logo are registered trademarks of Microsoft Corporation in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Red Hat is a registered trademark of Red Hat, Inc.

Other company, product, and service names may be trademarks or service marks
of others.

364 IBM Tape Device Drivers: Programming Reference

Index

Numerics
3494 Enterprise Tape Library Support

System Calls 331
Error Description for Library I/O

Control Requests 358
Library Device Number 332
MTIOCLA (Library Audit) 344
MTIOCLADDR (Library Address

Information) 354
MTIOCLC Llibrary Cancel) 345
MTIOCLDEVINFO (Device

List) 351
MTIOCLDEVLIST (Expanded

Device List) 352
MTIOCLDM (Library

Demount) 335
MTIOCLEW (Library Event

Wait) 355
MTIOCLM (Library Mount) 332
MTIOCLQ (Library Query) 336
MTIOCLQMID (Library Query

Message ID) 343
MTIOCLRC (Library Release

Category) 349
MTIOCLRSC (Library Reserve

Category) 350
MTIOCLSCA (Library Set Category

Attribute) 351
MTIOCLSDC (Library Set Device

Category) 346
MTIOCLSVC (Library Set Volume

Category) 342

A
AIX 3494 Enterprise Library Drive

Special Files
Closing the Special File 321

AIX 3494 Enterprise Library Driver
Special Files 321

Header Definitions and
Structure 321

Opening the Special File for
I/O 321

Parameters 321
Reading and Writing the Special

File 321
AIX Device Driver (Atape) 76, 87, 88, 89

Device and Volume Information
Logging 13

Log File 14
General IOCTL Operations 24

Overview 24
Introduction 7

Software Interface for Medium
Changer 7

Software Interface for Tape
Drives 7

Special Files 8
Closing the Special File 13

AIX Device Driver (Atape) (continued)
Special Files (continued)

Opening Special File for I/O 9
Reading from the Special File 12
Reading with the

TAPE_READ_REVERSE extended
parameter 12

Reading with the
TAPE_SHORT_READ extended
parameter 12

Special Files for 3490E, 3590,
Magstar MP or 7332 Tape
Devices 8

Special Files for 3575, 7331, 7334,
7336, or 7337 Medium Changer
Device 9

Using Extended Open
Operation 10

Writing to the Special File 11
Tape IOCTL Operations 40

Overview 40
ALLOW_DATA_OVERWRITE

command 70

C
common functions 1
CREATE_PARTITION command 68

H
HP-UX 3494 Enterprise Library Driver

Library Access 322
Building and Linking Applications

with the Library
Subroutines 323

Closing the Library Device 322
Issuing the Library

Commands 322
Opening the Library Device 322

HP-UX Device Driver (ATDD)
IOCTL Operations 94

Base OS Tape Drive IOCTL
Operations 143

General SCSI IOCTL
Operations 94

SCSI Medium Changer IOCTL
Operations 101

SCSI Tape Drive IOCTL
Operations 111

Service Aid IOCTL
Operations 144

Programming Interface 91
fixed block size 93
ioctl 94
read 93
variable block size 93
write 93

I
IOC_CHECK_PATH command

IOC_CHECK_PATH 279
IOC_DEVICE_PATH command

IOC_DEVICE_PATH 278
IOC_DISABLE_PATH command

IOC_DISABLE_PATH 279
IOC_ENABLE_PATH command

IOC_ENABLE_PATH 279

L
Linux 3494 Enterprise Library Driver

Library Access 323
Building and Linking Applications

with Library Subroutines 325
Closing the Library Device 324
Issuing Library Commands 324
Opening the Library Device 324

Linux Device Driver (IBMtape)
General IOCTL Operations 154

Overview 154
Medium Changer IOCTL

Operations 194
SCSI IOCTL Commands 195

Return Codes 202
Close Error Codes 203
General Error Codes 203
IOCTL Error Codes 205
Open Error Codes 203
Read Error Codes 204
Write Error Codes 205

Software Interface 151
Linux-defined entry points 151
Medium Changer Devices 153

Tape Drive Compatibility IOCTL
Operations 194

MTIOCGET command 194
MTIOCPOS command 194
MTIOCTOP command 194

Tape Drive IOCTL Operations 163
Overview 163

N
Notices 363

P
Parameters

Header definitions
Structure 321

Persistent Reservation support
tape device driver 15

Q
QUERY_PARTITION command 67

© Copyright IBM Corp. 1999, 2012 365

R
read error codes 88
READ_TAPE_POSITION command 64
Related Information vii

Additional Information viii
AIX viii
HP-UX viii
Linux viii
Microsoft Windows viii
Solaris viii

S
SET_ACTIVE_PARTITION command 66
SET_TAPE_POSITION command 66
SGI IRIX 3494 Enterprise Library

Software Development 325
SMCIOC_READ_CARTIDGE_LOCATION

command 85
Solaris 3494 Enterprise Library Driver

Library Access 326
Building and Linking Applications

with Library Subroutines 328
Closing the Library Device 326
Issuing Library Commands 327
Opening the Library Device 326

Solaris Device Driver (IBMtape)
IOCTL Operations 207

Base OS Tape Drive IOCTL
Operations 266

Downward Compatibility Tape
Drive IOCTL Operations 269

General SCSI IOCTL
Operations 207

SCSI Medium Changer IOCTL
Operations 217

SCSI Tape Drive IOCTL
Operations 228

Service Aid IOCTL
Operations 275

Return Codes 279
Close Error Codes 281
Closing a Special File 285
General Error Codes 280
IOCTL Error Codes 283
Issuing IOCTL Operations to a

Special File 287
Open Error Codes 280
Opening a Special File 283
Read Error Codes 281
Reading From a Special File 284
Write Error Codes 281
Writing to a Special File 284

STIOC_DEVICE_PATH command 147
STIOC_DISABLE_PATH command 149
STIOC_ENABLE_PATH command 149
STIOC_FORCE_DUMP command

STIOC_FORCE_DUMP 276
STIOC_QUERY_PATH command 147

T
Trademarks 363

W
Windows 200x

Event Log 315
Programming Interface 289, 290, 291,

292
DeviceIoControl 295
EraseTape 295
fixed block read write

processing 313
GetTapePosition 293
GetTapeStatus 295
IOCTL Commands 297
Medium Changer IOCTLs 296
PrepareTape 295
SetTapeParameters 293
SetTapePosition 293
Tape Media Changer Driver Entry

Points 289
User Callable Entry Points 289
variable block read write

processing 313
Vendor Specific Device IOCTLs for

DeviceIoControl 298
Write Tapemark 292

Windows NT 3494 Enterprise Library
Service

Library Access 328
Building and Linking Applications

with Library Subroutines 330
Closing the Library Device 329
Issuing Library Commands 329
Opening the Library Device 328

Windows NT Device Driver
Event Log 315
Programming Interface

GetTapeParameters 294

366 IBM Tape Device Drivers: Programming Reference

����

Printed in USA

GA32-0566-07

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
IB

M
Ta

pe
D

ev
ic

e
D

riv
er

s
IB

M
Ta

pe
D

ev
ic

e
D

ri
ve

rs
:P

ro
gr

am
m

in
g

R
ef

er
en

ce

	Contents
	Preface
	Special Printing Instructions
	Related Information
	AIX
	HP-UX
	Linux
	Solaris
	Microsoft Windows
	Additional Information

	Chapter 1. Common Extended Features
	Tape Drive Functions and Device Driver ioctls
	Media Partitioning
	Data Safe (Append-Only) Mode
	Read Position Long/Extended Form and Locate(16) Commands
	Logical Block Protection
	Programmable Early Warning (PEW)
	Log Sense Page and Subpage
	Mode Sense Page and Subpage
	Verify Tape

	Chapter 2. AIX Tape and Medium Changer Device Driver
	Software Interface for Tape Devices
	Software Interface for Medium Changer Devices
	Special Files
	Special Files for Tape Devices
	Special Files for Medium Changer Device
	Opening the Special File for I/O
	Using the Extended Open Operation
	Writing to the Special File
	Reading from the Special File
	Reading with the TAPE_SHORT_READ Extended Parameter
	Reading with the TAPE_READ_REVERSE Extended Parameter
	Closing the Special File

	Device and Volume Information Logging
	Log File

	Persistent Reservation Support and IOCTL Operations
	ODM Attributes and Configuring Persistent Reserve Support
	Default Device Driver Host Reservation Key
	Preempting and Clearing Another Host Reservation
	Openx() Extended Parameters
	AIX Tape Persistent Reserve IOCTLS
	Atape Persistent Reserve IOCTLS

	General IOCTL Operations
	Overview
	IOCINFO
	STIOCMD
	STPASSTHRU
	SIOC_PASSTHRU_COMMAND
	SIOC_INQUIRY
	SIOC_REQSENSE
	SIOC_RESERVE
	SIOC_RELEASE
	SIOC_TEST_UNIT_READY
	SIOC_LOG_SENSE_PAGE
	SIOC_LOG_SENSE10_PAGE
	SIOC_MODE_SENSE_PAGE
	SIOC_MODE_SENSE_SUBPAGE
	SIOC_MODE_SENSE
	SIOC_MODE_SELECT_PAGE
	SIOC_MODE_SELECT_SUBPAGE
	SIOC_QUERY_OPEN
	SIOC_INQUIRY_PAGE
	SIOC_DISABLE_PATH
	SIOC_ENABLE_PATH
	SIOC_SET_PATH
	SIOC_DEVICE_PATHS
	SIOC_QUERY_PATH
	SIOC_RESET_PATH and SIOC_CHECK_PATH
	SIOC_RESET_DEVICE
	SIOC_DRIVER_INFO

	Tape IOCTL Operations
	Overview
	STIOCHGP
	STIOCTOP
	STIOCQRYP or STIOCSETP
	STIOCSYNC
	STIOCDM
	STIOCQRYPOS or STIOCSETPOS
	STIOCQRYSENSE
	STIOCQRYINQUIRY
	STIOC_LOG_SENSE
	STIOC_RECOVER_BUFFER
	STIOC_LOCATE
	STIOC_READ_POSITION
	STIOC_SET_VOLID
	STIOC_DUMP
	STIOC_FORCE_DUMP
	STIOC_READ_DUMP
	STIOC_LOAD_UCODE
	STIOC_RESET_DRIVE
	STIOC_FMR_TAPE
	MTDEVICE (Obtain Device Number)
	STIOC_PREVENT_MEDIUM_REMOVAL
	STIOC_ALLOW_MEDIUM_REMOVAL
	STIOC_REPORT_DENSITY_SUPPORT
	STIOC_GET_DENSITY and STIOC_SET DENSITY
	STIOC_CANCEL_ERASE
	GET_ENCRYPTION_STATE
	SET_ENCRYPTION_STATE
	SET_DATA_KEY
	READ_TAPE_POSITION
	SET_TAPE_POSITION
	SET_ACTIVE_PARTITION
	QUERY_PARTITION
	CREATE_PARTITION
	ALLOW_DATA_OVERWRITE
	QUERY_LOGICAL_BLOCK_PROTECTION
	SET_LOGICAL_BLOCK_PROTECTION
	STIOC_READ_ATTRIBUTE
	STIOC_WRITE_ATTRIBUTE
	VERIFY_TAPE_DATA

	Medium Changer IOCTL Operations
	Overview
	SMCIOC_ELEMENT_INFO
	SMCIOC_MOVE_MEDIUM
	SMCIOC_EXCHANGE_MEDIUM
	SMCIOC_POS_TO_ELEM
	SMCIOC_INIT_ELEM_STAT
	SMCIOC_INIT_ELEM_STAT_RANGE
	SMCIOC_INVENTORY
	SMCIOC_LOAD_MEDIUM
	SMCIOC_UNLOAD_MEDIUM
	SMCIOC_PREVENT_MEDIUM_REMOVAL
	SMCIOC_ALLOW_MEDIUM_REMOVAL
	SMCIOC_READ_ELEMENT_DEVIDS
	SMCIOC_READ_CARTIDGE_LOCATION

	Return Codes
	Codes for All Operations
	Open Error Codes
	Write Error Codes
	Read Error Codes
	Close Error Codes
	IOCTL Error Codes

	Chapter 3. HP-UX Tape and Medium Changer Device Driver
	HP-UX Programming Interface
	open
	close
	read
	variable block size
	fixed block size

	write
	ioctl

	IOCTL Operations
	General SCSI IOCTL Operations
	IOC_TEST_UNIT_READY
	IOC_INQUIRY
	IOC_INQUIRY_PAGE
	IOC_REQUEST_SENSE
	IOC_LOG_SENSE_PAGE
	IOC_LOG_SENSE10_PAGE
	IOC_MODE_SENSE
	IOC_RESERVE
	IOC_RELEASE
	IOC_PREVENT_MEDIUM_REMOVAL
	IOC_ALLOW_MEDIUM_REMOVAL
	IOC_GET_DRIVER_INFO

	SCSI Medium Changer IOCTL Operations
	SMCIOC_MOVE_MEDIUM
	SMCIOC_POS_TO_ELEM
	SMCIOC_ELEMENT_INFO
	SMCIOC_INVENTORY
	SMCIOC_AUDIT
	SMCIOC_LOCK_DOOR
	SMCIOC_READ_ELEMENT_DEVIDS
	SMCIOC_EXCHANGE_MEDIUM
	SMCIOC_INIT_ELEM_STAT_RANGE
	SMCIOC_READ_CARTRIDGE_LOCATION

	SCSI Tape Drive IOCTL Operations
	STIOC_TAPE_OP
	STIOC_GET_DEVICE_STATUS
	STIOC_GET_DEVICE_INFO
	STIOC_GET_MEDIA_INFO
	STIOC_GET_POSITION
	STIOC_SET_POSITION
	STIOC_GET_PARM
	STIOC_SET_PARM
	STIOC_DISPLAY_MSG
	STIOC_SYNC_BUFFER
	STIOC_ REPORT_ DENSITY_ SUPPORT
	STIOC_GET_DENSITY and STIOC_SET_DENSITY
	GET_ENCRYPTION_STATE
	SET_ENCRYPTION_STATE
	SET_DATA_KEY
	QUERY_PARTITION
	CREATE_PARTITION
	SET_ACTIVE_PARTITION
	ALLOW_DATA_OVERWRITE
	READ_TAPE_POSITION
	SET_TAPE_POSITION
	QUERY_LOGICAL_BLOCK_PROTECTION
	SET_LOGICAL_BLOCK_PROTECTION
	VERIFY_TAPE_DATA

	Base Operating System Tape Drive IOCTL Operations
	MTIOCTOP
	MTIOCGET

	Service Aid IOCTL Operations
	STIOC_DEVICE_SN
	STIOC_FORCE_DUMP
	STIOC_STORE_DUMP
	STIOC_READ_BUFFER
	STIOC_WRITE_BUFFER
	STIOC_QUERY_PATH
	STIOC_DEVICE_PATH
	STIOC_ENABLE_PATH
	STIOC_DISABLE_PATH

	Chapter 4. Linux Tape and Medium Changer Device Driver
	Software Interface
	Entry Points
	open
	close
	read
	write
	ioctl

	Medium Changer Devices
	open
	close
	ioctl

	General IOCTL Operations
	Overview
	SIOC_INQUIRY
	SIOC_REQSENSE
	SIOC_RESERVE
	SIOC_RELEASE
	SIOC_TEST_UNIT_READY
	SIOC_LOG_SENSE_PAGE and SIOC_LOG_SENSE10_PAGE
	SIOC_MODE_SENSE_PAGE and SIOC_MODE_SENSE
	SIOC_INQUIRY_PAGE
	SCSI_PASS_THROUGH
	SIOC_QUERY_PATH
	SIOC_DEVICE_PATHS
	SIOC_ENABLE_PATH
	SIOC_DISABLE_PATH

	Tape Drive IOCTL Operations
	Overview
	STIOCTOP
	STIOCQRYP or STIOCSETP
	STIOCSYNC
	STIOCDM
	STIOCQRYPOS
	STIOCSETPOS
	STIOCQRYSENSE
	STIOCQRYINQUIRY
	STIOC_LOCATE
	STIOC_READ_POSITION
	STIOC_RESET_DRIVE
	STIOC_PREVENT_MEDIUM_REMOVAL
	STIOC_ALLOW_MEDIUM_REMOVAL
	STIOC_REPORT_DENSITY_SUPPORT
	MTDEVICE (Obtain Device Number)
	STIOC_GET DENSITY and STIOC_SET_DENSITY
	GET_ENCRYPTION_STATE
	SET_ENCRYPTION_STATE
	SET_DATA_KEY
	STIOC_QUERY_PARTITION
	STIOC_CREATE_PARTITION
	STIOC_SET_ACTIVE_PARTITION
	STIOC_ALLOW_DATA_OVERWRITE
	STIOC_READ_POSITION_EX
	STIOC_LOCATE_16
	STIOC_QUERY_BLK_PROTECTION
	STIOC_SET_BLK_PROTECTION
	STIOC_VERIFY_TAPE_DATA

	Tape Drive Compatibility IOCTL Operations
	MTIOCTOP
	MTIOCGET
	MTIOCPOS

	Medium Changer IOCTL Operations
	SCSI IOCTL Commands
	SMCIOC_ELEMENT_INFO
	SMCIOC_MOVE_MEDIUM
	SMCIOC_EXCHANGE_MEDIUM
	SMCIOC_POS_TO_ELEM
	SMCIOC_INIT_ELEM_STAT
	SMCIOC_INIT_ELEM_STAT_RANGE
	SMCIOC_INVENTORY
	SMCIOC_LOAD_MEDIUM
	SMCIOC_UNLOAD_MEDIUM
	SMCIOC_PREVENT_MEDIUM_REMOVAL
	SMCIOC_ALLOW_MEDIUM_REMOVAL
	SMCIOC_READ_ELEMENT_DEVIDS

	Return Codes
	General Error Codes
	Open Error Codes
	Close Error Codes
	Read Error Codes
	Write Error Codes
	IOCTL Error Codes

	Chapter 5. Solaris Tape and Medium Changer Device Driver
	IOCTL Operations
	General SCSI IOCTL Operations
	IOC_TEST_UNIT_READY
	IOC_INQUIRY
	IOC_INQUIRY_PAGE
	IOC_REQUEST_SENSE
	IOC_LOG_SENSE_PAGE
	IOC_LOG_SENSE10_PAGE
	IOC_MODE_SENSE
	IOC_MODE_SENSE_SUBPAGE
	SIOC_MODE_SENSE
	IOC_DRIVER_INFO
	IOC_RESERVE
	IOC_RELEASE

	SCSI Medium Changer IOCTL Operations
	SMCIOC_MOVE_MEDIUM
	SMCIOC_EXCHANGE_MEDIUM
	SMCIOC_POS_TO_ELEM
	SMCIOC_ELEMENT_INFO
	SMCIOC_INVENTORY
	SMCIOC_AUDIT
	SMCIOC_AUDIT_RANGE
	SMCIOC_LOCK_DOOR
	SMCIOC_READ_ELEMENT_DEVIDS
	SMCIOC_READ_CARTRIDGE_LOCATION

	SCSI Tape Drive IOCTL Operations
	STIOC_TAPE_OP
	STIOC_GET_DEVICE_STATUS
	STIOC_GET_DEVICE_INFO
	STIOC_GET_MEDIA_INFO
	STIOC_GET_POSITION
	STIOC_SET_POSITION
	STIOC_GET_PARM
	STIOC_SET_PARM
	STIOC_DISPLAY_MSG
	STIOC_SYNC_BUFFER
	STIOC_REPORT_DENSITY_SUPPORT
	STOIC_GET_DENSITY
	STOIC_SET_DENSITY
	GET_ENCRYPTION_STATE
	SET_ENCRYPTION_STATE
	SET_DATA_KEY
	QUERY_PARTITION
	CREATE_PARTITION
	SET_ACTIVE_PARTITION
	ALLOW_DATA_OVERWRITE
	READ_TAPE_POSITION
	SET_TAPE_POSITION
	QUERY_LOGICAL_BLOCK_PROTECTION
	SET_LOGICAL_BLOCK_PROTECTION
	VERIFY_TAPE_DATA

	Base Operating System Tape Drive IOCTL Operations
	MTIOCTOP
	MTIOCGET
	MTIOCGETDRIVETYPE
	USCSICMD

	Downward Compatibility Tape Drive IOCTL Operations
	STIOCQRYP or STIOCSETP
	STIOCSYNC
	STIOCDM
	STIOCQRYPOS or STIOCSETPOS
	STIOCQRYSENSE
	STIOCQRYINQUIRY

	Service Aid IOCTL Operations
	STIOC_DEVICE_SN
	IOC_FORCE_DUMP
	IOC_STORE_DUMP
	IOC_READ_BUFFER
	IOC_WRITE_BUFFER
	IOC_DEVICE_PATH
	IOC_CHECK_PATH
	IOC_ENABLE_PATH and IOC_DISABLE_PATH

	Return Codes
	General Error Codes
	Open Error Codes
	Close Error Codes
	Read Error Codes
	Write Error Codes
	IOCTL Error Codes
	Opening a Special File
	Writing to a Special File
	Reading from a Special File
	Closing a Special File
	Issuing IOCTL Operations to a Special File

	Chapter 6. Windows Tape Device Drivers
	Windows Programming Interface
	User Callable Entry Points
	Tape Media Changer Driver Entry Points
	CreateFile
	ReadFile
	WriteFile
	Write Tapemark
	SetTapePosition
	GetTapePosition
	SetTapeParameters
	GetTapeParameters
	PrepareTape
	EraseTape
	GetTapeStatus
	DeviceIoControl

	Medium Changer IOCTLs
	IOCTL Commands

	Vendor Specific (IBM) Device IOCTLs for DeviceIoControl
	IOCTL_TAPE_OBTAIN_SENSE
	IOCTL_TAPE_OBTAIN_VERSION
	IOCTL_TAPE_LOG_SELECT
	IOCTL_TAPE_LOG_SENSE
	IOCTL_TAPE_LOG_SENSE10
	IOCTL_TAPE_REPORT_MEDIA_DENSITY
	IOCTL_TAPE_OBTAIN_MTDEVICE
	IOCTL_TAPE_GET_DENSITY
	IOCTL_TAPE_SET_DENSITY
	IOCTL_TAPE_GET_ENCRYPTION_STATE
	IOCTL_TAPE_SET_ENCRYPTION_STATE
	IOCTL_TAPE_SET_DATA_KEY
	IOCTL_CREATE_PARTITION
	IOCTL_QUERY_PARTITION
	IOCTL_SET_ACTIVE_PARTITION
	IOCTL_QUERY_DATA_SAFE_MODE
	IOCTL_SET_DATA_SAFE_MODE
	IOCTL_ALLOW_DATA_OVERWRITE
	IOCTL_READ_TAPE_POSITION
	IOCTL_SET_TAPE_POSITION
	IOCTL_QUERY_LBP
	IOCTL_SET_LBP
	IOCTL_SET_PEW_SIZE
	IOCTL_QUERY_PEW_SIZE
	IOCTL_VERIFY_TAPE_DATA
	IOCTL_CHANGER_OBTAIN_SENSE
	IOCTL_MODE_SENSE

	Variable and Fixed Block Read Write Processing

	Event Log

	Chapter 7. 3494 Enterprise Tape Library Driver
	AIX 3494 Enterprise Tape Library Driver
	Opening the Special File for I/O
	Header Definitions and Structure
	Parameters
	Reading and Writing the Special File
	Closing the Special File

	HP-UX 3494 Enterprise Tape Library Driver
	Opening the Library Device
	Closing the Library Device
	Issuing the Library Commands
	Parameters

	Building and Linking Applications with the Library Subroutines

	Linux 3494 Enterprise Tape Library Driver
	Opening the Library Device
	Closing the Library Device
	Issuing the Library Commands
	Parameters

	Building and Linking Applications with the Library Subroutines

	SGI IRIX 3494 Enterprise Tape Library
	Solaris 3494 Enterprise Tape Library
	Opening the Library Device
	Closing the Library Device
	Issuing the Library Commands
	Parameters

	Building and Linking Applications with the Library Subroutines

	Windows 3494 Enterprise Tape Library Service
	Opening the Library Device
	Closing the Library Device
	Issuing Library Commands
	Parameters

	Building and Linking Applications with the Library Subroutines

	3494 Enterprise Tape Library System Calls
	Library Device Number
	MTIOCLM (Library Mount)
	Description
	On Request
	On Return
	Return Value

	MTIOCLDM (Library Demount)
	Description
	On Request
	On Return
	Return Value

	MTIOCLQ (Library Query)
	Description
	On Request
	On Return
	Return Value

	MTIOCLSVC (Library Set Volume Category)
	Description
	On Request
	On Return
	Return Value

	MTIOCLQMID (Library Query Message ID)
	Description
	On Request
	On Return
	Return Value

	MTIOCLA (Library Audit)
	Description
	On Request
	On Return
	Return Value

	MTIOCLC (Library Cancel)
	Description
	On Request
	On Return
	Return Value

	MTIOCLSDC (Library Set Device Category)
	Description
	On Request
	On Return
	Return Value

	MTIOCLRC (Library Release Category)
	Description
	On Request
	On Return

	MTIOCLRSC (Library Reserve Category)
	Description
	On Request
	On Return

	MTIOCLSCA (Library Set Category Attribute)
	Description
	On Request

	MTIOCLDEVINFO (Device List)
	On Return
	Return Value

	MTIOCLDEVLIST (Expanded Device List)
	On Return
	Return Value

	MTIOCLADDR (Library Address Information)
	On Return
	Return Value

	MTIOCLEW (Library Event Wait)
	Description
	On Request
	On Return
	Return Value

	Error Description for the Library I/O Control Requests

	Notices
	Trademarks

	Index
	Numerics
	A
	C
	H
	I
	L
	N
	P
	Q
	R
	S
	T
	W

