<|ll

Net.Data

Administration and Programming Guide

for OS/400

<|ll

Net.Data

Administration and Programming Guide

for OS/400

Note

Be sure to read the information in LAppendix C_Natices” on page 119 before using this information and the product it

supports.

May 1999 Edition

This edition applies to:

* IBM Operating System/400 (Program 5763-SS1), Version 3 Release 2 Modification O

* IBM Operating System/400 (Program 5716-SS1), Version 3 Release 7 Modification O

* IBM TCP/IP Connectivity Utilities for AS/400 (Program 5763-TC1), Version 3 Release 2 Modification 0
* IBM TCP/IP Connectivity Utilities for AS/400 (Program 5716-TC1), Version 3 Release 7 Modification 0
* IBM HTTP Server for AS/400 (Program 5769-DG1), Version 4 Release 3 Modification 0

and to all subsequent versions, releases and modifications until otherwise indicated in new editions.

© Copyrigh t Internationa | Busines s Machine s Corporatio n 1997, 1999. All right s reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface i
About Net.Data . . . O
What's New in this Release’? A
About This Book . . . A v/ 1

Who Should Read Th|s Book A v/ 1

About Examples in ThisBook i
Chapter 1. Introduction 1
What is Net.Data? ... 1
Why Use Net.Data?. 2

Chapter 2. Configuring Net.Data 5
Copying the Net.Data Program Object to Your CGI BIN L|brary 5
About the Net.Data Initialization File. e 6
Customizing the Net.Data Initialization File 7
Creating an Initialization File 7
Configuration Variable Statements e
Path Configuration Statements. 13
Environment Configuration Statements. 17
Setting Up the Language Environments . 19
Setting up the Java Application Language Envwonment 19
Setting up the SQL Language Environment . 20

Configuring the Web Server. . . . 2
Granting Access Rights to Objects Accessed by Net Data 2
Chapter 3. Keeping Your Assets Secure 2
Using Firewalls A
Encrypting Your Data on the Network 24 o)
Using Authenticaton . 25
Using Authorization . 26
Using Net.Data Mechanisms 26
Net.Data Configuration Variables 26
Macro Development Techniques 27
Chapter 4. Invoking Net.Data . . . <
Invoking Net.Data with a Macro (Macro Request) e ¥
HTML Links. 3
HTML Forms . . . e X
Invoking a Persistent Macro e 7
Persistent Macro Syntax . 34
Examples 3
Chapter 5. Developing Net.Data Macros < 74
Anatomy of a Net.Data Macro 38
The DEFINEBlock ... 39
The FUNCTION Block. 40
HTMLBlocks .40
Net.Data Macro Variables . 42
Identifier Scope . 43
Defining Variables . 43
Referencing Variables . 45
Variable Types. 46
Net.Data Functions .. . b4

© Copyright IBM Corp. 1997, 1999 iii

Defining Functions .
Calling Functions.
Calling Net.Data Built-in Functlons
Generating Web Pages in a Macro .
HTML Blocks .
Report Blocks .
Conditional Logic and Looprng in a Macro
Conditional Logic: IF Blocks. .
Looping Constructs: WHILE Blocks .

Chapter 6. Using Language Environments .
Overview of Net.Data-Supplied Language Envrronments
Calling a Language Environment .
Handling Error Conditions
Security .
Direct Call Language Envrronment
Calling Programs.
Passing Parameters to Programs
Returning Values from Programs .
Direct Call Language Environment Example
Java Application Language Environment .
Calling Java Programs.
Passing Parameters to Java Programs
Java Application Language Environment Example
REXX Language Environment .
Executing REXX Programs .
Passing Parameters to REXX programs
REXX Language Environment Example
SQL Language Environment
Executing SQL Statements .
Data Type Considerations
Managing Transactions in a Net. Data Appllcatlon
Managing Multiple Database Connections
Stored Procedures . .
SQL Language Envrronment Example .
System Language Environment
Issuing Commands and Calling Programs
Passing Parameters to Programs. .
System Language Environment Example .

Chapter 7. Transaction Management with Persistent Macros

About Persistent Macros .
Defining a Transaction.
Starting a Transaction .
Specifying the Macro HTML bIocks ina Transactron
Ending a Transaction .
Defining the Scope of a Varlable in a Transactlon

Specifying COMMIT and ROLLBACK in a Transaction .

Example of a Persistent Macro

Chapter 8. Improving Performance
Net.Data Caching of Macros
Optimizing the Language Envrronments

REXX Language Environment .

SQL Language Environment

System Language Environment

Net.Data: Administration and Programming Guide for OS/400

54
58
59
63
63
65
69
70
72

75
76
76
76
77
77
77
77
80
80
81
81
81
82
82
82
83
84
85
85
87
90
91
92
96
98
98
98
99

. 101
. 101
. 102
. 102
. 103
. 106
. 107
. 107
. 108

111
111
111
111
. 112
. 112

Appendix A. Bibliography

Net.Data Technical Library

Related Documentation

Appendix B. Net.Data Sample Macro

Appendix C. Notices
Trademarks.

Glossary

Index .

. 113
. 113
. 113

. 115

. 119
. 120

. 123

. 125

Contents

\Y

Vi Net.Data: Administration and Programming Guide for OS/400

Preface

Thank you for selecting Net.Data®, the IBM™ development tool for creating dynamic
Web pages! With Net.Data, you can rapidly develop Web pages with dynamic
content by incorporating data from a variety of data sources and by using the power
of programming languages you already know.

About Net.Data

With IBM’s Net.Data product, you can create dynamic Web pages using data from
both relational and non-relational database management systems (DBMSSs),
including DB2 databases that can be accessed through DRDA, and using
applications written in programming languages such as Java, JavaScript, Perl, C,
C++, and REXX.

Net.Data is a macro processor that executes as middleware on a Web server
machine. You can write Net.Data application programs, called macros, that Net.Data
interprets to create dynamic Web pages with customized content based on input
from the user, the current state of your databases, other data sources, existing
business logic, and other factors that you design into your macro.

A request, in the form of a URL (uniform resource locator), flows from a browser,
such as Netscape Navigator or Internet Explorer, to a Web server that forwards the
request to Net.Data for execution. Net.Data locates and executes the macro and
builds a Web page that it customizes based on functions that you write. These
functions can:

» Encapsulate business logic within applications written in, but not limited to, C,
C++, RPG, COBOL, Java, or REXX programming languages.

* Access databases such as DB2
e Access other data sources such as flat files.

Net.Data passes this Web page to the Web server, which in turn forwards the page
over the network for display at the browser.

Net.Data can be used in server environments that are configured to use interfaces
such as HyperText Transfer Protocol (HTTP) and Common Gateway Interface
(CGI). HTTP is an industry-standard interface for interaction between a browser and
Web server, and CGl is an industry-standard interface for Web server invocation of
gateway applications like Net.Data. These interfaces allow you to select your
favorite browser or Web server for use with Net.Data. Net.Data also supports a
variety of Web server Application Programming Interfaces (APIs) for improved
performance. The Net.Data family of products provide similar capablities on the
0S/400, 0S/390, Windows NT, AlX, OS/2, HP-UX, Sun Solaris, Linux, and Santa
Cruz Operating System (SCO) operating systems.

What's New in this Release?

Net.Data for OS/400 provides the following new features in this release:
* Improved performance with the ability to cache macros and include files
* Language environment enhancements include:
— Two new language environments:
- Java Application

© Copyright IBM Corp. 1997, 1999 Vii

- Direct Call
— Support for large objects (LOBs) in the SQL language environment
* Macro language enhancements include:

— Ability to generate and send e-mail messages from the macro using the
DTW_SENDMAIL built-in function

— Ability to get and set HTTP cookies with the DTW_SETCOOKIE and
DTW_GETCOOKIE built-in functions

— Ability to replace strings with the DTW_REPLACE function

— Support for milliseconds in the DTW_TIME function

— Support for dynamically building variable references

— Ability to set the VALUE attribute in the OPTION element of DTW_SELECT()

— Support for the RETURNS keyword in the MACRO_FUNCTION language
construct

— Support for the hash (#) character in variable names.
» Configuration enhancements include:

— ENVIRONMENT statements are no longer required in the Net.Data
initialization file for Net.Data-supplied language environments

— Ability to disable the SHOWSQL variable with the DTW_SHOWSQL
configuration variable (default is disabled)

About This Book

This book discusses administration and programming concepts for Net.Data, as well
as how to configure Net.Data and its components, plan for security, and improve
performance.

Building on your knowledge of programming languages and database, you learn
how to use the Net.Data macro language to develop macros. You learn how to use
Net.Data-provided language environments that access DB2 databases, as well as
using RPG, COBOL and other programming languages to access your data.

This book may refer to products or features that are announced, but not yet
available.

More information including sample Net.Data macros, demos, and the latest copy of
this book, is available from the following World Wide Web sites:

http://www.software.ibm.com/data/net.data
http://mwww.as400.ibm.com/netdata

Who Should Read This Book

viii

This book is intended for people involved in planning and writing Net.Data
applications. To understand the concepts discussed in this book, you should be
familiar with how a Web server works, understand simple SQL statements, and
know HTML tags, including HTML form tags.

The Net.Data macro language, variables, and built-in functions, as well as operating
system differences are described in Net.Data Reference.

Net.Data: Administration and Programming Guide for OS/400

About Examples in This Book

Examples used in this book are kept simple to illustrate specific concepts and do
not show every way Net.Data constructs can be used. Some examples are
fragments that require additional code to work.

Preface IX

X Net.Data: Administration and Programming Guide for OS/400

Chapter 1. Introduction

Most Web pages on the Internet are static Web pages; in other words, pages that
do not change unless you edit them. To put “live” data and applications on the Web
(such as current sales statistics), Web site developers usually write programs that
execute as middleware at the Web server to dynamically build Web pages. Writing
these types of programs is not easy.

Net.Data simplifies the writing of interactive Web applications through macros.

This chapter describes Net.Data and the reasons why you might want to use it for

your Web applications.

° 0 o

What is Net.Data?

Using Net.Data macros, you can execute programming logic, access and
manipulate variables, call functions, and use report-generating tools. A macro is a
text file containing Net.Data macro language constructs, HTML tags, Javascript, and
language environment statements, such as SQL. Net.Data processes the macro to
produce output that can be displayed by a Web browser. Macros combine the
simplicity of HTML with the dynamic functionality of Web server programs, making it
easy to add live data to static Web pages. The live data can be extracted from local
or remote databases and from flat files, or be generated by applications and system
services.

m illustrates the relationship between Net.Data for OS/400, the Web server,
and supported data and programming language environments.

: Net.Data-
Web | : CGI Net.Data Macro File Eupplled
Server anguage Tava

%Define{...%}

- %HTML(Initial-Page) EIRIENE
{

Applications

Commands or
| Programs
N Programs
%o}
Initial » %HTML(Report) \ REXX
nitia { Programs
Page < :
. —
. |saL 7{DB2 Data__||
Report %}
Page User-written
y Language
Environments
Java Applet

0S/400 I

Figure 1. The Relationship between Net.Data for 0S/400, the Web Server, and Supported
Data and Program Sources

© Copyright IBM Corp. 1997, 1999 1

The Web server invokes Net.Data as a CGI application when it receives a URL that
requests Net.Data services. The URL includes Net.Data-specific information,
including the macro that is to be processed. When Net.Data finishes processing the
request, it sends the resulting Web page to the Web server. The server passes it on
to the Web client, where it is displayed by the browser.

Why Use Net.Data?

2

Net.Data is a good choice for creating dynamic Web pages because using the
macro language is simpler than writing your own Web server applications and
because Net.Data lets you use languages that you already know, such as HTML,
SQL, REXX, and JavaScript. Net.Data also provides language environments that
access DB2 databases, or use REXX, Perl, and other languages for your
applications. In addition, changes to a macro can be seen instantaneously on a
browser.

Net.Data complements data management capabilities that already exist on your
operating system by enabling both data and related business logic for the Web.
More specifically, Net.Data:

Provides a simple, yet powerful macro language that allows for rapid
development of Internet and Intranet applications. The Net.Data Web application
environment provides the following features:

Permits the separation of data generation logic from presentation logic within
your Web applications. Net.Data does not impose any restrictions on the method
with which the data is presented (such as HTML or Javascript). This separation
allows users to easily change the presentation of data using the latest
presentation techniques.

Allows you to use existing skills and business logic to generate Web pages by
providing the ability to interface with programs written in C, C++, RPG, COBOL,
REXX, Java or other languages.

Provides the ability to develop complex Internet applications quickly, using a
simple macro language.

Provides high-performance access to data that is stored in DB2 and in any
remote DRDA-enabled database.

Provides easy migration of macros between all operating systems supported by
the Net.Data family of products.

Interpreted Macro Language

The Net.Data macro language is an interpreted language. When Net.Data is
invoked to process a macro, Net.Data directly interprets each language
statement in a sequential fashion, starting from the top of the file. Using this
approach, any changes you make to a macro can be immediately seen
when you next specify the URL that executes the macro. No recompilation
is required.

Free Format

The Net.Data macro language has only a few rules about programming
format. This simplicity provides programmers with freedom and flexibility. A
single instruction can span many lines, or multiple instructions can be
entered on a single line. Instructions can begin in any column. Spaces or
entire lines can be skipped. Comments can be used anywhere.

Variables Without Type

Net.Data: Administration and Programming Guide for OS/400

Net.Data regards all data as character strings. Net.Data uses built-in
functions to perform arithmetic operations on a string that represents a valid
number, including those in exponential formats. Macro language variables

are discussed in detail in Net.Data Macro Variables” on page 42

Built-in Functions

Net.Data supplies built-in functions that perform various processing,
searching, and comparison operations for both text and numbers. Other
built-in functions provide formatting capabilities and arithmetic calculations.

Error Handling

When Net.Data detects an error, messages with explanations are returned
to the client. You can customize the error messages before they are
returned to a user at a browser. See Net.Data Reference for more
information.

Chapter 1. Introduction 3

4 Net.Data: Administration and Programming Guide for 0S/400

Chapter 2. Configuring Net.Data

Net.Data for OS/400 is delivered as a standard part of:
* IBM TCP/IP Connectivity Utilities/400 V3R2, V3R7, V4R1, and V4R2
e IBM HTTP Server for AS/400 V4R3 and subsequent releases

There is nothing extra to buy; and there is no Net.Data software that you need to
download and install.

The AS/400 TCP/IP and HTTP Server software that you need comes standard with
0S/400, but is optionally installed. The following optional software should be
installed on your system for the following versions of the OS/400 operating system:

» For IBM OS/400 operating system Version 3 Release 2, Version 3 Release 7,
and subsequent versions and releases (57xx-SS1):

— IBM TCP/IP Connectivity Utilities/400 (57xx-TC1)

» For IBM OS/400 operating system Version 4 Release 3, and subsequent versions
and releases (57xx-SS1):

— IBM HTTP Server for AS/400 (57xx-DG1)

After installing Net.Data, complete the steps described in the following sections to
configure Net.Data for OS/400. The steps include:

° ¢ ”

Copying the Net.Data Program Object to Your CGI-BIN Library

Before using Net.Data, you must copy the Net.Data program object to the CGI-BIN
library and provide access rights to the object.

To copy the Net.Data program object:

1. Using the Create Duplicate Object (CRTDUPOBJ) command, copy the Net.Data
program object, DB2WWW, from the QTCP library to a CGI-BIN library.

0S/400 V4R3 users: Use the program object in library QHTTPSVR; the
program object in the QTCP library routes Net.Data requests to the QHTTPSVR
library.

2. Change the DB2WWW program object in the CGI-BIN directory so that the user
profile that CGI programs run under has access to the program object.

By default, the DB2WWW program object authority for *PUBLIC users is set to
*EXCLUDE. To provide access to the program object, change the program
object’s authority for *PUBLIC users to *USE, or specifically give the user profile
access to the DB2WWW program object.

You can copy the Net.Data program object to multiple libraries for different

applications. This allows you to have more than one version of the Net.Data
initialization file or multiple protection schemes. See “Customizing the Net.Data

© Copyright IBM Corp. 1997, 1999 5

Initialization File” on page 74 for more information about the Net.Data initialization
file; see LUsing Authentication” on page 29 for information on authentication.

To copy the Net.Data program object to multiple libraries:

1. Copy the Net.Data program object, DB2WWW, to a library using the steps listed
above.

2. Associate the Net.Data program object with a CL program in each library.

a. Create a CL program that calls the Net.Data program object located in the
library specified in step t
b. Copy the CL program to each library.

In effect, the CL program you created becomes the Net.Data program object. If
you do not associate the program object with a CL program, and copy the
Net.Data program object DB2WWW to the different libraries, you get a -901
SQL code when using the SQL language environment.

In the following sections, the CL program you created should be treated as the
Net.Data program object, if you chose to create the CL program to call
Net.Data.

About the Net.Data Initialization File

6

Net.Data uses its initialization file to establish the settings of various configuration
variables and to configure language environments and search paths. The settings of
configuration variables control various aspects of Net.Data operation, such as the
following:

» Specifying a SMTP server and a character set for sending e-malil
* Enabling the SQL language environment variable SHOWSQL

The language environment statements define the Net.Data language environments
that are available and identify special input and output parameter values that flow to
and from the language environments. The language environments enable Net.Data
to access different data sources, such as DB2 databases and system services. The
path statements specify the directory paths to files that Net.Data uses, such as
macros and programs.

Creating the Net.Data initialization file is optional with Net.Data for OS/400. By
using an initialization file, you can use shorter URLs and shorter references to
programs and include files within your Net.Data macro files. However, you are
required to have an initialization file if you decide to create your own language
environment.

If you do not create an initialization file, Net.Data runs as if you have configured an
initialization file with only the supported language environment statements (see
[Chapter 6 Using | anguage Environments” an page 74 to learn about supported
language environments). In this case, all macro, include, and executable references
within the macro must be fully qualified.

Net.Data: Administration and Programming Guide for OS/400

Customizing the Net.Data Initialization File

The information contained in the initialization file is specified using three types of
configuration statements, described in the following sections:

See lCreating an Initialization Filel to learn how to create an initialization file.

The sample initialization file shown in m contains examples of these

statements.
1 DTW_SMTP_SERVER 9.5.5.78 * Line 1 sets the
values of the
3 INCLUDE_PATH /WWW/MACRO;/QSYS.LIB/WWW.LIB/MACRO.FILE variables

4 EXEC _PATH /QSYS.LIB;/QSYS.LIB/WWW.LIB . .
- * Lines 2- 4 define

5 ENVIRONMENT(MYLE1) /QSYS.LIB/LELIB.LIB/MYLE1.SRVPGM paths to the files
(IN VARL, OUT VAR2) that Net.Data needs
to access

* Line 5 specifies a
user-defined
ENVIRONMENT
statement

Figure 2. The Net.Data initialization file

The text of each individual configuration statement must all be on one line. (An
ENVIRONMENT statement is shown on several lines for readability.) Ensure that
the initialization file contains an ENVIRONMENT statement for each user-defined
language environment that you call from your macros. If you fully qualify all
references to files within the macro, you do not need to specify any of the path
configuration statements.

The following sections describe how to create the initialization file and customize
the configuration statements in the initialization file.

Creating an Initialization File

Creating an initialization file is optional when using Net.Data for OS/400. You should
create an initialization file if:

* You want to set any of the Net.Data configuration variables to non-default values.

* You want to define the path statements for macro, include, and executable
program files to shorten references to these files.

* You are using a language environment not supplied by Net.Data.

To create an initialization file:

1. In the library where the DB2WWW program object resides, use the Create
Source Physical File (CRTSRCPF) command to create the initialization file.

File name: INI

Member name: DB2WWW

Chapter 2. Configuring Net.Data 7

It is recommended that you create the initialization file with a record length of
240 because the text of configuration statements must all be on one line.

2. Use the Source Entry Utility (SEU) or a workstation editor to add configuration
statements to the file as demonstrated in the sample macro and in the following
sections.

If you create an initialization file and then update it, you do not need to end or
restart the Web server in order for the changes to take effect. Net.Data reads the
initialization file once, during the initial invocation by an HTTP server job. The
configuration data is saved so that on subsequent Net.Data invocations, Net.Data
does not have to read the initialization file. However, if a change is made to the
initialization file, Net.Data detects the change to the initialization file and reads the
initialization file again.

Authorization Tip: Ensure that the user IDs under which Net.Data executes have
the appropriate access rights to this file. See t i i '
" for more information.

Configuration Variable Statements

8

Net.Data configuration variable statements set the values of configuration variables.
Configuration variables are used for various purposes. Some variables are required
by a language environment to work properly or to operate in an alternate mode.
Other variables control the character encoding or content of the Web page being
constructed. Additionally, you can use configuration variable statements to define
application-specific variables.

The configuration variables you use depend on the language environments you are
using, as well as other factors that are specific to the application.

To update the configuration variable statements:

Customize the initialization file with the configuration variables that are required for
your application. A configuration variable has the following syntax:

NAME[=]value-string
The equal sign is optional, as denoted by the brackets.
The following sub-sections describe the configuration variables statements that you

can specify in the initialization file:
o FDTW MACRQ CACHE SIZE: Macro Cache Size Variahle” on page q

. I‘I‘)T\AI_QI\/ITD_(‘HAF?QFT' E-mail SMTP _Character Set \ariabhle” an page. 11

‘ . H H ”

« IDTWR_CI QSE_REGISTRIES: Qpen Weh Registry Variahle” on page 13

Net.Data: Administration and Programming Guide for OS/400

DTW_MACRO_CACHE_SIZE: Macro Cache Size Variable

Indicates the memory size in megabytes that Net.Data should use when caching
macros. When the cache size is exceeded, Net.Data removes old cached macros to
make room in the cache. Net.Data removes the macros that have been used the
least recently.

Syntax:
DTW_MACRO_CACHE_SIZE [=] size

Where:

size Specifies the cache memory size in number of megabytes. The default is 5
MB and caching is always enabled. If size is 0, no macros are cached. If
sizeis 1 - 4, the default of 5 is used.

Example: Specifies a cache size of 16 MB.
DTW_MACRO_CACHE_SIZE 16

DTW_PAD_PGM_PARMS: Parameter Padding Configuration
Variable

Indicates to a language environment whether character parameters that are to be
passed to a program or stored procedure are padded with blanks. Character
parameters have a data type of CHARACTER or CHAR.

For IN or INOUT parameters, if the length of parameter value is less than the
specified precision, blanks are inserted to the right of the parameter value until the
length of the parameter value is the same as the precision.

For OUT parameters, the parameter value is set to precision blanks.

After the call to the program or stored procedure, all trailing blanks are removed
from OUT and INOUT parameter values.

Set this variable in the Net.Data initialization file to specify a value for all of your
macros. You can override the value by defining it in the macro. If
DTW_PAD_PGM_PARMS is not defined in the macro, it uses the value in the
initialization file.

DTW_PAD_PGM_PARMS is supported by the Direct Call and SQL language
environments.

Syntax:
DTW_PAD_PGM_PARMS [=] YES|NO

Where:

YES Specifies that all IN and INOUT character parameter values are left justified
and padded with blanks for the defined precision of the parameter before
passing the parameters to a program or stored procedure. Trailing blanks
are removed after the call to a program or stored procedure.

NO Specifies that no padding is added to character parameter values (values
are NULL-terminated) when passing parameters to programs or stored
procedures. Trailing blanks are not removed after calling a program or
stored procedure. This is the default.

Chapter 2. Configuring Net.Data 9

10

DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration
Variable

Overrides the effect of setting SHOWSQL within your Net.Data macros.

Syntax:
DTW_SHOWSQL YES|NO

Where:

YES Enables SHOWSQL in any macro that sets the value of SHOWSQL to YES.

NO Disables SHOWSQL in your macros, even if the variable SHOWSQL is set
to YES. NO is the default.

[fable 1 describes how the settings in the Net.Data initialization file and the macro
determine whether the SHOWSQL variable is enabled or disabled for a particular
macro.

Table 1. The Relationship Between Settings in the Net.Data Initialization File and
the Macro for SHOWSQL

Setting of Setting SHOWSQL SQL statement is
DTW_SHOWSQL displayed
NO NO NO
NO YES NO
YES NO NO
YES YES YES

DTW_SMTP_CCSID: E-mail SMTP CCSID Variable

Specifies the ASCII coded character set identifier (CCSID) associated with the
Multi-purpose Internet Mail Extensions (MIME) character set specified in
DTW_SMTP_CHARSET. The CCSID is to be used when translating data specified
on the DTW_SENDMAIL function from EBCDIC to ASCII.

If DTW_SMTP_CCSID is specified, you must also specify DTW_SMTP_CHARSET.
When specifying the CCSID, ensure that it is appropriate for the MIME character
set specified in DTW_SMTP_CHARSET and that the CCSID is supported by the
system. Mable 2 on page 11 lists common MIME character sets and the associated
ASCII CCSID. If DTW_SMTP_CCSID is not set, Net.Data uses the CCSID
associated with MIME character set 1ISO-8859-1, which is 819.

Syntax:
DTW_SMTP_CCSID [=] ascii_ccsid

where ascii_ccsid is the ASCII CCSID (a number between 1-65534) to be used
when translating from EBCDIC to ASCII.

Example:
DTW_SMTP_CCSID 912

This ASCII CCSID corresponds to the MIME character set ISO-8859-2

Net.Data: Administration and Programming Guide for OS/400

DTW_SMTP_CHARSET: E-mail SMTP Character Set Variable

Specifies the Multi-purpose Internet Mail Extensions (MIME) character set that is to
be used in the e-mail messages by the DTW_SENDMAIL function. If
DTW_SMTP_CHARSET is specified, you must also specify DTW_SMTP_CCSID.
When specifying the MIME character set, ensure that the character set is valid
because Net.Data does not validate the value specified for this variable. If
DTW_SMTP_CHARSET is not set, Net.Data uses the MIME character set
ISO-8859-1, with the associated CCSID of 819.

frable 2 lists common MIME character sets and the associated ASCII CCSID.

Table 2. Character sets supported by Net.Data

MIME Standard Character ASCII CCSID Description
Set

US-ASCII 367 US English
1ISO-2022-JP 5052 Japan MBCS
ISO-8859-1 819 Latin-1
ISO-8859-2 912 Latin-2
ISO-8859-5 915 Cyrillic
ISO-8859-6 1089 Arabic
ISO-8859-7 813 Greek
ISO-8859-8 916 Hebrew
ISO-8859-9 920 Latin-5
Syntax:

DTW_SMTP_CHARSET character_set
Where character_set is the MIME character set to be used.

Example:
DTW_SMTP_CHARSET 1is0-8859-2

This MIME character set corresponds to the 912 ASCII CCSID.

DTW_SMTP_SERVER: E-mail SMTP Server Variable

Specifies the SMTP server to use for sending out e-mail messages using the
DTW_SENDMAIL built-in function. The value of this variable can either be a host
name or an IP address. If this variable is not set, Net.Data uses the local host as
the SMTP server.

Syntax:
DTW_SMTP_SERVER server_name

Where server_name is the host name or IP address of the the SMTP server that is
to be used for sending e-mail messages.

Performance tip: Specify an IP address for this value to prevent Net.Data from
connecting to a domain name server when retrieving the IP address of the specified
SMTP server.

Example:

Chapter 2. Configuring Net.Data 11

12

DTW_SMTP_SERVER 9.5.34.5

DTW_SQL_ISOLATION: DB2 Isolation Variable

The DTW_SQL language environment uses the DTW_SQL_ISOLATION
configuration statement to determine the degree to which the database operations
executed by the DTW_SQL language environment are isolated from concurrently
executing processes.

Syntax:
DTW_SQL_ISOLATION locking method

Where locking _method is one of the following values:
DTW_SQL_NO_COMMIT

Specifies not to use commitment control. For the OS/400 operating system,
do not specify this value if a relational database is specified in the relational
database directory and the relational database is on a non-OS/400 system.

DTW_SQL_READ_UNCOMMITTED

Specifies locking for the objects referred to in SQL ALTER, COMMENT ON,
CREATE, DROP, GRANT, LABEL ON, and REVOKE statements and the
rows updated, deleted, and inserted. The objects are locked until the end of
the unit of work (transaction). Uncommitted changes in other processes can
be seen.

DTW_SQL_READ_COMMITTED
Specifies locking for the objects referred to in SQL ALTER, COMMENT ON,
CREATE, DROP, GRANT, LABEL ON, and REVOKE statements and the
rows updated, deleted, and inserted. The objects are locked until the end of
the unit of work (transaction). A row that is selected, but not updated, is
locked until the next row is selected. Uncommitted changes in other
processes cannot be seen.

DTW_SQL_REPEATABLE_READ
Specifies locking for the objects referred to in SQL ALTER, COMMENT ON,
CREATE, DROP, GRANT, LABEL ON, and REVOKE statements and the
rows selected, updated, deleted, and inserted. The objects are locked until
the end of the unit of work (transaction). Uncommitted changes in other
processes cannot be seen.

DTW_SQL_SERIALIZABLE
Specifies locking for the objects referred to in SQL ALTER, COMMENT ON,
CREATE, DROP, GRANT, LABEL ON, and REVOKE statements and the
rows selected, updated, deleted, and inserted. The objects are locked until
the end of the unit of work (transaction). Uncommitted changes in other
processes cannot be seen. All tables referred to in SELECT, UPDATE,
DELETE, and INSERT statements are locked exclusively until the end of
the unit of work (transaction).

DTW_SQL_NAMING_MODE: SQL Table Naming Variable

The DTW_SQL_NAMING_MODE configuration statement specifies how a table

name can be specified in an SQL statement.

Syntax:
DTW_SQL_NAMING_MODE mode

Where mode is one of the following values:

Net.Data: Administration and Programming Guide for OS/400

SQL_NAMING
Specifies that tables are qualified by the collection name in the form:
collection.table

where collection is the name of the collection and table is the table name.
The default qualifier is the user ID running the process that executes the
SQL statement and is used when the table name is not explicitly qualified
and the default collection name is not specified. SQL_NAMING is the
default table name.

SYSTEM_NAMING
Specifies that files are qualified by library name in the form:
library/file

where library is the name of the library and file is the table name. The
default search path is the library list (*LIBL) for the unqualified table name,
if the table name (file) is not explicitly qualified and a default collection
name (library) is not specified.

DTWR_CLOSE_REGISTRIES: Open Web Registry Variable

Specifies whether to close or keep a Web registry open. This variable lets you keep
the Web registry open so that subsequent invocations of Net.Data macros that
access the same Registry do not have to reopen the registry.

Syntax:
DTWR_CLOSE_REGISTRIES YES|NO

Where:

YES Specifies to close all open Web registries after a Net.Data macro has been
processed.

NO Specifies to leave all open Web registries open after a Net.Data macro has
been processed. NO is the default.

Performance tip: You can use the DTWR_CLOSE_REGISTRIES configuration
statement to improve the performance of accessing a Web registry (with the Web
registry built-in functions) by minimizing the opening and closing of registries. If the
registry can be accessed by multiple processes at the same time (as in the case
with simultaneous browser request), set DTWR_CLOSE_REGISTRIES to YES.

Path Configuration Statements

Net.Data determines the location of files and executable programs used by
Net.Data macros from the settings of path configuration statements. The path
statements are:

« MNCILUDE PATH” on page 15

‘ ”

Chapter 2. Configuring Net.Data 13

14

These path statements identify one or more directories that Net.Data searches
when attempting to locate macros, executable files, text files, and include files. The
path statements that you need depend on the Net.Data capabilities that your
macros use.

Update guidelines:

Several general guidelines apply to the path statements. Exceptions are noted in
the description of each path statement.

» Each specified directory ends with a semicolon (;).
» Forward slashes (/) and back slashes (\) are treated the same.

* Each path statement can specify multiple paths. Paths are searched from left to
right in the order specified. This multiple-path capability lets you organize your
files within multiple directories. For example, you can place each of your Web
applications in its own directory.

* It is recommended to use absolute path statements.

The following sections describe the purpose and syntax of each path statement and
provide examples of valid path statements.

MACRO_PATH

The MACRO_PATH configuration statement identifies the directories that Net.Data
searches for Net.Data macros. For example, specifying the following URL requests
the Net.Data macro with the path and file name /macro/sqim.d2w:

http://server/cgi-bin/db2www/macro/sqlm.d2w/report

Syntax:
MACRO_PATH [=] pathl;path2;...;pathn

The equal sign (=) is optional, as indicated by brackets.

Net.Data appends the path /macro/sqlm.d2w to the paths in the MACRO_PATH
configuration statement, from left to right until Net.Data finds the macro or searches

all paths. See I'Chapter 4. Invoking Net Data” on page 31 for information on invoking

Net.Data macros.

Example: The following example shows the MACRO PATH statement in the
initialization file and the related link that invokes Net.Data.

Net.Data initialization file:
MACRO_PATH /u/userl/macros;/usr/1pp/netdata/macros;

HTML link:
Submit another query.

If the file query.d2w is found in the directory /u/userl/macros, then the
fully-qualified path is /u/userl/macros/query.d2w.

If the file is not found in the directories specified in the MACRO_PATH statement,
Net.Data searches for the file in the root (/) directory. For example, if the following
URL is submitted:

http://myserver/cgi-bin/db2www/myfile.txt/report

Net.Data: Administration and Programming Guide for OS/400

and the file myfile.txt was not found in any of the directories specified in
MACRO_PATH, then Net.Data attempts to find the file in the root (/) directory:

/myfile.txt

EXEC_PATH

The EXEC_PATH configuration statement identifies one or more directories that
Net.Data searches for an external program that is invoked by the EXEC statement
or an executable variable. If the program is found, the external program name is
appended to the path specification, resulting in a fully qualified file name that is
passed to the language environment for execution.

Syntax:
EXEC_PATH [=] pathl;path2;...;pathn

Example: The following example shows the EXEC PATH statement in the
initialization file and the EXEC statement in the macro that invokes an external
program.

Net.Data initialization file:
EXEC_PATH /qgsys.lib/programs.lib;/qgsys.1ib/rexx.1ib/rexxpgms.file;

Net.Data macro:

%FUNCTION(DTW_REXX) myFunction() {
%EXEC{ myFunction.mbr %}

0,
%}

If the file myFunction.mbr is found in the /qsys.1ib/rexx.1ib/rexxpgms.file
directory, the qualified name of the program is
/qsys.lib/rexx.1ib/rexxpgms.file/myFunction.mbr.

If the file is not found in the directories specified in the EXEC_PATH statement:

 If the specified path is absolute, Net.Data searches for the file in the specified
path. For example, if the following EXEC statement were specified:

%EXEC{/qgsys.1ib/programs.1ib/rpgl.pgm %}

Net.Data would search for the file rpgl.pgm in the /qsys.1ib/programs.1ib
directory.

 If the specified path is relative, Net.Data searches the current working directory.
For example, if the following EXEC statement were specified:

%EXEC { rpgl.pgm %}

then Net.Data would attempt to find the file rpgl.pgm in the current working
directory.

INCLUDE_PATH

The INCLUDE_PATH configuration statement identifies one or more directories that
Net.Data searches to find a file specified on an INCLUDE statement in a Net.Data
macro. When it finds the file, Net.Data appends the include file name to the path
specification to produce the qualified include file name.

Syntax:

Chapter 2. Configuring Net.Data 15

16

INCLUDE_PATH [=] pathl;path2;...;pathn

Example 1: The following example shows both the INCLUDE_PATH statement in
the initialization file and the INCLUDE statement that specifies the include file.

Net.Data initialization file:
INCLUDE_PATH /u/userl/includes;/usr/1pp/netdata/includes;

Net.Data macro:
%INCLUDE "myInclude.txt"

If the file mylinclude.txt is found in the /u/userl/includes directory, the
fully-qualified name of the include file is /u/userl/includes/myInclude.txt.

Example 2: The following example shows the INCLUDE_PATH statement and an
INCLUDE file with a subdirectory name.

Net.Data initialization file:
INCLUDE_PATH /u/userl/includes;/usr/1pp/netdata/includes;

Net.Data macro:
%INCLUDE "OE/oeheader.inc"

The include file is searched for in the directories /u/userl/includes/0E and
/usr/1pp/netdata/includes/OE. If the file is found in
/usr/1pp/netdata/includes/0E, the fully qualified name of the include file is
/usr/1pp/netdata/includes/0E/oeheader.inc.

If the file is not found in the directories specified in the INCLUDE_PATH statement:

» If the specified path is absolute, Net.Data searches for the file in the specified
path. For example, if the following INCLUDE statement were specified:

%INCLUDE "/u/userl/includes/oeheader.inc

then Net.Data would search for the file oeheader.inc in the /u/userl/includes
directory.

 If the specified path is relative, Net.Data searches the current working directory.
For example, if the following INCLUDE statement were specified:

%INCLUDE "oeheader.inc"

then Net.Data would attempt to find the file oeheader.inc in the current working
directory.

FFI_PATH

The FFI_PATH configuration statement identifies one or more directories that
Net.Data searches for a flat file that is referenced by a flat file interface (FFI)
function.

Syntax:
FFI_PATH [=] pathl;path2;...;pathn

Example: The following example shows an FFI_PATH statement in the initialization
file.

Net.Data: Administration and Programming Guide for OS/400

Net.Data initialization file:
FFI_PATH /u/userl/ffi;/usr/Tpp/netdata/ffi;

When the FFI language environment is called, Net.Data looks in the path specified
in the FFI_PATH statement.

Because the FFI_PATH statement is used to provide security to those files not in
directories in the path statement, there are special provisions for FFI files that are
not found. See the FFI built-in functions section in Net.Data Reference.

HTML_PATH

The HTML_PATH configuration statement specifies into which directory Net.Data
writes large objects (LOBs). This path statement accepts only one directory path.

The HTML_PATH must specify an IFS directory which is not in the QSYS.LIB file
system.

Syntax:
HTML_PATH [=] path

Example: The following example shows the HTML PATH statement in the
initialization file.

Net.Data initialization file:

HTML_PATH /db2/1obs

When a query returns a LOB, Net.Data saves it in the directory specified in the
HTML_PATH configuration statement.

Performance tip: Consider system limitations when using LOBs because they can

quickly consume resources. See l'Using | arge Ohjects” on page 87 for more

information.

DTW_JAVA_CLASSPATH

The DTW_JAVA CLASSPATH configuration statement specifies the path used to
locate Java classes. Directories are separated by colons.

Syntax:
DTW_JAVA_CLASSPATH [=] path

Example: The following example shows the DTW_JAVA_CLASSPATH statement in
the initialization file.

Net.Data initialization file:
DTW_JAVA_CLASSPATH /directoryl/directory2:/QIBM/ProdData/Java400

| Environment Configuration Statements

An ENVIRONMENT statement configures a language environment. A language
environment is a component of Net.Data that Net.Data uses to access a data
source such as a DB2 database or to execute a program written in a language such
as REXX. Net.Data provides a set of language environments, as well as an
interface that allows you to create your own language environments. These

Chapter 2. Configuring Net.Data 17

18

language environments are described in [Chapter 6 _Using | anguage Environments’]

and the language environment interface is described in Net.Data
Language Environment Interface Reference.

Net.Data requires that an ENVIRONMENT statement for a particular language
environment exist before you can invoke that language environment.

Net.Data for OS/400 does not require an ENVIRONMENT statement for language
environments that are shipped with Net.Data. However, if a language environment
statement is encountered, it overrides the default that Net.Data uses. It is
recommended that ENVIRONMENT statements for Net.Data supplied language
environments not be added to the Net.Data configuration file.

You can associate variables with a language environment by specifying the
variables as parameters in the ENVIRONMENT statement. Net.Data implicitly
passes the parameters that are specified on an ENVIRONMENT statement to the
language environment as macro variables. To change the value of a parameter that
is specified on an ENVIRONMENT statement in the macro, either assign a value to
the variable using the DTW_ASSIGN() function or define the variable in a DEFINE
section. Important: If a macro variable is defined in a macro but is not specified on
the ENVIRONMENT statement, the macro variable will not be passed to the
language environment.

For example, a macro can define a DATABASE variable to specify the name of a
database at which an SQL statement within a DTW_SQL function is to be executed.
The value of DATABASE must be passed to the SQL language environment
(DTW_SQL) so that the SQL language environment can connect to the designated
database. To pass the variable to the language environment, you must add the
DATABASE variable to the parameter list of the environment statement for
DTW_SQL.

The sample Net.Data initialization file makes several assumptions about
customizing the setting of Net.Data environment configuration statements. These
assumptions may not be correct for your environment. Modify the statements
appropriately for your environment.

To add or update an ENVIRONMENT statement:

ENVIRONMENT statements have the following syntax:
ENVIRONMENT (type) library name (parameter list, ...)

Parameters:

* type
The name by which Net.Data associates this language environment with a
FUNCTION block that is defined in a Net.Data macro. You must specify the type
of the language environment on a FUNCTION block definition to identify the
language environment that Net.Data should use to execute the function.

 library_name

The name of the service program containing the language environment interfaces
that Net.Data calls.

The service program name is specified with the .SRVPGM extension.
* parameter_list

Net.Data: Administration and Programming Guide for OS/400

The list of parameters that are passed to the language environment on each
function call, in addition to the parameters that are specified in the FUNCTION
block definition.

To set and pass the variables in the parameters list, define the variable in the
macro.

You must define these parameters as configuration variables or as variables in
your macro before executing a function that will be processed by the language
environment. If a function modifies any of its output parameters, the parameters
keep their modified value after the function completes.

When Net.Data processes the initialization file, it does not load the language
environment service programs. Net.Data loads a language environment service
program when it first executes a function that identifies that language environment.
The service program then remains loaded for as long as Net.Data is loaded.

Example: ENVIRONMENT statements for Net.Data-provided language
environments

When customizing the ENVIRONMENT statements for your application, add the
variables on the ENVIRONMENT statements that need to be passed from your
initialization file to a language environment or that Net.Data macro writers need to
set or override in their macros.

| On 0S/400, ENVIRONMENT statements are not required for Net.Data language
[environments and are not recommended. However, this example shows some of
[the default ENVIRONMENT statements that Net.Data uses.

1 MACRO_PATH /WWW/MACRO;/QSYS.LIB/WWW.LIB/MACRO.FILE
2 INCLUDE_PATH /WWW/MACRO;/QSYS.LIB/WWW.LIB/MACRO.FILE
3 EXEC_PATH /QSYS.LIB;/QSYS.LIB/WWW.LIB

4 ENVIRONMENT (DTW_REXX) /QSYS.LIB//QTCP.LIB/QTMHREXX.SRVPGM ()

5 ENVIRONMENT(DTW_SQL) /QSYS.LIB/QTCP.LIB/QTMHSQL.SRVPGM (IN DATABASE,
LOGIN, PASSWORD, TRANSACTION SCOPE, SHOWSQL, DB_CASE,
RPT_MAX_ROWS, START ROW_NUM, DTW_SET_TOTAL_ROWS,
OUT DTWTABLE, SQL_CODE, TOTAL_ROWS)

6 ENVIRONMENT(DTW_SYSTEM) /QSYS.LIB/QTCP.LIB/QTMHSYS.SRVPGM ()

Required: Each ENVIRONMENT statement must be on a single line.

Setting Up the Language Environments

After you modify configuration variables and ENVIRONMENT configuration
statements for the Net.Data language environments, some additional setup is
required before the following language environments can function properly. The
following sections describe the steps necessary to set up the language
environments:

| Setting up the Java Application Language Environment

[Before using the Java Application language environment, first introduced in OS/400
[V4R4, complete the following steps:

Chapter 2. Configuring Net.Data 19

1. Install the “AS/400 Developer Kit for Java” licensed program, product identifier
5769JV1. The “AS/400 Developer Kit for Java” must be installed to run Java
applications on the AS/400.

I

I

I

| 2. Set the DTW_JAVA CLASSPATH path configuration variable in the Net.Data
[initialization file so Java can find the Java application classes. For more

I
I

information on this path configuration statement, see [lDTW_JAVA_CLASSPATH!

| After setting up the Java Application language environment, see Llaua_Apphcamd
| i " to learn how to use the Java Application

| language environment.

| Setting up the SQL Language Environment

Before using the SQL language environment, complete the following steps:

1. Create a directory entry for the local database in the relational database
directory (a directory entry with a remote location of *LOCAL), in addition to any
remote databases that the SQL language environment needs to access.

Add the entry by using the Add Relational Database Directory Entry
(ADDRDBDIRE) command.

If you are accessing a remote database, complete additional configuration
steps, such as setting up communications between the local system and the
remote system. For more information about distributed database support, see
0S5/400 Distributed Database Programming.

I

I

I

I

I

I

I

I

I

I

[2. If you are using DataLinks, ensure that TCP/IP is configured on any systems
[that used, and that the DataLink File Manager is started and configured on all
| systems that will contain objects to be linked. For more information about

| Datalinks, see DB2 for 0S/400 SQL Programming

| 3. If large objects (LOBSs) are going to be returned by the SQL language

| environment, set the HTML_PATH configuration variable. To learn more about
I

I

I

I

I

I

I

I

I

I

I

I

I

this configuration variable, see [HTML_PATH” on page 17.

4. Add or update configuration variables. The SQL language environment supports
the following configuration variables that can be specified in a Net.Data
initialization file:

DTW_SQL_ISOLATION
Determines the degree to which the database operations
executed by the SQL language environment are isolated from
concurrently executing processes

DTW_SQL_NAMING_MODE
Determines how a table name can be specified in an SQL
statement

DTW_SHOWSQL
Enables the use of the macro variable SHOWSQL

| To learn more about the Net.Data configuration variable statements, see

| ECaonfiguration Variable Statements” on page 8.
| After settina up the SQL language environment, see LSQL | anguage Environment]

to learn how to use the SQL language environment.

20 Net.Data: Administration and Programming Guide for 0S/400

Configuring the Web Server

The Common Gateway Interface (CGI) is an industry-standard interface that
enables a Web server to invoke an application program such as Net.Data.
Net.Data’s support for CGI lets you use Net.Data with your favorite Web server.

Configure the Web server to invoke Net.Data by adding Map, Exec, and Pass
directives to the HTTP configuration file so that Net.Data gets invoked.

For example, assuming the Net.Data program object resides in library CGI, then the
following directives redirect Net.Data requests to
/QSYS.LIB/CGI.LIB/DB2WWW.PGM:

Map /cgi-bin/db2www/* /QSYS.LIB/CGI.LIB/DB2WWW.PGM/*

Map /CGI-BIN/DB2WWW/* /QSYS.LIB/CGI.LIB/DB2WWW.PGM/*
Exec /QSYS.LIB/CGI.LIB/*

Recommendation: Organize the directives in the following order within the HTTP
configuration file to prevent directives from being ignored: Map, Exec, Pass. For
example, if the following Pass directive precedes a Map or Exec directive, the Map
and Exec directives are ignored:

Pass /*

Map directives
The Map directives map entries using the format /cgi-bin/db2www/* to the
library where the Net.Data program resides on your system. (The asterisk
(*) at the end of the string refers to anything that follows the string.) Both
upper- and lower-case map statements are included, because the directives
are case sensitive. In this example, both Map statements point to the same
location.

Exec directives
The Exec directive enables the Web server to execute any CGI programs in
the CGl library. Specify the library where the program resides (not the
program itself) on the directive.

Pass directives

If you want to use large objects (LOBs) with the SQL language
environment, create a Pass directive to specify the directory where the SQL
language environment stores the LOBs files. For example:

Pass /tmplobs/* /html_path/*

Where html_path is the directory name specified in the HTML_PATH
configuration variable that specifies the default directory where LOBs are

stored. See EHTML _PATH” on page 17 for more information.

Pass directives are not used by Net.Data. If you want to simplify your URL,
then use the MACRO PATH statement in a Net.Data initialization file,
discussed in Lt z

Granting Access Rights to Objects Accessed by Net.Data

Before using Net.Data, you need to ensure that the user IDs under which Net.Data
executes have the appropriate access rights to objects that are referenced in a
Net.Data macro and to the macro that a URL references.

Chapter 2. Configuring Net.Data 21

22

More specifically, ensure that the user IDs under which Net.Data executes have the
following authorizations:

e To read the Net.Data initialization file, INI.FILE/DB2WWW.MBR

* To execute the Net.Data executable files and service programs, and to search
the directories (libraries) in the paths to the executable files and service
programs

» To read the appropriate Net.Data macro files and search the appropriate
directories identified by the MACRO_PATH path configuration statement

* To execute the appropriate files and to search the appropriate directories
identified by the EXEC_PATH path configuration statement

» To read the appropriate files and to search the appropriate directories identified
by the INCLUDE_PATH path configuration statement

» To read and write the appropriate files, and to search the appropriate directories
identified by the FFI_PATH path configuration statement

» To access any object that might be referenced by the target of a language
environment statement. For example SQL language environment runs SQL
statements, and SQL statements access database files, so the user ID that
Net.Data is running under must have authority to the database files.

Examples:

Depending on the file system in which you choose to store your Net.Data macros,
you need to authorize the user profile under which the Net.Data CGI program is run
to the Net.Data macro. The following methods give the QTMHHTP1 user profile
authority (in V3R2 and V3RY7, Internet Connection for AS/400 ran CGI programs
only under the QTMHHTP1 user profile.):

* In the root file system, use the Change Authority (CHGAUT) CL command to
give authority to the user profile:

CHGAUT OBJ('/WWW') USER(QTMHHTP1) DTAAUT (*RX)
CHGAUT OBJ('/WWW/macro') USER(QTMHHTP1) DTAAUT (*RX)
CHGAUT O0BJ('/WWW/macro/') USER(QTMHHTP1) DTAAUT(*RX)

You need to give authority to all objects in the path.

* In the library file system (QSYS.LIB), use the Grant Object Authority
(GRTOBJAUT) CL command to give authority to the user profile:

GRTOBJAUT OBJ (WWW) OBJTYPE(*LIB) USER(QTMHHTP1) AUT(*USE)
GRTOBJAUT OBJ (WWW/MACRO) OBJTYPE(*FILE) USER(QTMHHTP1) AUT(*USE)

You need to give authority only to the library and the source physical file.

You can also use the CHGAUT CL command to give authority to objects in the
QSYS.LIB file system as follows:

CHGAUT 0BJ('/QSYS.LIB/WWW.LIB') USER(QTMHHTP1) DTAAUT (*RX)
CHGAUT O0BJ('/QSYS.LIB/WWW.LIB/MACRO.FILE') USER(QTMHHTP1) DTAAUT(*RX)

Language environment-specific authority considerations are documented in each

Ianguage environment section in EChapter 6 _Using | anguage Environments” on

Net.Data: Administration and Programming Guide for OS/400

Chapter 3. Keeping Your Assets Secure

Internet security is provided through a combination of firewall technology, operating
systems features, Web server features, Net.Data mechanisms, and the access
control mechanisms that are part of your data sources.

You must decide on what level of security is appropriate for your assets. This
chapter describes methods you can use for keeping your assets secure and also
provides references to additional resources you can use to plan for the security of
your Web site.

The following sections contain guidelines for protecting your assets. The security
mechanisms described include:

- Hlsing Erouall]

Using Firewalls

Firewalls are collections of hardware, software, and policies that are designed to
limit access to resources in a networked environment.

Firewalls:
* Protect the internal network from infiltration or intrusion

» Protect the internal network from data and programs that are brought in by
internal users

» Limit internal user access to external data
» Limit the damage that can be done if the firewall is breached

Net.Data can be used with firewall products that execute in your environment.

The following possible configurations provide recommendations for managing the
security of your Net.Data application. These configurations provide high-level
information and assume that you have configured a firewall that isolates your
secure intranet from the public Internet. Carefully consider these configurations with
your organization’s security policies:

» High security configuration
This configuration creates a subnetwork that isolates Net.Data and the Web
server from both the secure intranet and the public Internet. The firewall software

is used to create a firewall between the Web server and the public Internet, and
another firewall between the Web server and the secured intranet, which

contains DB2 Server. This configuration is shown by [Eigure 3 on page 24.

© Copyright IBM Corp. 1997, 1999 23

24

Secure Public
Intranet Internet
HTTP
-
DB2
Serve

Net.Data
(DB2
Client)

Figure 3. High Security Configuration

To set up this configuration:

— Install Net.Data on the Web server machine and ensure that Net.Data can
access DB2 Server inside the intranet by configuring the firewall to allow DB2
traffic through the firewall. One method is to add a packet filtering rule to allow
DB2 client requests from Net.Data and acknowledge packets from DB2 Server
to Net.Data.

— Allow FTP and Telnet access between the Web server and the secure
intranet. One method is to install a socks server on the Web server machine.

— In the packet filtering configuration file of the firewall software, specify that
incoming TCP packets from the standard HTTP port can access the Web
server. Also, specify that outgoing TCP acknowledge packets can go to any
hosts on the public Internet from the Web server.

Intermediate security configuration

In this configuration, firewall software isolates the secured intranet with DB2
server from the public Internet. Net.Data and the Web server are outside the
firewall on a workstation platform. This configuration is simpler than the first, but
still offers database protection. Eigure 4 shows this configuration.

Public
Internet

Secure

Intran
tranet Web

Server HTTP

DB2 C/S
Packets

Net.Data
(DB2
Client)

Figure 4. Intermediate Security Configuration:

The firewall must be configured to allow DB2 client requests to flow from
Net.Data to DB2 and to allow acknowledge packets to flow from DB2 to
Net.Data.

Low security configuration

In this configuration, DB2 server and Net.Data are installed outside of the firewall
and the secured intranet. They are not protected from external attacks. The

Net.Data: Administration and Programming Guide for OS/400

firewall needs no packet filtering rules for this configuration. Eigure § shows this

configuration.
— |HTTP | ;
Secure Web Server > Public
Intranet A Internet
< > v
Net.Data
(DB2 Client)

A

Figure 5. Low Security Configuration:

Encrypting Your Data on the Network

You can encrypt all data that is sent between a client system and your Web server
when you use a Web server that supports Secured Sockets Layer (SSL). This
security measure supports the encryption of login IDs, passwords, and all data that
is transmitted through HTML forms from the client system to the Web server and all
data that is sent from the Web server to the client system.

Using Authentication

Authentication is used to ensure that a user ID making a Net.Data request is
authorized to access and update data within the application. Authentication is the
process of matching the user ID with a password to validate that the request comes
from a valid user ID. The Web server associates a user ID with each Net.Data
request that it processes. The process or thread that is handling the request can
then access any resource to which that user ID is authorized.

In an OS/400 environment, a user ID can become associated with the thread or
process that is handling a Net.Data request in one of three ways:

Client-based authentication
The user is prompted for a local OS/400 user ID and password at the client.
The Web server then authenticates the user. If successfully authenticated,
the supplied user ID is associated with the request. Use of the special Web
server %%CLIENT%% access control user ID enables this type of
authentication.

Client-based authentication is supported by IBM's HTTP server starting in
0S/400 V4R1.

Server-based authentication
The user ID of the Web server is associated with each request and the user
is not prompted for a user ID or password. Use of the special Web server
%%SERVER%% access control user ID enables this type of authentication.

By default, IBM’s HTTP server runs CGI programs under the QTMHHTP1
user ID (user profile). However, if the UserlID directive is in effect or within a
protection setup where the UserID subdirective has been specified, the
program is executed under the specified user ID.

Chapter 3. Keeping Your Assets Secure 25

Surrogate authentication
A surrogate user ID that has the authority to access some predefined
collection of resources is associated with the client request. This type of
authentication requires the creation of surrogate user IDs with access
authority that is appropriate for a group of users or class of requests.
Authentication with surrogate user IDs usually uses validation list objects
first introduced in V4R1. For more information and examples, see OS/400
System API Reference.

The approach that the Web server uses for associating a user ID with a client
request is specified when the Web server is configured. For additional detail on
access control user IDs, on installing the Web server, and on using the Protect,
Protection, DefProt, and Userld directives to configure the Web server, refer to to
your HTTP server documentation.

Tip: To protect Net.Data macros do the following:

1. Add protection directives in the Web server configuration file for the
Net.Data program object.

2. Ensure the user ID that Net.Data will be running under has access rights
to the macro files. For more information on granting access rights, see

Using Authorization

Authorization provides a user with complete or restricted access to an object,
resource, or function. Data sources such as DB2 provide their own authorization
mechanisms to protect the information that they manage. These authorization
mechanisms assume that the user ID associated with the process that is executing
the Net.Data request has been properly authenticated, as explained in
Buthentication” on page 25. The existing access control mechanisms for these data
sources then either permit or deny access based on the authorizations that are held
by the authenticated user ID.

Using Net.Data Mechanisms

In addition to the methods described above, you can use Net.Data configuration
variables or macro development techniques to limit the activities of end users, to
conceal corporate assets such as the design of your database, and to validate
user-provided input values within production environments.

Net.Data Configuration Variables

Net.Data provides several configuration variables that can be used to limit the
activities of end users or conceal the design of your database.

Control file access with path statements
Net.Data evaluates the settings of path configuration statements to
determine the location of files and executable programs that are used by
Net.Data macros. These path statements identify one or more directories
that Net.Data searches when attempting to locate macro files, executable
files, include files, or other flat files. By selectively including directories on
these path statements, you can explicitly control the files that are accessible

26 Net.Data: Administration and Programming Guide for 0S/400

by users at browsers. Refer to [Chapter 2. Configuring Net Data” on page 5

for additional detail about path statements.

You should also use authorization checking as described in FUsing

Butharization” on page 26 and verify that file names cannot be chanqed in

INCLUDE statements as described in

Disable SHOWSQL for production systems
The SHOWSQL variable allows the user to specify that Net.Data displays
the SQL statements specified within Net.Data functions at a Web browser.
This variable is used primarily for developing and testing the SQL within an
application and is not intended for use in production systems.

You can disable the display of SQL statements in production environments

using one of the following methods:

* When using versions of Net.Data that support the DTW_SHOWSQL
configuration variable, use this variable in the Net.Data initialization file to
override the effect of settlng SHOWSQL within your Net. Data macros.
See b

Mariahle” an page 10 for syntax and additional information.
+ Use the DTW_ASSIGN() function as described in EMacra Development

See SHOWSQL in the variables chapter of Net.Data Reference for syntax
and examples for the SHOWSQL Net.Data variable.

Macro Development Techniques

Net.Data provides several mechanisms that allow users to assign values to input
variables. To ensure that macros execute in the manner intended, these input
variables should be validated by the macro. Your database and application should
also be designed to limit a user’'s access to the data that the user is authorized to
see.

Use the following development techniques when writing your Net.Data macros.
These techniques will help you ensure that your applications execute as intended
and that access to data is limited to properly authorized users.

Ensure that Net.Data variables cannot be overridden in a URL
The setting of Net.Data variables by a user within a URL overrides the
effect of DEFINE statements used to initialize variables in a macro. This
might alter the manner in which your macro executes. To safeguard against
this possibility, initialize your Net.Data variables using the DTW_ASSIGN()
function.

Example: Instead of using DEFINE SHOWSQL="NO" to set the Net.Data
SHOWSQL variable, use @DTW_ASSIGN(SHOWSQL, "NO"). Then, a query string
assignment such as SHOWSQL=YES does not override the macro setting.

You can disable the display of SQL statements in production environments
using one of the following methods:

* When using versions of Net.Data that support the DTW_SHOWSQL
configuration variable, use this variable in the Net.Data initialization file to
override the effect of settmg SHOWSQL within your Net. Data macros.
Seet

Mariable” an page 10 for syntax and additional information.

» Use the DTW_ASSIGN() function as described in the above example, to
assign the value of SHOWSQL to prevent it from being overridden.

Chapter 3. Keeping Your Assets Secure 27

28

See SHOWSQL in the variables chapter of Net.Data Reference for syntax
and examples for the SHOWSQL Net.Data variable.

You can also use DTW_ASSIGN to ensure that other Net.Data variables,
such as RPT_MAX_ ROWS or START_ROW_NUM, are not overridden. See
the variables chapter of Net.Data Reference for more information about
these variables.

Validate that your SQL statements cannot be modified in ways that alter the
intended behavior of your application

Adding a Net.Data variable to an SQL statement within a macro allows
users to dynamically alter the SQL statement before executing it. It is the
responsibility of the macro writer to validate user-provided input values and
ensure that an SQL statement containing a variable reference is not being
modified in an unexpected manner. Your Net.Data application should
validate user-provided input values from the URL so the Net.Data
application can reject invalid input. Your validation design process should
include for the following steps:

1. Identify the syntax of valid input; for example, a customer ID must start
with a letter and can contain only alphanumeric characters.

2. Determine what potential harm can be caused by allowing incorrect
input, intentionally harmful input, or input entered to gain access to
internal assets of the Net.Data application.

3. Include input verification statements in the macro that meet the needs of
the application. Such verification depends on the syntax of the input and
how it is used. In simpler cases it can be enough to check for invalid
content in the input or to invoke Net.Data to verify the type of the input.
If the syntax of the input is more complex, the macro developer might
have to parse the input partially or completely to verify whether it is
valid.

Example 1: Using the DTW_POS() string function to verify SQL statements

%FUNCTION(DTW_SQL) queryl() {
select * from shopper where shlogid = '§(shlogid)’

0
%}

The value of the shlogid variable is intended to be a shopper ID. Its
purpose is to limit the rows returned by the SELECT statement to rows that
contain information about the shopper identified by the shopper ID.
However, if the string “smith' or shlogid<>'smith” is passed as the value
of the variable shlogid, the query becomes:

select * from shopper where shlogid = 'smith' or shlogid<>'smith'

This user-modified version of the original SQL SELECT statement returns
the entire shopper table.

The Net.Data string functions can be used to verify that the SQL statement
is not modified by the user in inappropriate ways. For example, the
following logic can be used to ensure that the input value associated with
the shlogid variable consists of a single shopper ID:
@DTW_POS(" ", $(shlogid), result)
%IF (result == "0")

@queryl()
%ELSE

%{ perform some sort of error processing %}
%ENDIF

Net.Data: Administration and Programming Guide for OS/400

Example 2: Using DTW_TRANSLATE()

Suppose that your application needs to validate that the value provided in

the input variable number_of_orders is an integer. One way of

accomplishing this is to create a translation table input_translation_table
that contains all keyboard characters except the numeric characters 0-9 and

to use the DTW_TRANSLATE and DTW_POS string functions to validate

the input:

@DTW_TRANSLATE (number_of_orders, "x", input_translation_table, "x", string_out)

@DTW_POS("x", string_out, result)
%IF (result = "0")
%{ continue with normal processing %}
%ELSE
%{ perform some sort of error processing %}

%ENDIF

Note that SQL statements within stored procedures cannot be modified by
users at Web browsers and that user-provided input parameter values are
constrained by the SQL data types associated with the input parameters. In
situations where it is impractical to validate user input values using the
Net.Data string functions, you can use stored procedures.

Ensure that a file name in an INCLUDE statement is not modified in ways that

alter the intended behavior of your application
If you specify the value for the file name with an INCLUDE statement using
a Net.Data variable, then the file to be included is not determined until the
INCLUDE file is executed. If your intent is to set the value of this variable
within your macro, but to not allow a user at the browser to override the
macro-provided value, then you should set the value of the variable using
DTW_ASSIGN instead of DEFINE. If you do intend to permit the user at a
browser to provide a value for the file name, then your macro should
validate the value provided.

Example: A query string assignment such as filename="../../x" can
result in the inclusion of a file from a directory not normally specified in the
INCLUDE_PATH configuration statement. Suppose that your Net.Data
initialization file contains the following path configuration statement:

INCLUDE_PATH /usr/1pp/netdata/include

and that your Net.Data macro contains the following INCLUDE statement:
%INCLUDE "$(filename)"

A query string assignment of filename="../../x" would include the file
/usr/1pp/x , which was not intended by the INCLUDE_PATH configuration
statement specification.

The Net.Data string functions can be used to verify that the file name
provided is appropriate for the application. For example, the following logic
can be used to ensure that the input value associated with the file name
variable does not contain the string "..":

Chapter 3. Keeping Your Assets Secure 29

30

@DTW_POS("..", $(filename), result)
%IF (result > "0")

0

%{ perform some sort of error processing %}

%ELSE
%{ continue with normal processing %}
%ENDIF

Design your database and queries so that user requests do not have access

to sensitive data about other users
Some database designs collect sensitive user data in a single table. Unless
SQL SELECT requests are qualified in some fashion, this approach may
make all of the sensitive data available to any user at a web browser.

Example: The following SQL statement returns order information for an
order identified by the variable order_rn:

select setsstatcode, setsfailtype, mestname

from merchant, setstatus

where merfnbr = setsmenbr
and setsornbr = §(order_rn)

This method permits users at a browser to specify random order numbers
and possibly obtain sensitive information about the orders of other
customers. One way to safeguard against this type of exposure is to make
the following changes:

* Add a column to the order information table that identifies the customer
associated with the order information within a specific row.

* Modify the SQL SELECT statement to ensure that the SELECT is
qualified by an authenticated customer ID provided by the user at the
browser.

For example, if shTogid is the column containing the customer ID
associated with the order, and SESSION_ID is a Net.Data variable that
contains the authenticated ID of the user at the browser, then you can
replace the previous SELECT statement with the following statement:
select setsstatcode, setsfailtype, mestname

from merchant, setstatus

where merfnbr = setsmenbr

and setsornbr = $(order_rn)
and shlogid = $(SESSION_ID)
Use Net.Data hidden variables
You can use Net.Data hidden variables to conceal various characteristics of
your Net.Data macro from users that view your HTML source with their Web
browser. For example, you can hide the internal structure of your database.

See [Hidden Variables” on page 49 for more information about hidden

variables.

Request validation information from a user
You can create your own protection scheme based on user-provided input.
For example, you can request validation information from a user through an
HTML form and validate it using data that your Net.Data macro retrieves
from a database or by calling an external program from a function defined
in your Net.Data macro.

For more information on protecting your assets, see the Internet security list of
frequently asked questions (FAQ) at this Web site:

http://www.w3.0rg/Security/Faq

Net.Data: Administration and Programming Guide for OS/400

Chapter 4. Invoking Net.Data

Net.Data for OS/400 is invoked using Common Gateway Interface (CGI) and using
a macro. This type of invocation method is called macro request. Additionally, you
can invoke persistent macros, or macros that contain functions specifying
transaction boundaries. For more information about persistent macros, see

This chapter describes invoking Net.Data with a macro.

Invoking Net.Data with a Macro (Macro Request)

This section shows you how to invoke Net.Data by specifying a macro.

The following syntax statements show how to invoke Net.Data.
* URL:
http://server/Net.Data_invocation _path/filename/block[?name=val&...]

Parameters:

server Specifies the name and pathof the Web server. If the server is the local
server, you can omit the server name and use a relative URL.

Net.Data_invocation_path
The path and filename of the Net.Data executable file. For example,
/cgi-bin/db2www/.

filename
Specifies the name of the Net.Data macro file. Net.Data searches for and
tries to match this file name with the path statements defined in the

MACRO_PATH initialization path variable. See EMACRQ PATH” an page 14

for more information.

block Specifies the name of the HTML block in the referenced Net.Data macro.

method
Specifies the HTML method used with the form.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

You can then specify the URL directly in your browser, or you can use it in an
HTML link or form as follows:

* HTML link:
any text
* HTML form:
<FORM METHOD=method ACTION="URL">any text</FORM>

Parameters:

method
Specifies the HTML method used with the form.

© Copyright IBM Corp. 1997, 1999 31

HTML Links

URL Specifies the URL used to run the Net.Data macro, the parameters of which
are described above.

Examples
The following examples demonstrate the different methods of invoking Net.Data.

Example 1: Invoking Net.Data using an HTML link:

;/A>

Example 2: Invoking Net.Data using a form

<FORM METHOD=POST
ACTION="http://server/cgi-bin/db2www/myMacro.d2w/report">

</FORM>

Example 3: Invoking Net.Data macros in the gsys.lib file system, using an HTML
link:

;/A>

Example 4: Invoking Net.Data macros in the gsys.lib file system, using a form:

<FORM METHOD=POST
ACTION="http://server/cgi-bin/db2www/
gsys.lib/mylib.Tib/myfile.file/myMacro.mbr/report">

</FORM>

The following sections describe HTML links and forms and more about how to
invoke Net.Data with them:

If you are authoring a Web page, you can create an HTML link that results in the
execution of an HTML block. When a user at a browser clicks on a text or image
that is defined as an HTML link, Net.Data executes the HTML block within the
macro.

32 Net.Data: Administration and Programming Guide for 0S/400

HTML Forms

To create an HTML link, use the HTML <a> tag. Decide which text or graphic you
want to use as your hyperlink to the Net.Data macro, then surround it by the <a>
and tags. In the HREF attribute of the <a> tag, specify the macro and the
HTML block.

The following example shows a link that results in the execution of an SQL query
when a user selects the text "List all monitors” on a Web page.

List all monitors

Clicking on the link calls a macro named listA.d2w, which has an HTML block
named "report”, as in the following example:

%DEFINE DATABASE="MNS97"

%FUNCTION(DTW_SQL) myQuery () {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='MONITOR'

0,
%}

%HTML (report) {
@myQuery ()
%}
The query returns a table that contains model number, cost, and description
information for each monitor that is described within the EQPTABLE table. This
example dlsplays the results of the query by generating a default report. See

for information on how you can customize your reports

using a REPORT block.

You can dynamically customize the execution of your Net.Data macros using HTML
forms. Forms allow users to provide input values that can affect the execution of the
macro and the contents of the Web page that Net.Data builds.

The following example builds on the monitor list example in FHTMI | inks” o
by letting users at a browser use a simple HTML form to select the type of
product for which information will be displayed.

<H1>Hardware Query Form</H1>

<HR>

<FORM METHOD=POST ACTION="/cgi-bin/db2www/equiplst.d2w/report">
<P>What type of hardware do you want to see?

<MENU>

<INPUT TYPE="RADIO" NAME="hdware" VALUE="MON" checked> Monitors
<INPUT TYPE="RADIO" NAME="hdware" VALUE="PNT"> Pointing devices
<INPUT TYPE="RADIO" NAME="hdware" VALUE="PRT"> Printers
<INPUT TYPE="RADIO" NAME="hdware" VALUE="SCN"> Scanners

</MENU>

<INPUT TYPE="SUBMIT" VALUE="Submit">
</FORM>

After the user at the browser makes a selection and clicks on the Submit button,
the Web server processes the ACTION parameter of the FORM tag, which invokes
Net.Data. Net.Data then executes the HTML report block in the equipTst.d2w
macro:

Chapter 4. Invoking Net.Data 33

%DEFINE DATABASE="MNS97"

%FUNCTION(DTW_SQL) myQuery () {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='§ (hdware)'
%REPORT{
<H3>Here is the 1list you requested</H3>
%ROW{
<HR>
$(N1): $(v1), $(N2): $(v2)
<P>$(N3): $(V3)

%HTML (report) {
@myQuery ()

0,
%}

In the above example, the value of TYPE=$ (hdware) in the SQL statement is taken
from the HTML form input.

See Net.Data Reference for a detailed description of the variables that are used in
the ROW block.

Invoking a Persistent Macro

This section shows you how to invoke persistent macros. These macros contain
functions used for transaction processing. Invoking these macros is similar to
regular macro request, in which you specify a server, macro, and HTML block. For
persistent macros, you also specify a transaction handle, which identifies the HTML
block as part of a transaction.

For more information about persistent macros and transaction processing, see

Persistent Macro Syntax

Use the following syntax to invoke a persistent macro:
e HTML link:

<A HREF="http://server/Net.Data_invocation_path/transaction_handle/filename/
block/[?name=val&...]">any text

e HTML form:

<FORM METHOD=method ACTION="http://server/Net.Data_invocation_path/
transaction_handle/filename/block/
[?name=val&...]">any text</FORM>

* URL:

http://server/Net.Data_invocation path/transaction_handle/filename/block/
[?name=vald...]

Parameters:

server Specifies the name of the Web server. If the server is the local server, you
can omit the server name and use a relative URL.

34 Net.Data: Administration and Programming Guide for OS/400

Net.Data_invocation_path
The path and filename of the Net.Data executable file. For example,
/cgi-bin/db2www/

transaction_handle
Specifies which URLs are part of a transaction initiated by a Net.Data
macro. This identifier is obtained by calling the DTW_RTVHANDLE built-in
function and must follow the Net.Data invocation_path.

filename
Specifies the name of the Net.Data macro file. Net.Data searches for and
tries to match this file name with the path statements defined in the

MACRO_PATH initialization path variable. See EMACRQ_PATH” on page 14

for more information.

block Specifies the name of the HTML block in the referenced Net.Data macro.

method
Specifies the HTML method used with the form.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

Examples
The following examples demonstrate how to invoke persistent macros.

Example 1: A URL in a macro:
http://www.mycompany.com/cgi-bin/db2www/$ (handle) /mymacro.mac/reportl

Example 2: A typical HTML block with links to other macro invocations that run in
the same transaction

@DTW_STATIC()

%define handle = ""
@DTW_RTVHANDLE (handle)

%html (report) {
@DTW_ACCEPT (handle)

<a href="/cgi-bin/db2www/$ (handle)/qsys.1ib/mylib.1ib/macros.file/
pcgil.mbr/report2">continue

<a href="/cgi-bin/db2www/$ (handle)/qsys.1ib/mylib.1ib/macros.file/
pcgil.mbr/quit">quit

0,
%}

Chapter 4. Invoking Net.Data 35

36 Net.Data: Administration and Programming Guide for 0S/400

Chapter 5. Developing Net.Data Macros

A Net.Data macro is a text file consisting of a series of Net.Data macro language

constructs that:
» Specify the layout of Web pages
¢ Define variables and functions

» Call functions that are built-in to Net.Data or defined in the macro
» Format the processing output and return it to the Web browser for display

The Net.Data macro contains two organizational parts: the declaration part and the

presentation part, as shown in

Net.Data Macro File Structure

%{Comment %} ‘

%Define... ‘

%lInclude... ‘ —Declaration Part

%Message... ‘

%Function... ‘

%HTML(Input)

—Presentation Part

%HTML(Output)

Figure 6. Macro Structure

* The declaration part contains the definitions of variables and functions in the

macro.

* The presentation part contains HTML blocks that specify the layout of the Web
page. The HTML blocks are made up of text presentation statements that are
supported by your Web browser, such as HTML and JavaScript.

You can use these parts multiple times and in any order. See Net.Data Reference

for syntax of the macro parts and constructs.

Authorization Tip: Ensure that the Web server has access rights to this file. See

[Granting Access Rights to Objects Accessed by Net Data” on page 21| for more

information.

This chapter examines the different blocks that make up a Net.Data macro and
methods you can use for writing the macro.

© Copyright IBM Corp. 1997, 1999

37

Anatomy of a Net.Data Macro

The macro consists of two parts:

* The declaration part, that contains definitions used in the presentation part. The
declaration part uses two major optional blocks:

— DEFINE block
— FUNCTION block

The declaration part can also contain other language constructs and statements,
such as EXEC statements, IF blocks, INCLUDE statements, and MESSAGE
blocks. For more information about the language constructs, see the chapter
about language constructs in Net.Data Reference.

Authorization Tip: Ensure that the Web server has access rights to files

referenced by the EXEC and INCLUDE statements. See LGranting Access Rightd
to QOhjects Accessed hy Net Data” on page 21| for more information.

» The presentation part defines the layout of the Web page, references variables,
and calls functions using HTML blocks that are used as entry and exit points
from the macro. When you invoke Net.Data, you specify an HTML block hame as
an entry point for processing the macro. The HTML blocks are described in

In this section, a simple Net.Data macro illustrates the elements of the macro
language. This example macro presents a form that prompts for information to pass
to a REXX program. The macro passes this information to an external REXX
program called ompsamp.mbr, which echoes the data that the user enters. The
results are then displayed on a second HTML page.

First, look at the entire macro, and then each block in detail:

%{ *hkkkkkkkhkkkhkhkkkhhrkrk DEFINE block ************************%}

%DEFINE {
page title="Net.Data Macro Template"
}

oN°

kkkkkkkhkxkrkkkxkxkkkkx* FUNCTION Definition block ************************%}

{
FUNCTION(DTW_REXX) rexxl (IN input) returns(result)

— o o°

%EXEC{ompsamp.mbr %}

o

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

)
%}

result = date()

%{ *hhkkkhhkkkhhrkrhhkkhhkrk HTML Block: Input ************************%}
SHTML (INPUT) {

<html>

<head>

<title>§(page_title)</title>

</head><body>

<h1>Input Form</h1>

Today is @today()

<FORM METHOD="post" ACTION="QUTPUT">

38 Net.Data: Administration and Programming Guide for 0S/400

Type some data to pass to a REXX program:

<INPUT NAME="input_data" TYPE="text" SIZE="30">
<p>
<INPUT TYPE="submit" VALUE="Enter">

</form>

<hr>
<p>[Home page]
</body></htm1>

[)
%}

%{ ER HTML Block: Qutput ************************%}
%HTML (OUTPUT) {

<htm1>

<head>
<title>$(page_title)</title>
</head><body>

<h1>Qutput Page</hl>
<p>@rexx1(input_data)

<p><hr>

<p>[Home page |

Previous page]
</body></htm1>

[
%}

The sample macro consists of four major blocks: the DEFINE, the FUNCTION, and
the two HTML blocks. You can have multiple DEFINE, FUNCTION, and HTML
blocks in one Net.Data macro.

The two HTML blocks contain text presentation statements such as HTML, which
make writing Web macros easy. If you are familiar with HTML, building a macro
simply involves adding macro statements to be processed dynamically at the server
and SQL statements to send to the database.

Although the macro looks similar to an HTML document, the Web server accesses
it through Net.Data using CGI. To invoke a macro, Net.Data requires two
parameters: the name of the macro to process, and the HTML block in that macro
to display.

When the macro is invoked, Net.Data processes it from the beginning. The
following sections look at what happens as Net.Data processes the file.

The DEFINE Block

The DEFINE block contains the DEFINE language construct and variable definitions
used later in the HTML blocks. The following example shows a DEFINE block with
one variable definition:
%{ R T T T Ty DEFINE Block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"

0,
%}

The first line is a comment. A comment is any text inside %{ and %}. Comments can
be anywhere in the macro. The next statement starts a DEFINE block. You can
define multiple variables in one define block. In this example, only one variable,
page_title, is defined. After it is defined, this variable can be referenced anywhere
in the macro using the syntax, $(page_title). Using variables makes it easy to
make global changes to your macro later. The last line of this block, %}, identifies
the end of the DEFINE block.

Chapter 5. Developing Net.Data Macros 39

The FUNCTION Block

HTML Blocks

The FUNCTION block contains declarations for functions invoked by the HTML
blocks. Functions are processed by language environments and can execute
programs, SQL queries, or stored procedures.

The following example shows two FUNCTION blocks. One defines a call to an
external REXX program and the other contains inline REXX statements.
°/0{ kkkkkkkkxkrkkkxkxkkkkx* FUNCTION Block **********************************%}
%FUNCTION(DTW_REXX) rexxl (IN input) returns(result) { <-- This function accepts
one parameter and returns the
variable 'result', which is
assigned by the external REXX
program
%EXEC{ompsamp.mbr %} <-- The function executes an external REXX program
called "ompsamp.mbr"

0,
%}

%FUNCTION(DTW_REXX) today () RETURNS(result) {
result = date() <-- The single source statement for this function is
contained inline.

0,
%}

The first function block, rexxl, is a REXX function declaration that in turn, runs an
external REXX program called ompsamp.mbr. One input variable, input, is accepted
by this function and automatically passed to the external REXX command. The
REXX command also returns one variable called result. The contents of the
result variable in the REXX command replaces the invoking @rexx1() function call
contained in the OUTPUT block. The variables input and result are directly
accessible by the REXX program, as shown in the source code for ompsamp.mbr:
/% REXX =/

result = 'The REXX program received "'input'" from the macro.'

The code in this function echoes the data that was passed to it. You can format the
resulting text any way you want by enclosing the requesting @rexx1() function call
in normal mark-up style tags (like or). Rather than using the result
variable, the REXX program could have written HTML tags to standard output using
REXX SAY statements.

The second function block, also refers to a REXX program, today. However, the
entire REXX program in this case is contained in the function declaration itself. An
external program is not needed. Inline programs are allowed for both REXX and
Perl functions because they are interpreted languages that can be parsed and
executed dynamically. Inline programs have the advantage of simplicity by not
requiring a separate program file to manage. The first REXX function could also
have been handled inline.

HTML blocks define the layout of the Web page, reference variables, and call
functions. HTML blocks are used as entry and exit points from the macro. An HTML
block is always specified in the Net.Data macro request and every macro must
have at least one HTML block.

The first HTML block in the example macro is named INPUT. The HTML(INPUT)
contains the HTML for a simple form with one input field.

40 Net.Data: Administration and Programming Guide for OS/400

%{ *hkkkkkkhkkkkhhkkkhhrrk HTML Block: Input ************************%}

ZHTML (INPUT) { <--- Identifies the name of this HTML block.
<html>

<head>

<title>§(page_title)</title> <--- Note the variable substitution.
</head><body>

<h1>Input Form</hl>

Today is @today() <--- This line contains a call to a function.

<FORM METHOD="post" ACTION="OUTPUT"> <--- When this form is submitted,
the "OUTPUT" HTML block is called.
Type some data to pass to a REXX program:
<INPUT NAME="input_data" <--- "input_data" is defined when the form
TYPE="text" SIZE="30"> is submitted and can be referenced elsewhere in
this macro. It is initialized to whatever the

user types into the input field.
<p>

<INPUT TYPE="submit" VALUE="Enter">

<hr>

<p>

[

Home page]

</body><htm1>

%} <--- Closes the HTML block.

The entire block is surrounded by the HTML block identifier, SHTML (INPUT) {...%}.
INPUT identifies the name of this block. The name can contain any alphanumeric
character, underscores, or periods. The HTML <title> tag contains an example of
variable substitution. The value of the variable page title is substituted into the title
of the form.

This block also has a function call. The expression @today() is a call to the function
today. This function is defined in the FUNCTION block that is described above.
Net.Data inserts the result of the today function, the current date, into the HTML
text in the same location that the @today() expression is located.

The ACTION parameter of the FORM statement provides an example of navigation

between HTML blocks or between macros. Referencing the name of another block

in an ACTION parameter accesses that block when the form is submitted. Any input
data from an HTML form is passed to the block as implicit variables. This is true of

the single input field defined on this form. When the form is submitted, data entered
in this form is passed to the HTML(OUTPUT) block in the variable input_data.

You can access HTML blocks in other macros with a relative reference if the
macros are on the same Web server. For example, the ACTION parameter
ACTION="../othermacro.d2w/main" accesses the HTML block called main in the
macro othermacro.d2w. Again, any data entered into the form is passed to this
macro in the variable input_data.

When you invoke Net.Data, you pass the variable as part of the URL. For example:
Next macro

You can access or manipulate form data in the macro by referencing the variable
name specified in the form.

The next HTML block in the example is the HTML(OUTPUT) block. It contains the

HTML tagging and Net.Data macro statements that define the output processed
from the HTML(INPUT) request.

Chapter 5. Developing Net.Data Macros 41

"/O{ KAKRKRKKRKRK IR KRR IR AR K*H HTML Block: Output ************************%}
%HTML (OUTPUT) {

<html>

<head>

<title>§(page_title)</title> <--- More substitution.

</head><body>

<h1>Qutput Page</hl>

<p>@rexx1(input_data) <--- This line contains a call to function rexxl
passing the argument "input_data".

<p>

<hr>

<p>

Home page |
Previous page]

0,
%}

Like the HTML(INPUT) block, this block is standard HTML with Net.Data macro
statements to substitute variables and a function call. Again the page_title variable
is substituted into the title statement. And, as before, this block contains a function
call. In this case, it calls the function rexx1 and passes to it the contents of the
variable input_data, which it received from the form defined in the Input block. You
can pass any number of variables to and from a function. The function definition
specifies the number and the usage of variables that are passed.

Net.Data Macro Variables

42

Net.Data lets you define and reference variables in a Net.Data macro. In addition,
you can pass these variables from the macro to language environments and back.
Net.Data tokens, such as variable names and values, and literal strings, can contain
up to 256 KB of data. For OS/400, the maximum token size is determined by the
operating system. Individual language environments can provide additional
restrictions on the size of the values.

Net.Data variables can be defined depending on the type of variable and whether it
has a predefined value. These variables can be categorized into the following types,
based on how they are defined:

» Explicitly defined variables using the DEFINE statement in the DEFINE block

* Predefined variables, which are variables that are made available by Net.Data
and are set to a value. This value usually cannot be changed.

* Implicitly defined variables, which are of four types:

— Variables that are not explicitly defined but are instantiated when first
assigned a value.

— Parameter variables that are part of a FUNCTION block definition and that
can only be referenced within a FUNCTION block.

— Variables that are instantiated by Net.Data and correspond to form data or
query string data.

— Variables that are associated with a Net.Data table and that can only be
referenced within a ROW block or REPORT block.

The following sections describe:

Net.Data: Administration and Programming Guide for OS/400

Identifier Scope

An identifier, which is a variable or a function call, becomes visible, meaning that it
can be referenced when it is declared or instantiated. The region where an identifier
is visible is called its scope. The five types of scope are:

Global

An identifier has global scope if you can reference it anywhere within a macro.
Identifiers that have global scope are:

Net.Data built-in functions

Form data

Query string data

Variables instantiated from within an HTML block

Macro

An identifier has this scope if its declaration appears outside of any block. A
block starts with an opening bracket ({) and ends with a percent sign and bracket
(%}). (Note that DEFINE blocks are excluded from this definition and should be
treated as separate DEFINE statements.) Unlike an identifier with global scope,
one with macro scope can only be referred to by items in the macro that follow
the idenfier's declaration.

FUNCTION block or MACRO_FUNCTION block
An identifier has function block scope if:
— The identifier is declared in the parameter list of the function definition.

If an identifier with the same name already exists outside the function
definition, then Net.Data uses the identifier from the function parameter list
within the function block.

— The identifier is instantiated in the function block and is not declared or
instantiated prior to the function call.

An identifier does not have function block scope if it has been declared or
initialized outside of the function and is not declared in the function parameter
list. The value of the identifier within the function block remains unchanged
unless updated by the function.

REPORT block

An identifier has report block scope if it can be referenced only from within a
REPORT block (for example, table column names N1, N2, ..., Nn). Only those
variables that Net.Data implicitly defines as part of its table processing can have
a report block scope. Any other variables that are instantiated have function block
scope.

ROW block

An identifier has row block scope if it can only be referenced from within a ROW
block (for example, table value names V1, V2, ..., Vn). Only those variables that
Net.Data implicitly defines as part of its table processing can have a row block
scope. Any other variables that are instantiated have function block scope.

Defining Variables

There are three ways to define variables in a Net.Data macro:

Define statement or block
HTML form tags

Chapter 5. Developing Net.Data Macros 43

* Query string data

A variable value received from form or query string data overrides a variable value
set by a DEFINE statement in a Net.Data macro.

* DEFINE statement or block

The simplest way to define a variable for use in a Net.Data macro is to use the
DEFINE statement. The syntax is as follows:

%DEFINE variable_name="variable value"

%DEFINE variable_name={ variable value on multiple
lines of text %}

%DEFINE {
variable_namel="variable value 1"
variable_name2="variable value 2"

e

}

The variable_name is the name you give the variable. Variable names must
begin with a letter or underscore and can contain any alphanumeric character, an
underscore, a period, or a hash (#). All variable names are case-sensitive, except
N_columnName and V_columnName, which are table variables.

For example:
%DEFINE reply="hello"

The variable reply has the value hello.

Two consecutive quotes alone is equal to an empty string. For example:
%DEFINE empty=""

The variable empty has an empty string.

If your variable contains special characters, such as an end-of-line, use block
braces around the value:

%DEFINE introduction={
Hello,
My name is John.

0
%}

To include quotes in a string, you can use two quotes consecutively.
%DEFINE HI="say ""hello"""

You can also use block braces to escape the quotes:
%DEFINE HI={ say "hello" %}

To define several variables with one DEFINE statement, use a DEFINE block:

%DEFINE {
variablel="valuel"
variable2="value2"
variable3="value3"
variabled="value4"

%}
e HTML form tags: SELECT, INPUT, and TEXTAREA

You can use HTML FORM tags to assign values to variables, namely the
SELECT, INPUT, and TEXTAREA tags. The following example uses standard
HTML form tags to define Net.Data variables:

44 Net.Data: Administration and Programming Guide for 0S/400

<INPUT NAME="variable _name" TYPE=...>

or

<SELECT NAME="variable_name">
<OPTION>value one
<OPTION>value two

</SELECT>

To assign a variable that spans multiple lines or contains special characters, such
as quotes, the TEXTAREA tag can be used:

<TEXTAREA NAME="variable_name" ROWS="4">

Please type the multi-Tine value

of your variable here.
</TEXTAREA>

The variable_name is the name you give the variable, and the value of the
variable is determined from the input received in the form. See EHTML Forms” an
for an example of how this type of variable definition is used in a

Net.Data macro.

* Query string data
You can pass variables to Net.Data through the query string. For example:
http://www.ibm.com/cgi-bin/db2www/stdqryl.d2w/input?field=custno

In the above example, the variable name, field, and the variable value, custno,
specify additional data that Net.Data receives from the query string. Net.Data
receives and processes the data as it would from form data.

Referencing Variables

You can reference a previously defined variable to return its value. To reference a
variable in Net.Data macros, specify the variable name inside $(and). For
example:

$(variableName)
$ (homeURL)

When Net.Data finds a variable reference, it substitutes the variable reference with
the value of the variable. Variable references can contain strings, variable
references, and function calls.

You can dynamically generate variable names. With this technique, you can use
loops to process variably-sized tables or input data for lists that are built at run time,
when the number in the list cannot be determined in advanced. For example, you
can generate lists of HTML form elements that are generated based on records
returned from an SQL query.

To use variables as part of your text presentation statements, reference them in the
HTML blocks of your macro.

Invalid variable references: Invalid variable references are resolved to the empty
string. For example, if a variable reference contains invalid characters such as an
exclamation point (1), the reference is resolved to the empty string.

Valid variable names must begin with an alphanumeric character or an underscore,

and they can consist of alphanumeric characters, including a period, underscore,
and hash mark.

Chapter 5. Developing Net.Data Macros 45

Variable Types

Example 1: Variable reference in a link

If you have defined the variable homeURL:
%DEFINE homeURL="http://www.ibm.com/"

You can refer to the home page as § (homeURL) and create a link:
Home page

You can reference variables in many parts of the Net.Data macro; check the
language constructs in this chapter to determine in which parts of the macro
variable references are allowed. If the variable has not yet been defined at the time
it is referenced, Net.Data returns an empty string. A variable reference alone does
not define the variable.

Example 2: Dynamically generated variable references

Assume that you run an SQL SELECT statement with any number of elements. You
can create an HTML form with input fields using the following ROW blocks:

SROW {

<input type=text name=@dtw rconcat("I", ROW_NUM) size=10 maxlength=10>

0,
%}

Because you created INPUT fields, you would probably want to access the values
that the user entered when the form is submitted to your macro for processing. You
can code a loop to retrieve the values in a variable length list:

<PRE>

@dtw_assign(rowIndex, "1")

%while (rowIndex <= rowCount) {

The value entered for row $(rowIndex) is: $(I$(rowIndex))

@dtw_add(rowIndex, "1", rowIndex) %}

</PRE>

Net.Data first generates the variable name using the I$(rowindex) reference. For

example, the first variable name would be 11. Net.Data then uses that value and
resolves to the value of the variable.

Example 3: A variable reference with nested variable references and a function call

%define my = "my"
%define u = "lower"
%define myLOWERvar = "hey"

$($(my)@dtw_ruppercase(u)var)

The variable reference returns the value of hey.

You can use the following types of variable in your macros.

46 Net.Data: Administration and Programming Guide for OS/400

If you assign strings to variables that are defined a certain way by Net.Data, such
as ENVVAR, LIST, condition list variables, the variable no longer behaves in the
defined way. In other words, the variable becomes a simple variable, containing a
string.

See Net.Data Reference for syntax and examples of each variable.

Conditional Variables

Conditional variables let you define a conditional value for a variable by using a
method similar to an IF, THEN construct. When defining the conditional variable,
you can specify two possible variable values. If the first variable you reference
exists, the conditional variable gets the first value; otherwise the conditional variable
gets the second value. The syntax for a conditional variable is:

varA = varB ? "value_1" : "value_2"

If varB is defined, varA="value_1", otherwise varA="value_2". This is equivalent to
using an IF block, as in the following example:
%IF ($(varB))
varA = "value_1"
%ELSE
varA = "value_2"
%ENDIF

See [List Variabhles” on page 50 for an example of using conditional variables with

list variables.

Environment Variables

You can reference environment variables that the Web server makes available to
the process or thread that is processing your Net.Data request. When the ENVVAR
variable is referenced, Net.Data returns the current value of the environment
variable by the same name.

The syntax for defining environment variables is:
%DEFINE var=%ENVVAR

Where var is the name of the environment variable being defined.

For example, the variable SERVER_NAME can be defined as environment variable:
%DEFINE SERVER_NAME=%ENVVAR

And then referenced:
The server is $(SERVER_NAME)

The output looks like this:

Chapter 5. Developing Net.Data Macros 47

48

The server is www.software.ibm.com

See Net.Data Reference for more information about the ENVVAR statement.
Executable Variables

You can invoke other programs from a variable reference using executable
variables.

Define executable variables in a Net.Data macro using the EXEC language
construct in the DEFINE block. For more information about the EXEC language
element, see the language constructs chapter in the Net.Data Reference. In the
following example, the variable runit is defined to execute the executable program
testProg:

%DEFINE runit=%EXEC "testProg"
runit becomes an executable variable.

Net.Data runs the executable program when it encounters a valid variable reference
in a Net.Data macro. For example, the program testProg is executed when a valid
variable reference is made to the variable runit in a Net.Data macro.

A simple method is to reference an executable variable from another variable
definition. The following example demonstrates this method. The variable date is
defined as an executable variable and dateRpt contains a reference to the
executable variable.

%DEFINE date=%EXEC "date"
%DEFINE dateRpt="Today is $(date)"

Wherever $ (dateRpt) appears in the Net.Data macro, Net.Data searches for the
executable program date, and when it locates it, returns:

Today is Tue 11-07-1999

When Net.Data encounters an executable variable in a macro, it looks for the
referenced executable program using the following method:

1. It searches the directories specified by the EXEC_PATH in the Net.Data
initialization file. See lIEXEC_PATH” on page 15 for details.

2. If Net.Data does not locate the program, the system searches the directories
defined by the system PATH environment variable or the library list. If it locates
the executable program, Net.Data runs the program.

Restriction: Do not set an executable variable to the value of the output of the
executable program it calls. In the previous example, the value of the variable date
is NULL. If you use this variable in a DTW_ASSIGN function call to assign its value
to another variable, the value of the new variable after the assignment is NULL
also. The only purpose of an executable variable is to invoke the program it defines.

You can also pass parameters to the program to be executed by specifying them
with the program name on the variable definition. In this example, the values of
distance and time are passed to the program calcMPH.

%DEFINE mph=%EXEC "calcMPH $(distance) $(time)"

This next example returns the system date as part of the report:

Net.Data: Administration and Programming Guide for OS/400

%DEFINE database="celdial"
%DEFINE tstamp=%EXEC "date"

%FUNCTION(DTW_SQL) myQuery() {

SELECT CUSTNO, CUSTNAME from distl.customer

%REPORT{

%ROW{

$(V1) $(v2)

N S P
—

}
1
%HTML (report) {

<H1>Report made: $(tstamp) </H1>
@myQuery ()

0,
%}

Each report displays the date for easy tracking. This example also puts the
customer number and name in a link for another Net.Data macro. Clicking on any
customer in the report calls the exmp.d2w Net.Data macro, passing the customer
number and name to the Net.Data macro.

Hidden Variables

You can use hidden variables to conceal the actual name of a variable from
application users who view your Web page source with their Web browser. To
define a hidden variable:

1. Define a variable for each string you want to hide, after the variable’s last
reference in the HTML block. Variables are always defined with the DEFINE
language construct after they are used in the HTML block, as in the following
example. The $$(variable) variables are referenced and then defined.

2. In the HTML block where the variables are referenced, use double dollar signs
instead of a single dollar sign to reference the variables. For example, $$(X)
instead of §$(X).

SHTML (INPUT) {

<FORM ...>

<P>Select fields to view:
shanghai<SELECT NAME="Field">
<OPTION VALUE="$$(name)"> Name
<OPTION VALUE="$$(addr)"> Address

</FORM>
%}

%DEFINE {
name="customer.name"
addr="customer.address"

0
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

0
%}

When a Web browser displays the HTML form, $$(name) and $$ (addr) are
replaced with §(name) and $ (addr) respectively, so the actual table and column
names never appear on the HTML form. Application users cannot tell that the
true variable names are hidden. When the user submits the form, the

Chapter 5. Developing Net.Data Macros 49

50

HTML(REPORT) block is called. When @mySelect() calls the FUNCTION block,
$(Field) is substituted in the SQL statement with customer.name or
customer.addr in the SQL query.

List Variables

Use list variables to build a delimited string of values. They are particularly useful in
helping you construct an SQL query with multiple items like those found in some
WHERE or HAVING clauses. The syntax for a list variable is:

%LIST " value_separator " variable_name

Recommendation: The blanks are significant. Insert a space before and after the
value separator for most cases. Most queries use Boolean or mathematical
operators (for example, AND, OR, or >) for the value separator. The following
example illustrates the use of conditional, hidden, and list variables:

SHTML(INPUT)

<FORM METHOD="POST" ACTION="/cgi-bin/db2www/example2.d2w/report">
<H2>Select one or more cities:</H2>

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(condl)">Sao Paolo

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond2)">Seattle

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond3)">Shanghai

<INPUT TYPE="submit" VALUE="Submit Query">

</FORM>

0,
%}

%DEFINE{
DATABASE="custcity"

%LIST " OR " conditions
condl="condl="'Sao Paolo"'"
cond2="cond2="'Seattle"'"
cond3="cond3="'Shanghai'"
whereClause= ? "WHERE $(conditions)" : ""

0,
%}

%FUNCTION(DTW_SQL) mySelect () {
SELECT name, city FROM citylist
$ (whereClause)

0,
%}

%HTML (REPORT) {
GmySelect()

0,
%}

In the HTML form, if no boxes are checked, conditions is NULL, so whereClause is
also NULL in the query. Otherwise, whereClause has the selected values separated
by OR. For example, if all three cities are selected, the SQL query is:

SELECT name, city FROM citylist
WHERE condl='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

This example shows that Seattle is selected, which results in this SQL query:

SELECT name, city FROM citylist
WHERE condl='Seattle'

Table Variables

The table variable defines a collection of related data. It contains a set of rows and
columns including a row of column headers. A table is defined in the Net.Data
macro as in the following statement:

%DEFINE myTable=%TABLE(30)

Net.Data: Administration and Programming Guide for OS/400

The number following %TABLE is the limit on the number of rows that this table
variable can contain. To specify a table with no limit on the number of rows, use the
default or specify ALL, as shown in these examples:

%DEFINE myTable2=%TABLE
%DEFINE myTable3=%TABLE (ALL)

When you define a table, it has zero rows and zero columns. The only way you can
populate a table with values is by passing it as an OUT or INOUT parameter to a
function or by using the built-in table functions provided by Net.Data. The
DTW_SQL language environment automatically puts the results of a SELECT
statement into a table.

For non-database language environments, such as DTW_REXX or DTW_PERL, the
language environment is also responsible for setting table values. However, the
Ianguage enwronment script or program defines the table values cell-by-cell. See

“ for more information about

how language environments use table variables.

You can pass a table between functions by referring to the table variable name. The
individual elements of the table can be referred to in a REPORT block of a function

or by using the Net.Data table functions. See [Tahle Pracessing Variahles” on

for accessing individual elements in a table within a REPORT block, and
e [Tahle Functions” on page 64 for accessing individual elements of a table using
a table function. Table variables are usually populated with values in an SQL
function, and then used as input to a report, either in the SQL function or in another
function after being passed to that function as a parameter. You can pass table
variables as IN, OUT, or INOUT parameters to any non-SQL function. Tables can be
passed to SQL functions only as OUT parameters.

If you reference a table variable, the contents of the table are displayed and
formatted based on the setting of the DTW_HTML_TABLE variable. In the following
example, the contents of myTable would be displayed:

%HTML (output) {
$(myTable)

The column names and field values in a table are addressed as array elements with
an origin of 1.

Miscellaneous Variables

These variables are Net.Data-defined variables that you can use to:
» Affect Net.Data processing

» Find out the status of a function call

» Obtain information about the result set of a database query

» Determine information about file locations and dates

Miscellaneous variables can either have a predefined value that Net.Data
determines or have values that you set. For example, Net.Data determines the
DTW_CURRENT_FILENAME variable value based on the current file that it is
processing, whereas you can specify whether Net.Data removes extra white space
caused by tabulators and new-line characters.

Chapter 5. Developing Net.Data Macros 51

52

Predefined variables are used as variable references within the macro and provide
information about the current status of files, dates, or the status of a function call.
For example, to retrieve the name of the current file, you could use:
%REPORT {

<p>This file is <i>$(DTW_CURRENT FILENAME)</i>.</P>
}

Modifiable variable values are generally set using a DEFINE statement or with the
@DTW_ASSIGN() function and let you affect how Net.Data processes the macro.
For example, to specify whether white space is removed, you could use the
following DEFINE statement:

%DEFINE DTW_REMOVE_WS="YES"

See the variables chapter in Net.Data Reference for a list of valid miscellaneous
variables with syntax and examples.

Table Processing Variables

Net.Data defines table processing variables for use in the REPORT and ROW
blocks. Use these variables to reference values from SQL queries and function
calls.

Table processing variables have a predefined value that Net.Data determines.
These variables allow you to reference values from the result sets of SQL queries
or function calls by the column, row, or field that is being processed. You can also
access information about the number of rows being processed or a list of all the
column names.

For example, as Net.Data processes a result set from an SQL query, it assigns the
value of the variable Nn for each current column name, such that N1 is assigned to
the first column, N2 is assigned to the second column, and so on. You can
reference the current column name for your Web page output.

Use table processing variables as variable references within the macro. For
example, to retrieve the name of the current column being processed, you could
use:

%REPORT {

<p>Column 1 is <i>$(N1)</i>.</P>
}

Table processing variables also provide information about the results of a query.
You can reference the variable TOTAL_ROWS in the macro to show how many
rows are returned from an SQL query, as in the following example:

Names found: $(TOTAL_ROWS)

Some of the table processing variables are affected by other variables or built-in
functions. For example, TOTAL_ROWS requires that the DTW_SET_TOTAL_ROWS
SQL language environment variable be activated so that Net.Data assigns the value
of TOTAL_ROWS when processing the results from a SQL query or function call as
in the following example:

%DEFINE DTW_SET_TOTAL_ROWS="YES"

Names found: $(TOTAL_ROWS)

See the variables chapter in Net.Data Reference for a list of valid table processing
variables with syntax and examples.

Net.Data: Administration and Programming Guide for OS/400

Report Variables

Net.Data displays Web page output generated from the macro in a default report
format. The default report format displays in a table format using <PRE> </PRE>
tags. You can override the default report by defining a REPORT block with
instructions for displaying the output or by using one of the report variables to
prevent the default report from being generated.

Report variables help you customize how your Web page output is displayed and
used with default reports and Net.Data tables. You must define these variables
before using them with a DEFINE statement or with the @DTW_ASSIGN() function.

The report variables specify spacing, override default report formats, specify HTML
table output versus default table output, and specify other display features. For
example, you can use the ALIGN variable to control leading and trailing spaces for
table processing variables. The following example uses the ALIGN variable to
separate by a space each column name in a list that is returned by a query.

%DEFINE ALIGN="YES"

<p>Your query was on these columns: $(NLIST)

The START_ROW_NUM report variable lets you determine at which row to begin
displaying the results of a query. For example, the following variable value specifies
that Net.Data will begin displaying the results of a query at the third row.

%DEFINE START_ROW_NUM = "3"

You can also determine whether Net.Data uses HTML tags for default formatting.
With DTW_HTML_TABLE set to YES, an HTML table is generated rather than a
text-formatted table.

%DEFINE DTW_HTML_TABLE="YES"

%FUNCTION(DTW_SQL) {
SELECT NAME, ADDRESS FROM $(qTable)

0,
%}

See the variables chapter in Net.Data Reference for a list of valid report variables
with syntax and examples.

Language Environment Variables

These variables are used with language environments and affect how the language
environment processes a request.

With these variables, you can perform tasks such as establishing connections to
databases,enabling NLS support, and determining whether the execution of an SQL
statement is successful.

For example, you can use the SQL_STATE variable to access or display the SQL
state value returned from the database.
%FUNCTION (DTW_SQL) vall() {

select * from customer
%REPORT {

%ROW {
%}

SQLSTATE=$ (SQL_STATE)
}

N

Chapter 5. Developing Net.Data Macros 53

See the variables chapter in Net.Data Reference for a list of valid language
environment variables with syntax and examples.

Net.Data Functions

Net.Data provides built-in functions for use in your applications, such as word and
string manipulation functions or functions that retrieve and set table variable
functions. You can also define functions for use with your application, for example to
call an external program or a stored procedure.

User-defined functions
Those functions that you define for use with your application, for example to
call an external program or a stored procedure.

Net.Data built-in functions
Those functions that Net.Data provides for use in your applications, such as
functions for manipulating words and strings and functions that get and set
table variables.

These sections describe the following topics:

Defining Functions

To define your own functions in the macro, use a FUNCTION block or
MACRO_FUNCTION block:

FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by a language environment. FUNCTION blocks must contain
language statements or calls to an external program.

MACRO_FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by Net.Data rather than a language environment.
MACRO_FUNCTION blocks can contain any statement that is allowed in an
HTML block.

Syntax: Use the following syntax to define functions:

FUNCTION block:

%FUNCTION(type) function-name([usage] [datatype] parameter, ...) [RETURNS(return-var)] {
executable-statements
[report-block]

[report-block]

[message-block]

[}
%}

MACRO_ FUNCTION block:

54 Net.Data: Administration and Programming Guide for 0S/400

%MACRO_FUNCTION function-name([usage] parameter, ...) [RETURNS(return-var)] {
executable-statements
report-block

report-block

[)
%}

Where:

type Identifies a language environment that is configured in the initialization file.
The language environment invokes a specific language processor (which
processes the executable statements) and provides a standard interface
between Net.Data and the language processor.

function-name
Specifies the name of the FUNCTION or MACRO_FUNCTION block. A
function call specifies the function-name, preceded by an at (@) sign. See

lCalling Functions” on page 54 for details.

You can define multiple FUNCTION or MACRO_FUNCTION blocks with the
same name so that they are processed at the same time. Each of the
blocks must all have identical parameter lists. When Net.Data calls the
function, all FUNCTION blocks with the same name or
MACRO_FUNCTION blocks with the same name are executed in the order
they are defined in the Net.Data macro.

usage Specifies whether a parameter is an input (IN) parameter, an output (OUT)
parameter, or both types (INOUT). This designation indicates whether the
parameter is passed into or received back from the FUNCTION block,
MACRO_FUNCTION block, or both. The usage type applies to all of the
subsequent parameters in the parameter list until changed by another
usage type. The default type is IN.

datatype
The data type of the parameter. Some language environments expect data
types for the parameters that are passed. For example, the SQL language
environment expects them when calling stored procedures, as does the
Direct Call language environment when calling programs. See

Using | anguage Fnvironments” on page 75 to learn more about the

supported data types for the language environment you are using.

parameter
The name of a variable with local scope that is replaced with the value of a
corresponding argument specified on a function call. Parameter references,
for example $(parml), in the executable statements or REPORT block are
replaced with the actual value of the parameter. In addition, parameters are
passed to the language environment and are accessible to the executable
statements using the natural syntax of that language or as environment
variables. Parameter variable references are not valid outside the
FUNCTION or MACRO_FUNCTION blocks.

return-var
Specify this parameter after the RETURNS keyword to identify a special
OUT parameter. The value of the return variable is assigned in the function
block, and its value is returned to the place in the macro from which the
function was called. For example, in the following sentence, <p>My name is
@my name() ., @my name() gets replaced by the value of the return variable. If
you do not specify the RETURNS clause, the value of the function call is:

* NULL if the return code from the call to the language environment is zero
* The value of the return code, when the return code is non-zero.

Chapter 5. Developing Net.Data Macros 55

56

executable-statements
The set of language statements that is passed to the specified language
environment for processing after the variables are substituted and the
functions are processed. executable-statements can contain Net.Data
variable references and Net.Data function calls.

For FUNCTION blocks, Net.Data replaces all variable references with the
variable values, executes all function calls, and replaces the function calls
with their resulting values before the executable statements are passed to
the language environment. Each language environment processes the

statements differently. For more information about specifying executable
statements or calling executable programs, see L i -

For MACRO_FUNCTION blocks, the executable statements are a
combination of text and Net.Data macro language constructs. In this case,
no language environment is involved because Net.Data acts as the
language processor and processes the executable statements.

report-block
Defines one or more REPORT blocks for handling the output of the

FUNCTION or MACRO_FUNCTION block. See LRepart Rlocks” on page 65,

message-block
Defines the MESSAGE block, which handles any messages returned by the

FUNCTION block. See Message Blacks” on page 57.

Define functions outside of any other block and before they are called in the
Net.Data macro.

Using Special Characters in Functions

When characters that match Net.Data language constructs syntax are used in the
language statements section of a function block as part of syntactically valid
embedded program code (such as REXX or Perl), they can be misinterpreted as
Net.Data language constructs, causing errors or unpredictable results in a macro.

For example, a Perl function might use the COMMENT block delimiter characters,
%q{. When the macro is run, the %{ characters are interpreted as the beginning of a
COMMENT block. Net.Data then looks for the end of the COMMENT block, which it
thinks it finds when it reads the end of the function block. Net.Data then proceeds
to look for the end of the function block, and when it can’t be found, issues an error.

Use one of the following methods to use COMMENT block delimiter characters, or
any other Net.Data special characters as part of your embedded program code,
without having them interpreted by Net.Data as special characters:

» Use the EXEC statement to call the program code, rather than putting the code
inline.
» Use a variable reference to specify the special characters.

For example, the following Perl function contains characters representing a
COMMENT block delimiter, %{, as part of its Perl language statements:

%FUNCTION(DTW_PERL) func() {

for $num_words (sort bynumber keys %{ $Rtitles{$num} }) {

Net.Data: Administration and Programming Guide for OS/400

&make_Tlinks($Rtitles{$num}{$num words});
}
5

To ensure that Net.Data interprets the %{ characters as Perl source code rather
than as a Net.Data COMMENT block delimiter, rewrite the function in either of the
following ways:

* Use the %EXEC statement:

%FUNCTION(DTW_PERL) func() {
%EXEC{ func.prl %}
%}
» Use a variable reference to specify the %{ characters:

%define percent_openbrace = "%{"
%FUNCTION(DTW_PERL) func() {

for $num_words (sort by number keys $(percent openbrace) $Rtitles{$num} } {
&make_Tinks($Rtitles{$num}{$num words});
1
%}

Message Blocks

The MESSAGE block lets you determine how to proceed after a function call, based
on the success or failure of the function call, and lets you display information to the
caller of the function. When processing a message, Net.Data sets the language
environment variable RETURN_CODE for each function call to a FUNCTION block.
RETURN_CODE is not set on a function call to a MACRO_FUNCTION block.

A MESSAGE block consists of a series of message statements, each of which
specifies a return code value, message text, and an action to take. The syntax of a
MESSAGE block is shown in the language constructs chapter of Net.Data
Reference.

A MESSAGE block can have a global or a local scope. If the MESSAGE block is
defined in a FUNCTION block, its scope is local to that FUNCTION block. If it is
specified at the outermost macro layer, the MESSAGE block has global scope and
is active for all function calls executed in the Net.Data macro. If you define more
than one global MESSAGE block, the last one defined is active.

Net.Data uses these rules to process the value of the RETURN_CODE variable

from a function call:

1. Check local MESSAGE block for an exact match; exit or continue as specified.

2. If RETURN_CODE is not 0, check local MESSAGE block for +default or
-default; depending on the sign of RETURN_CODE, exit or continue as
specified.

3. If RETURN_CODE is not 0, check local MESSAGE block for default; exit or
continue as specified.

4. Check global MESSAGE block for an exact match; exit or continue as specified.

5. If RETURN_CODE is not 0, check global MESSAGE block for +default or
-default; depending on the sign of RETURN_CODE, exit or continue as
specified.

6. If RETURN_CODE is not 0, check global MESSAGE block for default; exit or
continue as specified.

Chapter 5. Developing Net.Data Macros 57

7. If RETURN_CODE is not 0, issue Net.Data internal default message and exit.

The following example shows part of a Net.Data macro with a global MESSAGE
block and a MESSAGE block for a function.

%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
+default : {

This is a lTong message that spans more
than one line. You can use HTML tags, including

links and forms, in this message. %} : continue

0,
%}

{ Tocal message block inside a FUNCTION block %}
FUNCTION(DTW_REXX) my function() {

%EXEC { my_command.mbr %}

SMESSAGE {

)
%
)

%

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
-default : {

This is a Tong message that spans more
than one Tine. You can use HTML tags, including

0

links and forms, in this message. %} : exit

0

%}

If my_function() returns with a RETURN_CODE value of 50, Net.Data processes
the error in this order:

1. Check for an exact match in the local MESSAGE block.
Check for +default in the local MESSAGE block.

Check for default in the local MESSAGE block.

Check for an exact match in the global MESSAGE block.
Check for +default in the global MESSAGE block.

a s~ DN

When Net.Data finds a match, it sends the message text to the Web browser and
checks the requested action.

When you specify continue, Net.Data continues to process the Net.Data macro
after printing the message text. For example, if a macro calls my_functions() five
times and error 100 is found during processing with the MESSAGE block in the
example, output from a program can look like this:

11 May 1997 $245.45
13 May 1997 $623.23
19 May 1997 $ 83.02
return code 100 message

22 May 1997 $ 42.67
Total: $994.37

Calling Functions

58

Use a Net.Data function call statement to call both user-defined functions and
built-in functions. Use the at (@) character followed by a function name or a macro
function name:

@function_name ([argument,...])

Net.Data: Administration and Programming Guide for OS/400

function_name
This is the name of the function or macro function to invoke. The function
must already be defined in the Net.Data macro, unless this is a built-in
function.

argument
This is the name of a variable, a quoted string, a variable reference, or a
function call. Arguments on a function call are matched up with the
parameters on a function or macro function parameter list. And, each
parameter is assigned the value of its corresponding argument while the
function or macro function is being processed. The arguments must be the
same number and type as the corresponding parameters.

[Quoted strings as arguments can contain variable references and functions
[calls.

[Example 1: Function call with a text string argument
[@myFunction("abc")

[Example 2: Function call with a variable and a function call arguments
| @myFunction(myvar, @DTW_rADD("2","3"))

[Example 3: Function call with a text string argument that contains a variable
[reference and a function call

[@myFunction("abc$ (myvar)def@DTW _rADD("2","3")ghi")

| Calling Net.Data Built-in Functions
Net.Data provides a large set of built-in functions to simplify Web page
development. These functions are already defined by Net.Data, so you do not need

to define them. You can call these functions as you would call other functions.

Eigure 7 shows how the Net.Data built-in functions and the macro interact.

Web | : CGI

Net.Data Macro File
Server %Define{...%)
%HTML(Initial-Page) Net.Data Built-in
{ Functions
:
Initial —— . * General
BWeb Page |« N :/o} e Math
rowser HTTP {/oHTML(Report) « String
i e Word
= = Report — O 1Ee
Page ¢ Persistent
~ e Flat File
* Web Registry
Net.Data

0S/400 I

Figure 7. Net.Data Built-in Functions

Chapter 5. Developing Net.Data Macros 59

Built-in functions can return their results in three ways, depending on its prefix:

« DTW_, DTWF_, and DTWR_: The results of the call are returned in an output
parameter or no result is returned. (DTWF _ is the prefix for flat file functions.
DTWR__is the prefix for Web registry functions.)

e DTW_r, DTWF_r, and DTWR_r: The results of the function call replace the
function call in the macro, in the same way the value of the RETURNS keyword
replaces the function call for a user-defined function which has specified a
RETURNS keyword.

« DTW_m: Multiple results are returned in each of the parameters passed to the
function.

Some built-in functions do not have each type. To determine which type a particular
built-in function has, see the Net.Data built-in functions chapter in Net.Data
Reference.

The following sections provide a high-level overview of the Net.Data built-in
functions. Use these functions to perform general purpose, math, string, word, or
table manipulation functions. Additionally, you can use persistent functions for
transaction processing. See Net.Data Reference for descriptions of each function
with syntax and examples. Some of these functions required variables to be set
prior to their use, or must be used in a specific context. Not all operating systems
support each built-in function. See Net.Data Reference to determine which functions
are supported for your operating system.

General Purpose Functions

This set of functions help you develop Web pages by altering data or accessing
system services. You can use them to send mail, process HTTP cookies, generate
HTML escape codes, and get other useful information from the system.

For example, to specify that Net.Data should exit a macro if a specific condition
occurs, without processing the rest of the macro, you use the DTW_EXIT function:

%HTML (cache_example) {

<html>

<head>

<title>This is the page title</title>
</head>

<body>

<center>

<h3>This is the Main Heading</h3>

<! Joe Smith sees a very short page 1>
< LLLLL L s

%IF (customer == "Joe Smith")
</body>
</html>

60 Net.Data: Administration and Programming Guide for OS/400

@DTW_EXIT()

%ENDIF

</body>
</html>

0,
%}

Another useful function is the DTW_URLESCSEQ function, which replaces
characters that are not allowed in a URL with their escape values. For example, if
the input variable stringl equals "Guys & Doll1s", DTW_URLESCSEQ assigns the
output variable to the value "Guys%20%26%20Do11s".

See the built-in functions chapter in Net.Data Reference for a list of valid general
functions with syntax and examples.

Math Functions

These functions perform mathematical operations, letting you calculate or alter
numeric data. Besides standard mathematical operations, you can also perform
modulus division, specify a result precision, and use scientific notation.

For example, the function DTW_POWER raises the value of its first parameter to
the power of its second parameter and returns the result, as shown in the following
example:

@DTW_POWER("2", "-3", result)
DTW_POWER returns ".125" in the variable result

See the built-in functions chapter in Net.Data Reference for a list of valid math
functions with syntax and examples.

String Functions

These functions let you manipulate characters within strings. You can change a
string’s case, insert or delete characters, assign a string value to another variable,
plus other useful functions.

For example, you can use DTW_ASSIGN to assign the value of an input variable to
an output variable. You can also use this function to change a variable in a macro.
In the following example, the variable RC is assigned to zero.

@DTW_ASSIGN(RC, "0")

Other string functions include DTW_CONCAT, which concatenates strings, and
DTW_INSERT, which inserts strings at a specific position, as well many other string
manipulations functions.

See the built-in functions chapter in Net.Data Reference for a list of valid string
functions with syntax and examples.

Chapter 5. Developing Net.Data Macros 61

62

Word Functions

These functions let you manipulate words in character strings. Most of these
functions work similar to string functions, but on entire words. For example, they let
you count the number of words in a string, remove words, search a string for a
word.

For example, use DTW_DELWORD to delete a specified number of words from a
string:
@DTW_DELWORD("Now is the time", "2", "2", result)

DTW_DELWORD returns the string "Now time".

Other word functions include DTW_WORDLENGTH, which returns the number of
characters in a word, and DTW_WORDPOS, which returns the position of a word
within a string.

See the built-in functions chapter in Net.Data Reference for a list of valid word
functions with syntax and examples.

Table Functions

You can use these functions to generate reports or forms using the data in a
Net.Data table variable. You can also use these functions to create Net.Data tables,
and to manipulate and retrieve values in those tables. Table variables contain a set
of values and their associated column names. They provide a convenient way to
pass groups of values to a function.

For example, DTW_TB_APPENDROW appends a row to the table. In the following
example, Net.Data appends ten rows to the table, myTabTe:

@DTW_TB_APPENDROW(myTable, "10")

Additionally, DTW_TB_DUMPH, returns the contents of a macro table variable,
enclosed in <PRE></PRE> tags, with each row of the table is displayed on a
different line. And DTW_TB_CHECKBOX returns one or more HTML check box
input tags from a macro table variable.

See the built-in functions chapter in Net.Data Reference for a list of valid table
functions with syntax and examples.

Flat File Functions

Use the flat file interface (FFI) functions to open, read, and manipulate data from
flat file sources (text files), as well as store data in flat files.

For example, DTWF_APPEND, writes the contents of a table variable to the end of
a file, and DTWF_DELETE deletes records from a file.

Additionally, the FFI functions allow file locking with DTWF_CLOSE and
DTWF_OPEN. DTWF_OPEN locks a file that so that another request cannot read
or update the file. DTWF_CLOSE releases the file when Net.Data is done with it,
allowing other requests to access the file.

See the built-in functions chapter in Net.Data Reference for a list of valid FFI
functions with syntax and examples.

Net.Data: Administration and Programming Guide for OS/400

Web Registry Functions

Use the Web registry functions to maintain registries and the entries they contain. A
Web registry is a file with a key maintained by Net.Data to allow you to add,
retrieve, and delete entries easily.

For example, DTWR_ADDENTRY adds entries, while DTWR_DELENTRY deletes
entries. DTWR_LISTSUB returns information about the registry entries in an OUT
table parameter, and DTWR_UPDATEENTRY replaces the existing values for a
specified registry entry with a new value.

See the built-in functions chapter in Net.Data Reference for a list of valid Web
registry functions with syntax and examples.

Persistent Functions

The persistent macro functions support transaction processing in Net.Data by
helping you define which macro blocks are persistent within a single transaction.
Use these functions to define the start and end of a transaction, which HTML blocks
are persistent throughout the transaction, the scope of the variables within the
transaction, and whether to commit or rollback changes within the transaction.

For example, DTW_ACCEPT identifies the transaction handle for a transaction,
while DTW_TERMINATE identifies the final HTML block in the transaction.
DTW_RTVHANDLE generates a unique transaction handle for blocks in the
transaction. You can use DTW_COMMIT and DTW_ROLLBACK to initiate commits
and rollbacks during the transaction.

See [Chapter 7_Transaction Management with Persistent Macros” on page 101 for

more information. Also see the built-in functions chapter in Net.Data Reference for a
list of valid persistent functions with syntax and examples.

Generating Web Pages in a Macro

HTML Blocks

Net.Data lets you easily present standard Web pages on the application user’s
browser. The following sections describe the HTML and REPORT blocks of the
macro and show you how to format Web pages in Net.Data macros. See the
language constructs chapter in Net.Data Reference for syntax information for these
blocks.

A Net.Data macro contains HTML blocks that generate text presentation statements,
such as HTML, to a Web browser. In a macro, you must specify at least one HTML
block, but can specify as many as you want. Each HTML block generates a single
Web page at the browser. Net.Data processes only one HTML block each time it is
invoked. To create an application consisting of many Web pages, you can invoke
Net.Data multiple times to process HTML blocks using standard navigation
techniques, such as links and forms.

Any valid text presentation statements, such as HTML or JavaScript, can appear in
an HTML block. In addition, you can use INCLUDE statements, function calls, and
variable references in an HTML block. The following example shows a common use
of HTML blocks in a Net.Data macro:

Chapter 5. Developing Net.Data Macros 63

64

%DEFINE DATABASE="MNS96"

%SHTML (INPUT) {

<H1>Hardware Query Form</H1>

<HR>

<FORM METHOD="POST" ACTION="/cgi-bin/db2www/equiplst.d2w/report">
<d1>

<dt>What hardware do you want to Tist?

<dd><input type="radio" name="hdware" value="MON" checked>Monitors
<dd><input type="radio" name="hdware" value="PNT">Pointing devices
<dd><input type="radio" name="hdware" value="PRT">Printers
<dd><input type="radio" name="hdware" value="SCN">Scanners

</d1>

<HR>

<input type="submit" value="Submit">

</FORM>

0,
%}

%FUNCTION(DTW_SQL) myQuery() {

SELECT MODNO, COST, DESCRIP FROM EQPTABLE WHERE TYPE=§(hdware)
%REPORT {

Here is the list you requested:

%ROW{

<HR>

$(N1): $(v1) $(N2): $(V2)

<p>
$(v3)
%}
%}

0,
%}

%HTML (REPORT) {
@myQuery ()

%}

You can invoke the Net.Data macro from an HTML link like the one in the following
example:

List of hardware

When the application user clicks on this link, the Web browser invokes Net.Data,
and Net.Data parses the macro. When Net.Data begins processing the HTML block
specified on the invocation, in this case the HTML(INPUT) block, it begins to
process the text inside the block. Anything that Net.Data does not recognize as a
Net.Data macro language construct, it sends to the browser for display.

After the user makes a selection and presses the Submit button, Net.Data runs the
ACTION part of the HTML FORM element, which specifies a call to the Net.Data
macro’s HTML(OUTPUT) block. Net.Data then processes the HTML(OUTPUT)
block just as the HTML(INPUT) block was.

Net.Data then processes the myQuery () function call, which in turn invokes the SQL
FUNCTION block. After replacing the $(hdware) variable reference in the SQL
statement with the value returned from the input form, Net.Data runs the query. At
this point, Net.Data resumes processing the report, displaying the results of the
query according to the text presentation statements specified in the REPORT block.

After Net.Data completes the REPORT block processing, it returns to the
HTML(OUTPUT) block, and finishes processing.

Net.Data: Administration and Programming Guide for OS/400

Report Blocks

Use the REPORT block language construct to format and display data output from
a FUNCTION block. This output is typically table data, although any valid
combination of text, macro variable references, and function calls can be specified.
A table name can optionally be specified on the REPORT block. If you do not
specify a table name, Net.Data uses the table data from the first output table in the
FUNCTION parameter list.

The REPORT block has three parts, each of which is optional:

» Header information, which contains text that is displayed once before the table
row data.

* A ROW block, which contains text and table variables that are displayed once for
each row of the result table.

» Footer information, which contains text that is displayed once after the table row
data.

Example:

%REPORT{
<H2>Query Results</H2>
<P>Select a name for details.
<TABLE BORDER=1>
<TR>
<TD>Name</TD>
<TD>Location</TD></TR>
%ROW{
<TR>
<TD>
$(Vl)
</TD>
<TD>$(v2)</TD>
</TR>
%}
</TABLE>

%}
REPORT Block Guidelines

Use the following guidelines when creating REPORT blocks:

» To avoid displaying any table output from the ROW block, leave the ROW block
empty or omit it entirely.

* Use Net.Data-provided variables inside the REPORT block to access the data in
the Net.Data macro results table. These variables are described in [Tabld

Pracessing Variables” on page 53. For additional detail, see the Report Variables

section in the Net.Data Reference.

» To provide header and footer information, provide the text before and after the
ROW block. Net.Data processes everything it finds before a ROW block as
header information. Net.Data processes everything it finds after the ROW block
as footer information. As with the HTML block, Net.Data treats everything in the
header, ROW, and footer blocks that is not recognized as macro language
constructs as text presentation statements and sends these statements to the
browser.

* You can call functions and reference variables in a REPORT block.

» To have Net.Data print a default report using pre-formatted text, do not include
the REPORT block in the macro. The following example shows the default report
format:

Chapter 5. Developing Net.Data Macros 65

SHIPDATE | RECDATE | SHIPNO |

* To use the HTML tags instead of the pre-formatted text, set DTW_HTML_TABLE
to YES.

» To disable the printing of the a default report, set DTW_DEFAULT_REPORT to
NO or by specifying an empty REPORT block. For example:

%REPORT{%}
Example: Customizing a Report

The following example shows how you can customize report formats using special
variables and HTML tags. It displays the names, phone numbers, and FAX numbers
from the table CustomerTh1:

%DEFINE SET_TOTAL_ROWS="YES"

%FUNCTION(DTW_SQL) custlist() {
SELECT Name, Phone, Fax FROM CustomerTbl
%REPORT{
<I>Phone Query Results:</I>

%ROW{
Name: $(V1)

Phone: $(v2)

Fax: $(V3)

The resulting report looks like this in the Web browser:

Phone Query Results:

Name: Doen, David
Phone: 422-245-1293
Fax: 422-245-7383
Name: Ramirez, Paolo
Phone: 955-768-3489
Fax: 955-768-3974
Name: Wu, Jianli
Phone: 525-472-1234
Fax: 525-472-1234

Total records retrieved: 3

Net.Data generated the report by:

1. Printing Phone Query Results: once at the beginning of the report. This text,
along with the separator line, is the header part of the REPORT block.

66 Net.Data: Administration and Programming Guide for 0S/400

2. Replacing the variables V1, V2, and V3 with their values for Name, Phone, and
Fax respectively for each row as it is retrieved.

3. Printing the string Total records retrieved: and the value for TOTAL_ROWS once at
the end of the report. (This text is the footer part of the REPORT block.)

Multiple REPORT Blocks

You can specify multiple REPORT blocks within a single FUNCTION or MACRO
FUNCTION block to generate multiple reports with one function call.

Typically, you would use multiple REPORT blocks with the DTW_SQL language
environment with a function that calls a stored procedure, which returns multiple
result sets (see LStared Procedures” on page 93). However, multiple REPORT

blocks can be used with any language environment to generate multiple reports.

To use multiple REPORT blocks, place a Net.Data table variable in the function
parameter list. If more result sets are returned from the stored procedure than the
number of REPORT blocks you have specified, and if the Net.Data built-in function
DTW_DEFAULT_REPORT = "MULTIPLE", then default reports are generated for
each table that is not associated with a report block. If no report blocks are
specified, and if DTW_DEFAULT_REPORT = "YES", then only one default report
will be generated. Note that for the SQL language environment only, a
DTW_DEFAULT_REPORT value of "YES" is equivalent to a value of "MULTIPLE".

Examples: The following examples demonstrate ways in which you can use
multiple report blocks.

To display multiple reports using default report formatting:

Example 1: DTW_SQL language environment

%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"
%FUNCTION (dtw_sql) myStoredProc (OUT tablel, table2) {

0

CALL myproc %}

In this example, the stored procedure myproc returns two result sets, which are
placed in tablel and table2. Because no REPORT blocks are specified, default
reports are displayed for both tables, tablel first, then table2.

Example 2: MACRO_FUNCTION block. In this example, two tables are passed into
the MACRO_FUNCTION block. When DTW_DEFAULT_REPORT="MULTIPLE" is
specified, Net.Data generates reports for both tables.

%DEFINE DTW_DEFAULT REPORT = "MULTIPLE"

%MACRO_FUNCTION multReport (INOUT tablenamel, tablename2) {

0,
%}

In this example, two tables are passed into the MACRO_FUNCTION multReport.
Again, Net.Data displays default reports for the two tables in the order in which they
appear in the MACRO FUNCTION block parameter list, tablel first, then table2.

Example 3: DTW_REXX language environment

%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION (dtw_rexx) multReport (INOUT tablel, table2) {
SAY 'Generating multiple default reports...
'

0,
%}

Chapter 5. Developing Net.Data Macros 67

68

In this example, two tables are passed into the REXX function multReport. Because
DTW_DEFAULT_REPORT="YES" is specified, Net.Data displays a default report
for the first table only.

To display multiple reports by specifying REPORT blocks for display
processing:

Example 1: Named REPORT blocks

%FUNCTION(dtw_sql) myStoredProc (OUT tablel, table2) {
CALL myproc (tablel, table2)

%REPORT (table2) {
SROW { .n. %)
5

%REPORT (tablel) {
Srow { ... %)

0,
%}

0,
%}

In this example, REPORT blocks have been specified for both of the tables passed
in the FUNCTION block parameter list. The tables are displayed in the order they
are specified on the REPORT blocks, table2 first, then tablel. By specifying a
table name on the REPORT block, you can control the order in which the reports
are displayed.

Example 2: Unnamed REPORT blocks

%FUNCTION(dtw_sql) myStoredProc (OUT tablel, table2) {
CALL myproc

%REPORT {

o°
—

%ROW {

N oF

}
REPORT {

o
—

SROW {
%}

0,
%}

In this example, REPORT blocks have been specified for both of the tables passed
in the FUNCTION block parameter list. Because there are no table names specified
on the REPORT blocks, reports are displayed for the two tables in the order in
which they are returned from the stored procedure.

To display multiple reports using a combination of default reports and
REPORT blocks:

Example: A combination of default reports and REPORT blocks

%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"

%FUNCTION(dtw_system) editTables (INOUT tablel, table2, table3) {
%EXEC{ /gsys.lib/mylib.1ib/mypgm.pgm %}
%REPORT (table2) {

Net.Data: Administration and Programming Guide for OS/400

SROW { %}

0,
%}

[
%}

In this example, only one REPORT block is specified, and because it specifies a
table name of table2, it uses this table to display its report. Because there are
fewer REPORT blocks specified the number of result sets returned from the stored
procedure, default reports are displayed for the remaining for the remaining result
sets: first, a default report for tablel; then a default report for table3.

Guidelines and Restrictions for Multiple REPORT Blocks: Use the following
guidelines and restrictions when specifying multiple REPORT blocks in a
FUNCTION or MACRO_FUNCTION block.

Guidelines:

* You can specify one or more REPORT block per result set or table name. The
name specified for the REPORT block must match a corresponding result set
name or table name parameter in the FUNCTION block parameter list.

» Specify REPORT blocks for multiple tables in the order in which you want them
to be processed.

» To specify default processing when there is not a REPORT block specified for a
table, define DTW_DEFAULT_REPORT = "MULTIPLE". When Net.Data builds
the Web page, it displays default reports for tables after it displays the reports for
tables having REPORT blocks. Note that setting DTW_DEFAULT_REPORT =
"YES" will result in the generation of a default report for one table only, when a
REPORT block has not been specified. The exception is in the SQL language
environment, where a value of YES will result in the same processing as
MULTIPLE.

» To prevent Net.Data from displaying tables that do not have REPORT blocks, set
DTW_DEFAULT_REPORT = "NO".

* When using the DTW_SAVE_TABLE_IN variable with a function that returns
more than one table, the first table returned from the function is assigned to the
DTW_SAVE_TABLE_IN table.

» Multiple report blocks can be used with any language environment.

Restrictions:

* The values of all report variables in a function apply to all the REPORT blocks in
that function. You cannot modify the value of a report variable for individual
REPORT blocks.

* The MESSAGE block must be located either before or after a list of REPORT
blocks, and not between REPORT blocks.

» Table variables must be defined within the TABLE statement before being passed
to the function.

 If the first report block specifies a table name, then all report blocks must specify
table names.

« If the first report block does not specify a table name, then none of the report
blocks can specify table names.

Conditional Logic and Looping in a Macro

Net.Data lets you incorporate conditional logic and looping in your Net.Data macros
using the IF and WHILE blocks.

Chapter 5. Developing Net.Data Macros 69

IF and WHILE blocks use a condition list that helps you test one or more
conditions, and then to perform a block of statements based on the outcome of the
condition test. The condition list contains logical operators, such as = and <+, and
terms, which are made up of quoted strings, variables, variable references, and
function calls. Quoted strings can contain variable references and functions calls, as
well. You can nest the condition list.

The following sections describe conditional logic and looping:

Conditional Logic: IF Blocks

70

Use the IF block for conditional processing in a Net.Data macro. The IF block is
similar to IF statements in most high-level languages because it provides the ability
to test one or more conditions, and then to perform a block of statements based on
the outcome of the condition test.

You can specify IF blocks almost anywhere in a macro and can nest them. The
syntax of an IF block is shown in the language constructs chapter in Net.Data
Reference.

IF Block Rules: The rules for IF block syntax are determined by the block’s
position in the macro. The elements allowed in the executable block of statements
of an IF block depend on the location of the IF block itself.

* Any element that is valid in the block containing the IF block is valid within that IF
block. For example, if you specify an IF block inside an HTML block, any element
that is allowed in the HTML block is allowed in the IF block, such as INCLUDE
statements and WHILE blocks.

%SHTML block
“"/.DIF block
%INCLUDE
B %SWHILE

%ENDIF
%}
» Similarly, if you specify the IF block outside of any other block in the declaration
part of the Net.Data macro, only those elements allowed outside of any other
block (such as a DEFINE block or FUNCTION block) are allowed in the IF block.

%1F
%DEFINE
%FUNCTION

SENDIF

* When a IF block is nested within an IF block that is outside of any other block in

the declaration part, it can use any element that the outside block can use. When
an IF block is nested within another block that is in an IF block, it takes on the
syntax rules for the block it is inside.

For example, a nested IF block must follow the rules used when it is inside an
HTML block.

Net.Data: Administration and Programming Guide for OS/400

%ENDIF
Exception: Do not specify a ROW block in an IF block.
IF Block String Comparison

Net.Data processes the IF block condition list in one of two ways based on the
contents of the terms making up the conditions. The default action is to treat all
terms as strings, and to perform string comparisons as specified in the conditions.
However, if the comparison is between two strings representing integers, then the
comparison is numeric. Net.Data assumes a string is numeric if it contains only
digits, optionally preceded by a '+’ or -’ character. The string cannot contain any
non-digit characters other than the '+’ or ’-". Net.Data does not support numerical
comparison of non-integer numbers.

Examples of valid integer strings:

+1234567890
-47

000812
92000

Examples of invalid integer strings:

- 20 (contains blank characters)
234,000 (contains a comma)
57.987 (contains a decimal point)

Net.Data evaluates the IF condition at the time it executes the block, which can be
different than the time it is originally read by Net.Data. For example, if you specify
an IF block in a REPORT block, Net.Data does not evaluate the condition list
associated with the IF block when it reads the FUNCTION block definition
containing the REPORT block, but rather when it calls the function and executes it.
This is true for both the condition list part of the IF block and the block of
statements to be executed.

IF Block Example: A macro containing IF blocks inside other blocks

%{ This macro is called from another macro, passing the operating system
and version variables in the form data.

0,
%}

%IF (platform == "AS400")
%IF (version == "V3R2")
%INCLUDE "as400v3r2_def.hti"
%ELIF (version == "V3R7")
%INCLUDE "as400v3r7_def.hti"
%ELIF (version == "VARI")
%INCLUDE "as400v4rl_def.hti"
%ENDIF
%ELSE
%INCLUDE "default_def.hti"
%ENDIF

%MACRO_FUNCTION numericCompare(IN terml, term2, OUT result) {
%IF (terml < term2)

Chapter 5. Developing Net.Data Macros 71

@dtw_assign(result, "-1")
%ELIF (terml > term2)

@dtw_assign(result, "1")
%ELSE

@dtw_assign(result, "0")
%ENDIF

0,
%}

%HTML (report) {

SWHILE (a < "10") {
outer while Toop #$(a)

%IF (@dtw_rdivrem(a,"2") == "0")

this is an even number loop

%ENDIF
@DTW_ADD(a, "1", a)

%}

0,
%}

Looping Constructs: WHILE Blocks

72

Use the WHILE block to perform looping in a Net.Data macro. Like the IF block, the
WHILE block provides the ability to test one or more conditions, and then to
perform a block of statements based on the outcome of the condition test. Unlike
the IF block, the block of statements can be executed any number of times based
on the outcome of the condition test.

You can specify WHILE blocks inside HTML blocks, REPORT blocks, ROW blocks,
MACRO_FUNCTION blocks, and IF blocks, and you can nest them. The syntax of
a WHILE block is shown in the language constructs chapter of Net.Data Reference.

Net.Data processes the WHILE block exactly the same way it processes the IF
block, but re-evaluates the condition after each execution of the block. And, like any
conditional looping construct, it is possible for processing to go into an infinite loop
if the condition is coded incorrectly.

Example: A macro with a WHILE block
%DEFINE ToopCounter = "1"

%HTML (build_table) {
SWHILE (ToopCounter <= "100") {

%{ generate table tag and column headings %}

%IF (loopCounter == "1")
<TABLE BORDER>
<TR>
<TH>Item #
<TH>Description

%ENDIF

%{ generate individual rows %}
<TR>

<TD>$(1oopCounter)
<TD>@getDescription(loopCounter)
%{ generate end table tag %}
%IF (loopCounter == "100")
%ENDIF

%{ increment loop counter %}
@DTW_ADD(1oopCounter, "1", loopCounter)

Net.Data: Administration and Programming Guide for OS/400

o

o

Chapter 5. Developing Net.Data Macros

73

74 Net.Data: Administration and Programming Guide for 0S/400

Chapter 6. Using Language Environments

Net.Data supplies language environments that you use to access data sources and
to execute application programs containing business logic. For example, the SQL
language environment lets you pass SQL statements to a DB2 database, and the
REXX language environment lets you invoke REXX programs. You can also use the
SYSTEM language environment to execute a program or issue a command.

With Net.Data, you can add user-written language environments in a pluggable
fashion. Each user-written language environment must support a standard set of
interfaces that are defined by Net.Data and must be implemented as a service
program. For complete details on how to create a user-written language
environment, see the Net.Data Language Environment Interface Reference.

m shows the relationship between the Web server, Net.Data, and the
Net.Data language environments.

Net.Data-
Web cal Net.Data Macro File fgﬁgﬂgge
Server %Define...%} - Java
y %HTML (Initial-Page) Environments xpplications
{ Commands or
| Programs
% - Direct Call Programs
initial b %HTML(Report) REXX J REXX
nitia { j Programs
Page +—— :
Pra—
'saL ~{DB2Data '
Report <= :
Page | |: : > User-written
1 : : Language
Environments
JavaApplet
0S/400 I

Figure 8. The Net.Data Language Environments

The following sections describe the Net.Data language environments and how to
use them in your macros:

" 0 i i)
. -

‘ R B ”
.

For information about improving performance when using the language
environments, see LQOptimizi i !

© Copyright IBM Corp. 1997, 1999 75

I
| Overview of Net.Data-Supplied Language Environments

[Net.Data provides language environments that let you access data and
| programming resources for your application.
| ffanie 3 provides a brief description of each language environment.

Table 3. Net.Data Language Environments

Language
Environment Environment Name Description

Direct Call DTW_DIRECTCALL The Direct Call language environment supports calls
to external programs that are written using a
high-level programming language such as RPG,
COBOL, and C/C++.

Java DTW_JAVAPPS Net.Data supports your existing Java applications with
Application the Java language environment.
REXX DTW_REXX The REXX language environment interprets internal

REXX programs that are specified in a FUNCTION
block of the Net.Data macro, or it can execute
external REXX programs stored in a separate file.

SQL DTW_SQL The SQL language environment executes SQL
statements through DB2. The results of the SQL
statement can be returned in a table variable.

System DTW_SYSTEM The System language environment supports
executing commands and calling external programs.

| Calling a Language Environment

To call a language environment:

* Use a FUNCTION statement to define a function that calls the language
environment.

* Use a function call to the language environment.

For example:

%FUNCTION(DTW_SQL) custinfo() {
select customer, custno from customer.data

0,
%}

%HTML (REPORT) {
@custinfo()

%}

| Handling Error Conditions

| When an error is detected in a language environment function, the language
| environment sets the Net.Data RETURN_CODE variable with an error code.

You can use the following resources to handle error conditions:

* The Net.Data-supplied language environments return error codes that are
documented in Net.Data Messages and Codes Reference.

* The database language environments, such as the SQL language environment,
set the RETURN_CODE to error codes that are returned by the database

76 Net.Data: Administration and Programming Guide for OS/400

Security

management system (DBMS), called SQLCODESs. See the messages and codes
documentation for your DBMS to learn more about the SQLCODESs used by your
DBMS.

Ensure that the user ID that Net.Data is running under has the proper authority to
access any object that may be referenced by the target of a language environment
statement. For example, SQL language environment runs SQL statements, and
SQL statements access database files, so the user ID that Net.Data is running
under must have authority to the database files.

Direct Call Language Environment

The Direct Call language environment allows you to call programs that are written in
a high-level language such as C, RPG, COBOL, and CL. Parameters can be
passed to the program, and parameter values can be received from the program,
enabling easy integration of existing programs with Net.Data and allowing users to
use existing programming skills to code complicated business logic.

Calling Programs

To call a program, define a function that uses the Direct Call (DTW_DIRECTCALL)
language environment and that includes a path to the program that is to be called in
an EXEC statement. For example:
%function(DTW_DIRECTCALL) dcl() {

%EXEC { /QSYS.LIB/NETDATA.LIB/MYPGM.PGM %}

0,
%}

You can shorten the path to the program if you use the EXEC_PATH configuration
variable to define paths to directories that contain programs. See FEXEC_PATH” on
to learn how to define the EXEC_PATH configuration variable.

Supported Language Environment Variables

The Direct Call language environment supports the DTW_PAD_PGM_PARMS
variable, which indicates whether parameters that are to be passed to a program
are to padded with blanks up to the precision specified. See Net.Data Reference for

description, syntax, and examples for this variable. See [Passing Parameters td

for more information on passing parameters to programs.

Passing Parameters to Programs

Pass parameters to a program by specifying on the function definition the data type
of the parameter and whether the parameter to be passed is an input-only (IN),
output-only (OUT), or input/out (INOUT) parameter. For example:
%function(DTW_DIRECTCALL) dc2(IN CHAR(3) pl,
INOUT INTEGER p2,
OUT DECIMAL(7,2) p3) {
%EXEC { /QSYS.LIB/NETDATA.LIB/MYPGM.PGM %}

%}

In the above example, the Direct Call language environment passes three
parameters, a character variable, an integer, and a packed decimal variable to the
program MYPGM. You can pass up to 50 parameters to the called program. Only

Chapter 6. Using Language Environments 77

78

parameters specified with data types are passed to the program. The Direct Call
language environment converts the string corresponding to the parameter to the
internal representation of the data type. The language environment then passes
pointers to the internal representation of the variables to the called program, in the
order specified on the function definition.

Because pointers to the variables are passed to the program, the program can
change the value of the variable. However, only OUT or INOUT variables that are
changed by the program are reflected back in the macro that called the language

environment.

Supported Data Types

frable 4 lists the data types that are supported by the Direct Call language
environment. Not all of the data types are supported by each high-level language.

Table 4. Direct Call Data Types

Data Type

Usage Notes

CHAR(n)
CHARACTER(n)
CHARACTER

A character string. If n is specified, it must be greater than zero.
If the string is not specified, it is assumed to be one character.
Because all strings passed from the Direct Call language
environment are null-terminated, the language environment
allocates n+1 bytes (1 byte for the NULL terminator). Strings
that exceed n are truncated.

VARCHAR(n)

A variable-length character string, where n is greater than zero,
and less than or equal to 32740. The string is null-terminated
and the language environment allocates n+2+1 bytes (2 bytes
to store the string length, 1 byte for the null-terminator). Strings
that exceed n are truncated. The first two bytes of the string
contain the string length (binary value). If the parameter is
defined as OUT (output only), the string length is set to zero
before the variable is passed to the called program.

INTEGER
INT

A signed binary integer, 4 bytes long.

SMALLINT

A signed binary integer, 2 bytes long

FLOAT(p,s)

A single-precision or double-precision, floating point number. For
single precision, p must be greater than 0 and less than 25. For
double precision, p must be greater than 24 and less than 54.
The precision (p) and scale (s) are only used when converting
data to a displayable format; for example, to a string.

REAL(p,s)

A single-precision floating point number. p must be greater than
0 and less than 25. The precision (p) and scale (s) are only
used when converting data to a displayable format; for example,
to a string.

DOUBLE (p,s)
DOUBLEPRECISION(p,s)

A double-precision floating point number. p must be greater than
0 and less than 53. The precision (p) and scale (s) are only
used when converting data to a displayable format; for example,
to a string.

NUMERIC(p,s)

A zoned decimal number, with precision p and scale s. The
value of p must be greater than 0 and less than 32.

DEC(p,s)
DECIMAL(p,s)

A packed decimal number, with precision p and scale s. The
value of p must be greater than 0 and less than 32.

Net.Data: Administration and Programming Guide for OS/400

Table 4. Direct Call Data Types (continued)
Data Type Usage Notes

DTWTABLE A special data type used to pass a Net.Data table to the called
program. The Direct Call language environment passes a
pointer to the table, which can be manipulated using the
Net.Data language environment interface table functions.

Parameters that are defined to be numeric can include the currency symbol and
three-digit separators. The Direct Call language environment removes the currency
symbol and three-digit separators when converting a numeric variable from string
form to its internal form, before passing the variable to the program. Net.Data
retrieves the currency symbol, decimal format, and three-digit separator characters
from the process attributes of the process in which Net.Data is running.

Null-Terminated String Parameters

If DTW_PAD_PGM_PARMS is set to NO in the configuration file or within the
macro, the Direct Call language environment passes string values to your program
using a null terminator character (value x’00’). This requires you to write code to
handle the string (unless you are using C or C++, which expect null terminated
strings).

For example, if you define the parameter field as CHAR(10), but pass a string value
that is 5 bytes long, Net.Data puts the null terminator after the fifth byte. Passing
the value "12345" as a string in a CHAR(10) field yields:

x'F1F2F3F4F500........ '

The bytes following the null terminator are undefined (you cannot assume that the
bytes are null or blank).

Because the string is null terminated and contains uninitialized bytes after the null
terminator, you cannot use the string in an RPG or COBOL program. For example,
if you use the string in a comparison operation, the operation does not yield valid
results. The program does not expect the string to contain the null terminator and
expects the string to be padded with blanks at the end.

You can use string handling functions within your program to extract the string value
or use the VARCHAR data type. This method gives the length of the string in the
first two bytes.

If DTW_PAD_PGM_PARMS is set to YES in the configuration file or within the
macro, the Direct Call language environment passes string values to your program
with the values padded to the right with blanks up to the precision length. Using the
same example as above, but with DTW_PAD_PGM_PARMS set to YES, passing
the value "12345" as a string in a CHAR(10) field yields:

x'F1F2F3F4F5404040404000'

Because the string has a length of 5, which is less than the specified precision,
blanks are inserted after the value up to the precision length. Programs written in
languages such as RPG can now use the parameter without the need to handle
NULL-terminated strings.

Chapter 6. Using Language Environments 79

Common Errors when Passing Parameters

The following list describes errors that can occur when calling programs and
passing parameters to the program using the Direct Call language environment.
Tips for avoiding these errors are provided.

Parameter Mismatch Errors
Ensure that the number and order of parameters match the number and
order in which they appear in the parameter list of the called program.

Data Type Errors
Ensure that the data type specified for a parameter matches the data type
expected by the called program. There might be data types supported by
the Direct Call language environment that are not supported by the high
level programming language used to create the called program.

Length Errors
Ensure that the lengths defined for parameters are correct and match the
lengths specified in the called program. Specifying a length that is shorter
than the declared length of the called program might corrupt storage and
cause Net.Data not to function properly.

Returning Values from Programs

Some high level programming languages, such as C, can return an integer on the
program call. The integer can be retrieved by specifying the RETURNS keyword in
the function definition, For example:
%function(DTW_DIRECTCALL) dc3(IN CHAR(3) pl) RETURNS(retval) {

%EXEC { /QSYS.LIB/NETDATA.LIB/MYPGM.PGM %}

0,
%}

When the function call completes successfully, the parameter retval contains the
value returned by the program.

Direct Call Language Environment Example

In this example, the macro calls a program and passes several parameters. The
source for the program follows the macro, and is written in RPG and CL. The
program that is called accepts two integer parameters. It copies the first parameter
(the input parameter) to the second parameter (the output parameter).

Macro:

%define ilepgm
%define outl

"/QSYS.LIB/NETDATADEV.LIB/TDCCLIOL.PGM"
IIOII

%FUNCTION(DTW_DIRECTCALL) dcFunction(IN INT inpl,
OUT INT outp2)
{ %EXEC { $(ilepgm) %} %}

%HTML (REPORT) {
@dcFunction("123", outl)
The value of outl is: "$(outl)"

0,
%}

ILE RPG program:

DINP1 S 10100
DOUTP2 S 10100
C*

C *ENTRY PLIST

Net.Data: Administration and Programming Guide for OS/400

C PARM INP1

C PARM OUTP2

C*

C Z-ADD INP1 OUTP2

C*

C SETON LR

CL program:
PGM PARM(&INP1; &0UTP2;)

DCL VAR(&INP1;) TYPE(*CHAR) LEN(4)
DCL VAR(&0UTP2;) TYPE(*CHAR) LEN(4)

CHGVAR VAR(&0UTP2;) VALUE(&INP1;)
ENDPGM

Java Application Language Environment

The Java Application language environment allows you to call Java programs,
enabling easy integration of Java applications with Net.Data. The Java Application
language environment was first introduced in OS/400 V4RA4.

To use the Java Application language environment, complete the configuration steps
documented in I‘thfing up the Java Applirafinn] anguage Environment” on page 19

Calling Java Programs

To call a Java program, define a function that uses the Java Application
(DTW_JAVAPPS) language environment. Specifying a function name that
represents the class name of the Java program.

Example: Calls a Java program helloWorld.java:
%function(DTW_JAVAPPS) helloWorld() { %}

The Java Application language environment expects Java programs to contain a
method identifier for ‘'main,’ the first method that is run in a Java program. When the
language environment invokes an application, the application has access to stdin
and stdout. There is no form data in stdin because Net.Data has already read the
data.

Important: Before calling Java applications, set the DTW_JAVA_CLASSPATH path
configuration variable so that the Java class can be found. See
[- for the syntax of this variable.

Passing Parameters to Java Programs
Pass parameters to a Java program by specifying the parameters to be passed on
the function definition. Specify only string parameters that are input-only (IN), or
input or output (INOUT).

Example: The IN parameter pl is to be passed on the function call
%function(DTW_JAVAPPS) jv1(IN pl) { %}

Chapter 6. Using Language Environments 81

The Java Application language environment does not support Java programs that
update variables because it cannot pass the updated values back to the macro.

Java Application Language Environment Example

In this example, the Net.Data macro calls a Java program, echoString. The macro
passes two string parameters to the Java language environment. The first string
tells the Java program whether to use italic or bold highlighting for the second
parameter, a text string, before printing the second parameter to standard output
(stdout). Because the program passes "l”, for italics, the Web server displays the
text string Hello World, in italics, at the browser. The source for the Java program
follows the macro.

Macro:
%FUNCTION(DTW_JAVAPPS) echoString(textAttribute, text){ %}

SHTML (runjava) {
@echoString("I","Hello World")

%}

Java program:

class echoString {
public static void main (String args[]) {
if (args[0].equals("I"))
System.out.printin("<I>" + args[1] + "</I>");
else
System.out.printin("" + args[1] + "");

REXX Language Environment

The REXX language environment allows you to run REXX programs.

Executing REXX Programs

82

With the REXX language environment you can execute both in-line REXX programs
or external REXX programs. An in-line REXX program is a REXX program that has

the source of the REXX program in the macro. An external REXX program has the

source of the REXX program in a external file.

To execute an in-line REXX program:

Define a function that uses the REXX (DTW_REXX) language environment and
contains the REXX code in the function.

Example: A function that contains a in-line REXX program

%function(DTW_REXX) helloWorld() {
SAY 'Hello World'

%}
To run an external REXX program:

Define a function that uses the REXX (DTW_REXX) language environment and
includes a path to the REXX program that is to be run in an EXEC statement.

Net.Data: Administration and Programming Guide for OS/400

Example: A function that contains an EXEC statement pointing to a the external
program

%function(DTW_REXX) externalHelloWorld() {

%EXEC{ /QSYS.LIB/REXX.LIB/REXXSRC.FILE/HELLOWORLD.MBR%}

0,
%}

You can shorten the path to the program if you use the EXEC_PATH configuration
variable to define paths to directories that contain programs. See FEXEC _PATH" of
to learn how to define the EXEC_PATH configuration variable.

Restriction: If you are running OS/400 V3R2 or V3R7 and a REXX program uses
the SAY REXX instruction to write to stdout, then insert 12 blanks at the start of the
string. For example:

SAY ! STARTOFDATA'

The 12 blanks are ignored, but if they are not inserted, unpredictable results might
occur.

Passing Parameters to REXX programs

There are two ways to pass information to a REXX program that is invoked by the
REXX (DTW_REXX) language environment, directly and indirectly.

Directly
Pass parameters directly to an external REXX program using the %EXEC
statement. For example:
%FUNCTION(DTW_REXX) rexx1() {
%EXEC{
/QSYS.LIB/NETDATA.LIB/QREXXSRC.FILE/CALL1.MBR $(INPARM1) %}

0
%}

The Net.Data variable INPARML1 is dereferenced and passed to the external
REXX program. The REXX program can reference the variable by using
REXX PARSE ARG instruction. The parameters that are passed to the
program using this method are considered input type parameters (the
parameters passed to the program can be used and manipulated by the
program, but changes to the parameters are not reflected back to
Net.Data).

Indirectly

Pass parameters indirectly, by way of the REXX program variable pool.
When a REXX program is started, a space which contains information
about all variables is created and maintained by the REXX interpreter. This
space is called the variable pool.

When a REXX language environment (DTW_REXX) function is called, any
function parameters that are input (IN) or input/output (INOUT) are stored in
the variable pool by the REXX language environment prior to executing the
REXX program. When the REXX program is invoked, it can access these
variables directly. Upon the successful completion of the REXX program,
the DTW_REXX language environment determines whether there are any
output (OUT) or INOUT function parameters. If so, the language
environment retrieves the value corresponding to the function parameter
from the variable pool and updates the function parameter value with the
new value. When Net.Data receives control, it updates all OUT or INOUT
parameters with the new values obtained from the REXX language
environment. For example:

Chapter 6. Using Language Environments 83

%DEFINE a = "3"

%DEFINE b = "0"

%FUNCTION(DTW_REXX) double_func(IN inpl, OUT outpl)q{
outpl = 2*inpl

0,
%}

%HTML (REPORT) {
Value of b is $(b), @double func(a, b) Value of b is $(b)

0,
%}

In the above example, the call @double func passes two parameters, a
and b. The REXX function double func doubles the first parameter and
stores the result in the second parameter. When Net.Data invokes the
macro, b has a value of 6.

You can pass Net.Data tables to a REXX program. A REXX program
accesses the values of a Net.Data macro table parameter as REXX stem
variables. To a REXX program, the column headings and field values are
contained in variables identified with the table name and column number.
For example, in the table myTable, the column headings are myTable N.j,
and the field values are myTable N.i.Jj, where jis the row number and j is
the column number. The number of rows in the table is myTable ROWS and
the number of columns in the table is myTable COLS.

REXX Language Environment Example

The following example shows a macro that calls a REXX function to generate a
Net.Data table that has two columns and three rows. Following the call to the REXX
function, a built-in function, DTW_TB_TABLE(), is called to generate an HTML table
that is sent back to the browser.

%DEFINE myTable = %TABLE
%DEFINE DTW_DEFAULT_REPORT = "NO"

%FUNCTION(DTW_REXX) genTable(out out_table) {
out_table_ROWS
out_table COLS

2

/* Set Column Headings =/
do j=1 to out_table_COLS

out_table N.j = 'COL'j
end

/* Set the fields in the row */
do i =1 to out_table_ROWS
do j =1 to out_table COLS
out_table V.i.j = "'["1i 3 ']"
end
end
%}
%HTML (REPORT) {
@genTable(myTable)
@DTW_TB_TABLE (myTable)

0,
%}

Results:

84 Net.Data: Administration and Programming Guide for OS/400

SQL Language Environment

The SQL language environment allows you to run SQL statements by sending the
SQL statements to a database management system (DBMS).

To use the SQL Ianquaqe environment, ensure you follow the configuration steps
documented in "

Executing SQL Statements

You can execute any SQL statement that is supported by dynamic SQL.

To execute SQL statements, define a function that uses the SQL (DTW_SQL)
language environment and contains the SQL statements in the language
environment executable section of the function.

Example: An SQL function that runs an SQL SELECT statement:

%function(DTW_SQL) getOrders() {
SELECT cust, custid, custorder FROM mylibrary.customers

%}
Commitment Control

The SQL language environment by default runs under commitment control and
follows all rules for governing commitment control.

» Journal all files or tables that are accessed through the DTW_SQL, except when
the SQL statement is SELECT.

» Optionally change the commitment level by specifying DTW SQL ISOLATION in
the Net.Data initialization file. See 'IDTW_SQI _1SOI ATION: DR? Isolatiod

Mariable” on page 12 for details about the isolation levels that the SQL language
environment supports.

For more mformatlon on transaction management, see [Managing Transactions in a

OUT and INOUT Tables

If you specify OUT or INOUT Net.Data tables on the function definition, and the
SQL statement returns result sets, the SQL language environment stores each
result set in the specified tables. You can then use the table later in the macro. If an
OUT table is not specified, the SQL language environment uses a default table.

Nested SQL Statements

You can call other SQL functions from within a ROW block of another SQL function.
Use unique Net.Data table names in each of the SQL functions, otherwise,
unpredictable results might occur.

Example: Calls an SQL function from the ROW block of another SQL function

%define mytablel = %TABLE
%define mytable2 = %TABLE

%FUNCTION(DTW_SQL) sq12 (IN pl, OUT t2) {

select * from NETDATA.STAFFINF where projno='$(pl)"
%REPORT {

SROW { $(N1) is $(V1) %}

Chapter 6. Using Language Environments 85

}

- a0

)
%

%FUNCTION(DTW_SQL) sq1l (OUT t1) {
select * from NETDATA.STAFFINF
%REPORT {
%ROW { @sql12(V1, mytable2) %}
}

)
%

— a0

%HTML (netcalll) { @sqll(mytablel) %}

Supported Language Environment Variables

The SQL language environment supports variables designed to support DB2. For
example, the DATABASE variable specifies the data source that the SQL language
environment connects to when executing an SQL statement. The following list
specifies which variables are supported for the SQL language environment. See
Net.Data Reference for description, syntax, and examples for these variables.

. DATABASE
- DB_CASE

- DTW_EDIT_CODES

- DTW_PAD_PGM_PARMS
- DTW_SET_TOTAL_ROWS
 LOGIN

« NULL_RPT_FIELD

+ PASSWORD

« SHOWSQL

- SQL_STATE

- TRANSACTION_SCOPE

Supported Data Types

The SQL language environment supports the data types listed in [ahle §
Table 5. Data Types

BLOB(1) DOUBLE SMALLINT
CHAR DOUBLEPRECISION TIME
CLOB(1) FLOAT TIMESTAMP
DATE GRAPHIC VARCHAR
DBCLOB(1) INTEGER VARGRAPHIC
DECIMAL REAL

(1) These data types cannot be passed as parameters to a stored procedure call.
To learn which data types are support for stored procedures, see EStared Procedurd

See lData Type Considerations” an page 87 to learn about special considerations

for the LOBs and DATALINK data types.

SQL Language Environment Restrictions

Consider the following restrictions when planning your environment:

* Do not use the SQL language environment if at least one of the following
conditions exists:

86 Net.Data: Administration and Programming Guide for 0S/400

— A user-defined language environment is created that uses the database
access class library or the SQL call level interface (CLI) and the user-defined
language environment is referenced in a macro

— An application that uses the SQL CLI will be running in the same process as
Net.Data

* SQL statements in the inline statement block can be up to 32KB.

* You can use up to 50 local or remote database connections. When using multiple
connection, consider the following restrictions:

— Net.Data does not allow concurrent connections to the same remote
database.

— You cannot change login IDs after you have accessed a remote database if
TRANSACTION_SCOPE=MULTIPLE, which is the default. See

See EManaging Multiple Database Connections” an page 91 for more information

about these restrictions.

Data Type Considerations

The following data types supported by the SQL language environment need special
consideration.

. S E—

Using Large Objects

You can store large object files (LOBs) in DB2 databases and access them using
the SQL language environment for your Web applications.

The SQL language environment does not store large objects in Net.Data table
processing variables (such as V1 or V2), or Net.Data table fields when a SQL query
returns LOBs in a result set. Instead, when Net.Data encounters a LOB, it stores
the LOB in a file that Net.Data creates. This file is in a directory specified by the
HTML_PATH path configuration variable. The values of Net.Data table fields and
table processing variables are set to the path of the file. Access to the file is limited
to the user ID under which Net.Data is running.

The file name that the LOB is stored in is dynamically constructed, and has the
following form:

name[.extension]

Where:
name Is a unique string identifying the large object

extension
Is a string that identifies the type of the object. For CLOBs and DBCLOBS,
the extension is 'txt’. For BLOBs, the SQL language environment attempts
to determine the extension by looking for a signature in the first few bytes
of the LOB file that indicates what the LOB represents. The SQL language
environment recognizes the following types of data (in parenthesis is the
extension used):

« Bitmap image (.bmp)
* Graphical image format (.gif)

Chapter 6. Using Language Environments 87

88

* JPEG image files (.jpg)

* Tagged image file format (.tif)

» Postscript (.ps)

* Musical instruments digital interface audio files (.mid)
» AIFF audio file (.aif)

» Audio visual interleave audio file (.avi)
* Basic audio files (.au)

* Real audio files (.ra)

* Windows audio visual files (.wav)

* Portable document format (.pdf)

* Midi sequence file (.rmi)

If the object type of the BLOB is not recognized, no extension is added to the file
name.

When the LOB is referenced in the macro file, the SQL language environment
returns the file name with the/tmplobs/ string prepended to the LOB file name,
using the following syntax:

/tmplobs/name. [extension]

Planning tip: Each query that returns LOBSs results in files being created in the
directory specified by the HTML_PATH path configuration variable. Consider system
limitations when using LOBs because they can quickly consume resources. You
might want to create a batch program that cleans the directory up periodically. It is
recommended that you use Datalinks, which eliminate the need to store files in
directories by the SQL language environment, resulting in better performance and
the use of much less system resources.

Example: The application user must click on the file name to invoke the viewer
because the application uses a MPEG audio (.MPA) file. The SQL language
environment does not recognize this file type so an EXEC variable is used to
append the extension to the file.

%DEFINE{

Tobpath = "@DTW_RGETINIDATA("HTML_PATH")"

filename = "@DTW_RREPLACE($(V3), "/tmplobs/", "", "1", "F")"
myFile=%EXEC "REN '$(1obpath)/$(filename)' '$(filename).mpa'"

0,
%}

%{ where rename is the rename command on your operating system %}
%FUNCTION(DTW_SQL) queryData() {

SELECT Name, IDPhoto, Voice FROM RepProfile

%REPORT{

<P>Here is the information you selected:<P>

%ROW{

$(myFile)

$(V1) Voice sample

Voice sample<P>

1

}
}

N O o

%HTML (REPORT) {
@queryData()

0,
%}

The queryData function returns the following HTML output:

Net.Data: Administration and Programming Guide for OS/400

<P>Here are the images you selected:<P>

Kinson Yamamoto

Voice sample<P>
Merilee Lau

Voice sample<P>

The REPORT block in the previous example uses the implicit table variables V1,
V2, and V3.

* V1 is a person’s name, which is plain text.

* V2 is a photo of the person in a .GIF file. The image is shown inline. The SQL
language environment includes the prefix /tmplobs/ and the .GIF extension
automatically.

* V3 is a sample of the person’s voice in a .mpa file. When the SQL language
environment encounters an unrecognized format, such as a .mpa file, it writes
the file into the directory specified in the HTML_PATH configuration variable
without a file extension. This example shows how to handle this file type by
adding the extension using an EXEC variable. When the variable $(V3) is
resolved, it has the path /tmplobs/ added before the file name. For example,
/tmplobs/sound2a. In the example, the EXEC variable renames the file using the
REN command, adding the extension .mpa to the file. Before the file name can
be renamed, the /tmplobs/ is removed from the file name and the full path to the
file to be renamed is retrieved by using the DTW_RGETINIDATA function to
retrieve the path specified in HTML_PATH. The voice sample is played when the
application user clicks on Voice sample.

Access rights for LOBs: Ensure that the user ID that the Web server is running
under has write access to the directory specified by HTML_PATH.

Encoding DataLink URLs in Result Sets

The Datalink data type is one of the basic building blocks for extending the types
of data that can be stored in database files. With DataLink, the actual data stored in
the column is only a pointer to the file. This file can be any type of file; an image
file, a voice recording, or a text file. DataLinks store a URL to resolve the location of
the file.

The DATALINK data type requires the use of DataLink File Manager. For more
information about the DataLink File Manager, see the DatalLinks documentation for
your operating system. Before you use the DATALINK data type, you must ensure
that the Web server has access to the file system managed by the DB2 File
Manager Server.

When a SQL query returns a result set with DataLinks, and the DatalLink column is
created with FILE LINK CONTROL with READ PERMISSION DB DataLink options,
the file paths in the DataLink column contains an access token. DB2 uses the
access token to authenticate access to the file. Without this access token, all
attempts to access the file fail with an authority violation. However, the access
token might include characters that are not usable in a URL to be returned to a
browser, such as the semi-colon (;) character. For example:

/datalink/pics/UN1B;0YPVKGG346KEBE;baibien.jpg

The URL is not a valid because it contains semi-colon (;) characters. To make the
URL valid, the semi-colons must be encoded using the Net.Data built-in function

Chapter 6. Using Language Environments 89

DTW_URLESCSEQ. However, some string manipulation must be done before
applying this function because this function encodes slashes (/), as well.

You can write a Net.Data MACRO_FUNCTION to automate the string manipulation
and use the DTW_URLESCSEQ function. Use this technique in every macro that
retrieves data from a DATALINK data type column.

Example 1: A MACRO_FUNCTION that automates the encoding of URLs returned
from DB2 UDB

%{ TO DO: Apply DTW_URLESCSEQ to a DATALINK URL to make it a valid URL.
IN: DATALINK URL from DB2 File Manager column.
RETURN: The URL with token portion is URL encoded
%}
%MACRO_FUNCTION encodeDatalink(in DLURL) {
@DTW_rCONCAT(@DTW_rDELSTR(DLURL,
@DTW_rADD(@DTW_rLASTPOS("/", DLURL), "1")),
@DTW_rURLESCSEQ(@DTW_rSUBSTR(DLURL,
@DTW_rADD(@DTW_rLASTPOS("/", DLURL), "1"))))

0,
%}

After using this MACRO_FUNCTION, the URL is encoded properly and the file
specified in the DATALINK column can be referenced on any Web browser.

Example 2: A Net.Data macro specifying the SQL query that returns the DATALINK
URL

%FUNCTION(DTW_SQL)myQuery () {
select name, DLURLCOMPLETE(picture) from myTable where name like '%river%'
%REPORT{
ZROW{
<p> $(V1)

Before Encoding: $(V2)

After Encoding: @encodeDatalLInk($(V2))

Make HREF: click here
 <p>
%}
%}

0,
%}

Note that a DataLink File Manager functions is used. The function dlurlcomplete
returns a full URL.

Managing Transactions in a Net.Data Application

90

When you modify the content of a database using insert, delete, or update
statements, the modifications do not become persistent until the database receives
a commit statement from Net.Data. If an error occurs, Net.Data sends a rollback
statement to the database, reversing all modifications since the last commit.

The way in which Net.Data sends the commit and possible rollback depends on
how you set TRANSACTION_SCOPE and whether you specify the commit explicitly
in the macro. The values for TRANSACTION_SCOPE are MULTIPLE and SINGLE.

MULTIPLE

Specifies that Net.Data will execute all SQL statements before a commit
and possible rollback statement is issued. Net.Data sends the commit at the
end of the request, and if each SQL statement is issued successfully, the
commit makes all modifications in the database persistent. If any of the

Net.Data: Administration and Programming Guide for OS/400

statements returns an error, Net.Data issues a rollback statement, which
sets the database back to its original state. MULTIPLE is the default if
TRANSACTION_SCOPE is not set.

To activate this commit method set TRANSACTION_SCOPE to MULTIPLE.

For example:
@DTW_ASSIGN(TRANSACTION_SCOPE,"MULTIPLE")

SINGLE

Specifies that Net.Data issues a commit statement after each successful
SQL statement. If the SQL statement returns an error, a rollback statement
is issued. Single transaction scope secures a database modification
immediately; however, with this scope, it is not possible to undo a
modification using a rollback statement later.

To activate this commit method, set TRANSACTION_SCOPE to SINGLE.
For example:

@DTW_ASSIGN (TRANSACTION_SCOPE,"SINGLE")

You can issue a commit statement at the end of any SQL statement in your macro
by using the COMMIT SQL statement. By leaving TRANSACTION_SCOPE set to
MULTIPLE and issuing commit statements at the end of those groups of statements
that you feel qualify as a transaction, you the application developer maintain full
control over the commit and rollback behavior in your application.

To issue an SQL commit statement, you can define a function that you can call in at
any point in your HTML block:
%FUNCTION(DTW_SQL) user_commit() {

commit

.
%}

SHTML {
@user_commit()

%}
Managing Multiple Database Connections

You can connect to up to 50 local or remote databases at a time. The SQL
language environment keeps the connections active for the life of the Web server
process job that Net.Data is running under. Keeping the connections active provides
fast database access after the initial connection to the database. You can prevent
errors by taking the following issues into consideration:

* Net.Data does not allow concurrent connections to the same remote database. If
a connection exists to a remote database using one user ID (the LOGIN SQL
language environment parameter) and another request is made to connect to the
same remote database using a second user ID, the SQL language environment
must first disconnect the existing connection, do a commit (if commitment control
is being used) and then reestablish the connection using the 'new’ user ID and
password. The commit is required because if the connection is broken, there is
no way that a rollback can be accomplished in case of an error later in the
macro.

Chapter 6. Using Language Environments 91

* You can change login IDs after you've accessed a remote database, if
TRANSACTION_SCOPE=SINGLE . The SQL language environment disconnects
the existing connection, does a commit, and reestablishes the connection using
the new user ID and password.

* Do not change login IDs after you have accessed a remote database if
TRANSACTION_SCOPE=MULTIPLE, which is the default. The SQL language
environment automatically rolls back and a SQL_CODE of -752 is returned,
which indicates that the connection could not be changed.

Stored Procedures

92

A stored procedure is a compiled program stored in DB2 that can execute SQL
statements. In Net.Data, stored procedures are called from Net.Data functions using
a CALL statement. Stored procedure parameters are passed in from the Net.Data
function parameter list. You can use stored procedures to improve performance and
integrity by keeping compiled SQL statements with the database server. Net.Data
supports the use of stored procedures with DB2 through the SQL and ODBC
language environments.

This section describes following topics:

Stored Procedure Syntax

The syntax of the stored procedure uses the FUNCTION statement, the CALL
statement, and optionally a REPORT block.
%FUNCTION function _name ([IN datatype argl, INOUT datatype arg2,

OUT tablename, ...]) {

CALL stored procedure
[%REPORT [(resultsetname)] { %}]

[%REPORT [(resultsetname)] { %}]
[%MESSAGE %}]

[}
%}

Where:

function_name
Is the name of the Net.Data function that initiates the call of the stored
procedure

stored_procedure
Is the name of the stored procedure

datatype
Is one of the database data types supported by Net.Data as shown in ffable d
. The data types specified in the parameter list must match the data
types in the stored procedure. See your database documentation for more
information about these data types.

tablename
Is the name of a Net.Data table in which the result set is to be stored (used

Net.Data: Administration and Programming Guide for OS/400

only when the result set is to be stored in a Net.Data table). If specified, this
parameter name must match the associated parameter name for resultsetname.

resultsetname

Is the name that associates a result returned from a stored procedure with a
REPORT block and a table name on the function parm list, or both. The
resultsetname on a REPORT block must match a tablename on the function
parameter list.

Table 6. Stored Procedures Data Types

CHAR FLOAT SMALLINT
DATE GRAPHIC TIME
DECIMAL INTEGER TIMESTAMP
DOUBLE REAL VARCHAR
DOUBLEPRECISION VARGRAPHIC

Calling a Stored Procedure

1.

Define a function that initiates a call to the stored procedure.
%FUNCTION (DTW_SQL) function_name ()

Optionally, specify any IN, INOUT, or OUT parameters for the stored procedure,
including the result set name of any result sets that are returned from the stored
procedure. You can also specify as the table names or result sets, as IN or
INOUT parameters, from another stored procedure.

%FUNCTION (DTW_SQL) function_name (IN datatype
argl, INOUT datatype arg2,
OUT tablename...)

Use the CALL statement to identify the stored procedure name.
CALL stored_procedure

If the stored procedure is going to generate one result set, optionally specify a
REPORT block to define how Net.Data displays the result set.

SREPORT |
%)

Example:

%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) argl OUT mytable) {
CALL myproc
%REPORT {

%ROW {

N
-

}

If the stored procedure is going to generate more than one result set:

* Specify the result sets as OUT parameters in the FUNCTION statement. The
result sets are saved as local tables.

%FUNCTION (DTW_SQL) function_name (OUT tablename, ...)

» Optionally specify one or more REPORT blocks to define how Net.Data
displays the result sets.

%REPORT (resultsetnamel) {

%}
Example:

Chapter 6. Using Language Environments 93

94

%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) argl, OUT tablel, table2) {
CALL myproc
%REPORT (tablel) {

N
—

%ROW {

}
REPORT (tablel) {

S o°

N
—

%ROW {

- e
—

e

Passing Parameters

You can pass parameters to a stored procedure and you can have the stored
procedure update the parameter values so that the new value is passed back to the
Net.Data macro. The number and type of the parameters on the function parameter
list must match the number and type defined for the stored procedure. For example,
if a parameter on the parameter list defined for the stored procedure is INOUT, then
the corresponding parameter on the function parameter list must be INOUT. If a
parameter on the list defined for the stored procedure is of type CHAR(30), then the
corresponding parameter on the function parameter list must also be CHAR(30).

Example 1: Passing a parameter value to the stored procedure

%FUNCTION (DTW_SQL) mystoredproc (IN CHAR(30) valuein) {
CALL myproc

Example 2: Returning a value from a stored procedure

%FUNCTION (DTW_SQL) mystoredproc (OUT VARCHAR(9) retvalue) {
CALL myproc

Processing Result Sets

You can return one or more result sets from a stored procedure. The result sets can
be stored in Net.Data tables for further processing within your macro or processed
using a REPORT block. If a stored procedure generates multiple result sets, you
must associate a name with each result set generated by the stored procedure.
This is done by specifying parameters on the FUNCTION statement. The name you
specify for a result set can then be associated with a REPORT block or a Net.Data
table, enabling you to determine how each result set is processed by Net.Data. You
can:

* Have the result processed in Net.Data’s default report style by not defining a
report block for the result set.

* Associate a result set with a REPORT block to apply your own report style. In the
REPORT block, you can use Net.Data variables, text processing statements like
HTML or JavaScript, or other functions to specify how the report data is
displayed in the browser.

Result sets are always stored in local tables so that another function in the macro
can also access the data. For example, you can pass a Net.Data table to another
function so that it can use the data for calculations and display the results based on
those calculations.

Net.Data: Administration and Programming Guide for OS/400

See [Guidelines and Restrictions for Multiple REPORT Blocks” on page 69 for

guidelines and restrictions when using multiple report blocks.
To return a single result set and use default reporting:

Use the following syntax:

%FUNCTION (DTW_SQL) function_name (OUT tablename) {
CALL stored_procedure

)
%}

For example:

%FUNCTION (DTW_SQL) mystoredproc(OUT mytablel) {
CALL myproc

%}
To return a single result set and specify a REPORT block:

Use the following syntax:

%FUNCTION (DTW_SQL) function_name (OUT tablename) {
CALL stored procedure [(resultsetname)]
%REPORT [(resultsetname)] {

=

— a0

)
%

For example:

%FUNCTION (DTW_SQL) mystoredproc (OUT mytablel) {
CALL myproc
%REPORT {

N
—

%ROW {

— a0
—

o

Alternatively, the following syntax can be used:

%FUNCTION (DTW_SQL) function_name () {
CALL stored procedure

%REPORT () {

=

—— o

[
%

For example:
%FUNCTION (DTW_SQL) mystoredproc () {
CALL myproc
%REPORT {
%ROW {

=

o°
=

—— o

0
%

To return multiple result sets and display them using default report
formatting:

Use the following syntax:

Chapter 6. Using Language Environments 95

%FUNCTION (DTW_SQL) function _name (OUT tablenamel, tablename?2) {
CALL stored procedure

%}
Where no report block is specified.

For example:

%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION (DTW_SQL) mystoredproc (OUT mytablel, mytable2) {
CALL myproc

)
%

To return multiple result sets and specify REPORT blocks for display
processing:

Each result set is associated with its one or more REPORT blocks. Use the
following syntax:

%FUNCTION (DTW_SQL) function name (OUT tablenamel, tablename?, ...) {
CALL stored procedure
%REPORT (tablenamel)

SROW { ... %}

}
REPORT (tablename?)

N o°

SROW { ... %}

0,
%}

0,
%}

For example:

%FUNCTION (DTW_SQL) mystoredproc (OUT mytablel, mytable2) {
CALL myproc

%REPORT (mytablel) {
SROW { ... %)
}

%REPORT (mytable2) {

N

SROW { ... %}

—— o

)
%

SQL Language Environment Example

96

The following example shows a macro with a DTW_SQL function definition that
calls an SQL stored procedure. It has three parameters of different data types. The
DTW_SQL language environment converts the character string values in each
parameter to the correct internal format and passes each parameter by reference to
the SQL stored procedure. When the SQL stored procedure completes processing,
the updated internal representation is converted to a character string and placed in
the corresponding parameter.

Net.Data: Administration and Programming Guide for OS/400

%{***
**%}

DEFINE {

MACRO_NAME = "TEST ALL TYPES"

DTW_HTML_TABLE = "YES"

Procedure = "NDLIB.TESTTYPE"

parml = " %{SMALLINT %}
parm2 = "11" S{INT %}
parm3 = "1.1" %{DECIMAL (2,1) %}

0,
%}

%FUNCTION(DTW_SQL) CRTPROC() {
CREATE PROCEDURE $(Procedure)
(INOUT SMALLINT,
INOUT INT,
INOUT DECIMAL(2,1))
EXTERNAL NAME $(Procedure) LANGUAGE C SIMPLE CALL
SMESSAGE {
default : "$(DTW_DEFAULT_MESSAGE) : continuing.
": continue
1

— ae

9
%

%FUNCTION(DTW_SQL) myProc
(INOUT SMALLINT parml,
INOUT INT parm2,
INOUT DECIMAL(2,1) parm3) {
CALL $(Procedure)

0,
%}

%HTML (REPORT) {
<HEAD>
<TITLE>Net.Data : SQL Stored Procedure: Example '$(MACRO_NAME)'. <?TITLE>
</HEAD>
<BODY BGCOLOR="#BBFFFF" TEXT="#000000" LINK="#000000">
<p><p>
Calling the function to create the stored procedure.
<p><p>
@CRTPROC ()
<hr>
<h?2>
Values of the INOUT parameters
prior to calling the stored procedure:<p>

</h2>

parml (SMALLINT)

$ (parmi)<p>

parm2 (INT)

$ (parm2) <p>

parm3 (DECIMAL)

$ (parm3)<p>

<p>

<hr>

<h?2>

Calling the function that executes the stored procedure.
</h2>

<p><p>

@myProc (parml,parm2,parm3)
<hr>

<h2>

Values of the INOUT parameters after
calling the stored procedure:<p>
</h2>

parml (SMALLINT)

$ (parml)<p>

parm2 (INT)

$ (parm2)<p>

Chapter 6. Using Language Environments

97

parm3 (DECIMAL)

$(parm3)<p>
</body>

0,
%}

System Language Environment

| The System language environment supports executing commands and calling
| external programs.

| Issuing Commands and Calling Programs

To issue a command, define a function that uses the System (DTW_SYSTEM)
language environment that includes a path to the command to be issued in an
EXEC statement. For example:

%FUNCTION(DTW_SYSTEM) sys1() {
%EXEC { /QSYS.LIB/ADDLIBLE.CMD LIB(MYLIBRARY) %}

9
%

You can shorten the path to executable objects if you use the EXEC_PATH
configuration variable to define paths to directories that contain the objects (such
as, commands and programs). See 'EXEC_PATH” on page 15 to learn how to
define the EXEC_PATH configuration variable.

[Example 1: Issues a command

%FUNCTION(DTW_SYSTEM) sys2() {
%EXEC { /QSYS.LIB/CALL.CMD MYLIB/MYPGM %}
}

N

Example 2: Calls a program

%FUNCTION(DTW_SYSTEM) sys3() {
%EXEC { /QSYS.LIB/MYLIB.LIB/MYPGM.PGM %}

9
%

| Tip: When calling programs, use the Direct Call language environment because it is
[more efficient and easier to use.

Passing Parameters to Programs

There are two ways to pass information to a program that is invoked by the System
(DTW_SYSTEM) language environment, directly and indirectly.

Directly
Pass parameters directly on the call to the program. For example:

%DEFINE INPARM1 = "SWITCH1"

%FUNCTION(DTW_SYSTEM) sys1() {
%EXEC{

/QSYS.LIB/NETDATA.LIB/RPGCALL1.PGM ('$(INPARM1)' ‘'literalstring')
%}

0,
%}

The Net.Data variable INPARML is referenced and passed to the program.
The parameters are passed to the program in the same way the
parameters are passed to the program when the program is called from the
command line. The parameters that are passed to the program using this

98 Net.Data: Administration and Programming Guide for 0S/400

method are considered input type parameters (the parameters passed to
the program can be used and manipulated by the program, but changes to
the parameters are not reflected back to Net.Data).

Indirectly

Pass parameters indirectly, by using environment variables. Environment

variables are character strings of the form "name=value" that are stored in
an environment space outside of the program. The strings are stored in a
temporary space associated with the process.

When Net.Data calls a DTW_SYSTEM language environment function, the
language environment stores any function parameters that are input (IN) or
input/output (INOUT) in the environment space prior to executing the
statement within the %EXEC block. After the successful completion of the
statement, the DTW_SYSTEM language environment determines whether
there are any output (OUT or INOUT) function parameters. If so, the
language environment retrieves the value corresponding to the function
parameter from the environment space and updates the function parameter
value with the new value. When Net.Data gets control, it in turn updates all
OUT or INOUT parameters with the new values obtained from the
DTW_SYSTEM language environment.

Set and retrieve environment variables using the APIs described in ffable 7:

Table 7. Environment Variable APls

ILE Programming Language To retrieve, use... To set, use...
C, C++ getenv() putenv()
CL(1), RPG, COBOL QtmhGetEnv()(2) QtmhPutEnv()(3)

1. For OS/400 V3R7 and on, you can also use the CHGENVVAR and ADDENVVAR CL
commands to set an environment variable.

2. QtmhGetEnv() is shipped as part of IBM TCP/IP Connectivity Utilities/400.
QtmhPutEnv() was not originally shipped as part of IBM TCP/IP ConnectivityUtilities/400

for V3R2 and V3RY7. It was added later in the cycle and can be obtained via the V3R2
PTF 5763TC1-SF40953 or the V3R7 PTF 5716 TC1-SF40954.

You can pass Net.Data tables to a program called by the System language
environment. The program accesses the values of a Net.Data macro table
parameter by their Net.Data name. The column headings and field values
are contained in variables identified with the table name and column
number. For example, in the table myTable, the column headings are
myTable N_j, and the field values are myTable V_i j, where jis the row
number and j is the column number. The number of rows and columns for
the table are myTable ROWS and myTable COLS.

It is not recommended that you pass tables with many rows because the number of
environment variables for the process is limited.

System Language Environment Example

The following example shows a macro that uses the System language environment
to issue the Send Break Message (SNDBRKMSG) command to all workstation
message queues. The text of the message to be sent is constucted from form data
(msgToSend).

Chapter 6. Using Language Environments 99

100

%FUNCTION(DTW_SYSTEM) sndbrkmsg () {
%EXEC { /QSYS.LIB/SNDBRKMSG.CMD MSG('$(msgToSend)') TOMSGQ(*ALLWS) %}

NN

}

HTML (sndbrkmsg) {
@sndbrkmsg()
1

N

Net.Data: Administration and Programming Guide for OS/400

Chapter 7. Transaction Management with Persistent Macros

Net.Data provides support for transaction processing with persistent macros. A
persistent macro is a macro that contains built-in functions that enable the macro to
run as part of a persistent CGI process in the Web server. This means that multiple
blocks of a macro, or multiple macros, can run as part of a single logical
transaction.

With non-persistent macros, Net.Data treats each macro invocation as one
complete transaction. This means that after each response is sent to the browser,
databases are committed, resources are released, and everything is set to an initial
state. The next invocation of the same macro results in re-establishing the state of
the application based on information passed into the macro as form data or
information in the macro itself. There is no capability to save macro variables
across invocations, to rollback database changes without explicitly undoing the
changes made, or to treat database changes across multiple browser sessions as
one complete transaction.

With persistent macros, as an application developer, you can build your application
at a transaction level, invoking one or more macros while maintaining a persistent
connection. This means variable data is persistent across invocations, so that you
no longer need to pass information (such as user login ID) between macro
invocations as hidden variables. This includes Net.Data table variables, which
cannot be passed across invocations in non-persistent macros. Most important, the
application can rollback all the work if the user decides to cancel out while in the
middle of a transaction.

See lnvoking a Persistent Macra” on page 24 to learn about invoking persistent

macros.

This chapter describes the following topics:

About Persistent Macros

When using persistent macros, Net.Data runs in a special persistent CGI process of
the Web server, receives input through standard input and environment variables,
and provides data through standard output. However, after the output is returned to
the Web server, The Web server does not have to terminate the Net.Data process.
Instead, the process remains active, waiting for a response from the user through
the Web browser. Because the process does not terminate, Net.Data can maintain
state information for the macro and can leave transactions open.

Net.Data communicates to the Web server that it wants to run in a persistent CGl
process by sending the server a new HTTP header. Support for the new header,
“Accept-HTSession”, has been added to the AS/400 HTTP Server in version 4,
release 3 (V4R3). Net.Data decides what HTTP headers to send to the server when
it sends its first output, because the headers must precede the output. This has the
following implications to you when developing a persistent macro:

© Copyright IBM Corp. 1997, 1999 101

* Net.Data must know at the time the first output is generated from the macro
whether or not this is to be a persistent macro.

* Using the new persistent macro built-in functions, you must specify the macro is
persistent before any output is generated.

These restrictions will be noted in the documentation that follows.

The characteristics of persistent Net.Data processes are very similar to those of
standard Net.Data processes with the following exceptions:

* They run in a pseudo-connection-oriented environment. The connection between
Net.Data and the Web server is persistent, but the connection between the
browser and the Web server still has no connection.

* They can have long running transactions. Because a single Net.Data process
can span multiple browser requests, transactions can be left open and committed
or rolled-back as appropriate based on subsequent browser requests or error
conditions.

» A persistent Net.Data process can consume more system resources because it
can remain active for potentially long periods of time. Care must be taken in the
management of those resources.

» Portability is reduced because the Web server must contain support for
persistence.

Defining a Transaction

A transaction can span one HTML block, multiple HTML blocks, or multiple macros.
When you specify that you want the macro to be persistent within a transaction, you
need to define the start and end of the transaction, as well as which HTML blocks
are included in the transaction. Net.Data provides built-in functions that help you
complete the following persistent macro tasks:

Starting a Transaction

102

You start a transaction by indicating to Net.Data that a macro is persistent in your
macro before any output is sent to the browser. Net.Data then sends a special
HTTP header to the Web server to tell it that the macro requires persistent CGI
support.

To start a transaction:

Use one of the following methods in the macro before any output is sent to the Web
browser:

* Call the DTW_STATIC() built-in function.
The DTW_STATIC() function tells Net.Data that the current macro is persistent.
Syntax: @DTW_STATIC (["timeout"])

Where timeout is an optional parameter that specifies the number of seconds the
Web server should wait for a response from the browser before ending the
transaction.

Net.Data: Administration and Programming Guide for OS/400

Example:
@DTW_STATIC("60")

%DEFINE {
varl = "vall"
var2 = "val2"

0,
%}

SHTML (input) {
%}
%SHTML (report) {

%}

A timeout value of 60 seconds is specified for this transaction. If a response is
not received within 60 seconds from the browser, the Web server ends the
transaction. This does not affect the current page on the browser. However, the
next page, which would have been part of the transaction, is now part of a new
transaction.

» Define a variable with the STATIC attribute.
Syntax: %DEFINE(STATIC) varl = "vall"
Example:

%DEFINE (STATIC) varl = "vall"
%DEFINE var2 = "val2"

SHTML (input) {

S° o°

)
HTML (report) {

;

o° .

A statically defined variable keeps its value throughout a transaction, which can
span multiple Net.Data invocations.

Specifying the Macro HTML blocks in a Transaction

You define which HTML blocks are a part of your transaction by using an identifier,
called the transaction handle, in the URL request that invokes the HTML blocks.
There are three steps in defining and using a transaction handle:

1. Define the transaction handle in your macro.

2. Call the DTW_ACCEPT built-in function to pass the handle name to Net.Data
and the Web server.

3. Specify the handle in the URL request to invoke your next HTML block.

To define a transaction handle:

1. Define a variable for the transaction handle in the DEFINE section. For
example:

%DEFINE handle=""

2. Optionally generate a unique transaction handle by specifying the
DTW_RTVHANDLE() built-in function in the DEFINE section.

Syntax: @DTW_RTVHANDLE (handle_name)
Example:

Chapter 7. Transaction Management with Persistent Macros 103

@DTW_STATIC()

%DEFINE handle = ""
@DTW_RTVHANDLE (handle)

The transaction handle can be any valid character string. However, the
DTW_RTVHANDLE() function provides a measure of security by generating a
unigue transaction handle, preventing others from invoking a macro which would
run in your transaction.

To specify a transaction handle to Net.Data:

Specify the value of the transaction handle to Net.Data with the DTW_ACCEPT()
built-in function. Because this handle is part of the information contained in the
HTTP headers sent to the server, the DTW_ACCEPT() function must be called
before any output is generated by the macro. Typically, it will be the first element in
your HTML block.

Syntax: @DTW_ACCEPT (handle_name, ["timeout"])

Where timeout is an optional parameter that specifies the number of seconds the
Web server should wait for a response from the browser before ending the
transaction.

You can call DTW_ACCEPT() within an HTML block or outside of any HTML block.
If the function is called outside of any HTML block, the transaction handle and the
optional timeout values apply to all HTML blocks within the macro.

Example 1: Specifies a transaction handle for subsequent URL requests to run in
this transaction

@DTW_STATIC()

%DEFINE handle = ""
@DTW_RTVHANDLE (hand1e)
%HTML (Block1) {
@DTW_ACCEPT (handle)

0,
%}

Important: When you call DTW_ACCEPT() as the first element in the HTML block,
ensure that there is no white space between the line on which the HTML statement
is specified and the DTW_ACCEPT() call itself. Net.Data considers the white space
as text to send to the browser, and issues an error because the DTW_ACCEPT()
call is not found before data is sent to the browser.

Example 2: Specifies a transaction handle which applies to all HTML blocks in the
macro

@DTW_STATIC()

%DEFINE handle = ""
@DTW_RTVHANDLE (handle)

@DTW_ACCEPT (handle)
%HTML(Blockl) {

0,
%}

104 Net.Data: Administration and Programming Guide for 0S/400

%HTML (BTock2) {

[
%}

To specify the handle when invoking an HTML block that is to run in your
transaction:

After you have generated a transaction handle and called the DTW_ACCEPT()
function, only URLs with that transaction handle can run in your transaction. The
transaction handle must immediately follow the CGI program name in the URL.

Note: When entering the statements in your code, the URL should be on one line
with no spaces, but it is split on two lines here for display purposes.

e HTML link:

<A HREF="http://server/Net.Data_invocation_path/transaction_handle/
filename/block/[?name=val&...]">any text

e HTML form:

<FORM METHOD=method
ACTION="http://server/Net.Data_invocation_path/transaction_handle/
filename/block/[?name=val&...]">any text</FORM>

* URL:

http://server/Net.Data_invocation path/transaction_handle/
filename/block/[?name=val&...]

Parameters:

server Specifies the name of the Web server. If the server is the local server, you
can omit the server name and use a relative URL.

Net.Data_invocation_path
The path and filename of the Net.Data executable file. For example,
/cgi-bin/db2www/.

transaction_handle
Specifies which URLs are part of a transaction initiated by a Net.Data
macro. The identifier is obtained by calling the DTW_RTVHANDLE built-in
function and must follow the Net.Data invocation path.

filename
Specifies the name of the Net.Data macro file. Net.Data searches for and
tries to match this file name with the path statements defined in the

MACRO_PATH initialization path variable. See EIMACRQ_ PATH” an page 14

for more information.

block Specifies the name of the HTML block in the referenced Net.Data macro.

method
Specifies the HTML method used with the form. METHOD=POST is
recommended.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

Typically you will provide HTML links to these URLSs or specify the URL on a form
action tag in your macro.

Example 1: A typical HTML block with links to other macro invocations that run in
the same transaction

Chapter 7. Transaction Management with Persistent Macros 105

@DTW_STATIC()

%define handle =
@DTW_RTVHANDLE (handle)

%html (report) {
@DTW_ACCEPT (handle)

<a href="/cgi-bin/db2www/$ (handle)/qsys.Tib/mylib.1ib/
macros.file/pcgil.mbr/report2">continue

<a href="/cgi-bin/db2www/$ (handle)/qsys.Tib/mylib.1ib/
macros.file/pcgil.mbr/quit">quit

0
%}

Example 2: A typical HTML block with a FORM ACTION link to another macro
@DTW_STATIC()

%define handle = ""
@DTW_RTVHANDLE (handle)

%html (input) {
@DTW_ACCEPT (handle)

<form method=post action="/cgi-bin/db2www/$(handle)/qsys.1ib/
mylib.lib/macros.file/pcgil.mbr/report2">

<p>What type of hardware do you want to see?

<menu>

<input type="radio" name="hdware" value="MON" checked>Monitors
<input type="radio" name="hdware" value="PNT">Pointing devices
<input type="radio" name="hdware" value="PRT">Printers
<input type="radio" name="hdware" value="SCN">Scanners

</menu>

</form>

0
%}

Ending a Transaction

You end a transaction by indicating to Net.Data that you no longer want your macro
to be persistent.

To end the transaction:

Use the DTW_TERMINATE() built-in function to specify the end of a transaction.
Like the DTW_ACCEPT() function, this function must be called before any output is
generated by the macro and is typically specified as the first element in an HTML
block. DTW_TERMINATE tells Net.Data that this invocation is the last invocation in
the current transaction.

Syntax: @DTW_TERMINATE()
This function does not accept any parameters.
Example:

%html (quit)
@DTW_TERMINATE()

0,
%}

106 Net.Data: Administration and Programming Guide for 0S/400

Defining the Scope of a Variable in a Transaction

You can decide what scope you want a variable to have in a transaction by
specifying the scope as an attribute of the %DEFINE statement. You can specify

transaction scope
The variable scope is for the entire transaction.

single invocation scope
The variable scope is for a single Net.Data invocation.

To specify transaction scope for a variable:

Specify the attribute STATIC to indicate that the variable has transaction scope,
meaning the value of the variable is saved across all invocations in a transaction.
STATIC is the default for persistent macros. For example:

@dtw_static()
%define(static) varl = "vall"

To specify single invocation scope for a variable:

Specify the attribute TRANSIENT to indicate that the variable has single invocation
scope, meaning the value of the variable will be re-initialized on each invocation.
TRANSIENT is the default for non-persistent macros. For example:

@dtw_static()
%define(transient) varl = "vall"

In a persistent macro:

» All variables that follow the DTW_STATIC() call are STATIC if they are not
explicitly defined as TRANSIENT.

» All variables that precede the DTW_STATIC() call are TRANSIENT if they are not
explicitly defined as STATIC.

Specifying COMMIT and ROLLBACK in a Transaction

In a non-persistent macro, a commit or rollback is done implicitly by Net.Data at the
end of the macro invocation based on the success or failure of the invocation. With
persistent macros, the commit or rollback is now done at the end of the transaction.
However, because a transaction can span many macro invocations, you might want
to commit or rollback changes incrementally within the transaction.

To commit pending changes during a transaction:
Specify the DTW_COMMIT() built-in function.

This function does not take any parameters and executes all changes pending in
the transaction.

For example:

%html (report) {
@dtw_accept (handle)

%IF (action="Enter")
@dtw_commit()
%ENDIF

0,
%}

Chapter 7. Transaction Management with Persistent Macros 107

To rollback pending changes in the transaction:
Specify the DTW_ROLLBACK() built-in function.

This function does not take any parameters and backs out all changes pending in
the transaction.

For example:
%html (report) {
@dtw_accept(handle)

%IF (action="Cancel")
@dtw_rollback()
%ENDIF

0,
%}

Example of a Persistent Macro

108

The following simple macro contains multiple HTML blocks that run in a single
transaction:

@dtw_static()

%define a = "0"
%define(transient) b = "0"
%define handle = ""
@dtw_rtvhandle(handle)

%htm1 (report) {

@dtw_accept(handle)

a = $(a)

b = $(b)

@dtw_add(a, "2", a)

@dtw_add(b, "2", b)

click here to continue

click here to quit

0,
%}

%html (report2) {

@dtw_accept(handle)

a = $(a)

b = $(b)

@dtw_add(a, "2", a)

@dtw_add(b, "2", b)

Click here to continue<bhr>

Click here to quit

0,
%}

%html (report3) {

@dtw_accept(handle)

a = $(a)

b = $(b)

@dtw_add(a, "2", a)

@dtw_add(b, "2", b)

Click here to quit

[
%}

%html (quit)
@dtw_terminate()

Net.Data: Administration and Programming Guide for OS/400

)

)

o 9
—_—
o

N QT @
>
[¢’]

Assuming the first call is to the HTML block report, Net.Data:
1. Calls the DTW_STATIC() function, which indicates that this macro is persistent.

2. Creates variable a as a STATIC variable because the default for persistent
macros is STATIC.

3. Creates variable b as a TRANSIENT variable because it is explicitly defined with
the TRANSIENT attribute.

4. Calls DTW_RTVHANDLE(), which generates a transaction handle and puts it in
the variable handle.

5. Starts processing the HTML block report and calls DTW_ACCEPT(), which tells
Net.Data what the transaction handle is for this transaction.

6. Finds output to send to the browser, which causes Net.Data to send the HTTP
header to the Web server indicating a transaction is starting.

7. Displays the HTML page. The variables a and b both have a value of 0.

After the first page output is sent to the browser, users can choose to either
continue with the transaction or quit. If they choose to continue, the Web server
invokes URL:

/cgi-bin/db2www/$ (handle)/qsys.1ib/mylib.1ib/macros.file/pcgil.mbr/report2

The Web server recognizes the transaction handle as the one specified by Net.Data
in the HTTP header. It invokes Net.Data as a persistent CGI program, which means
the macro invocation is part of the current transaction.

When the HTML block report?2 is invoked, Net.Data:

1. Calls the DTW_STATIC() function, which indicates this macro is persistent.

2. Recognizes that variable a is a STATIC variable and keeps the current value
rather than re-initializing it to O.

3. Recognizes that variable b is a TRANSIENT variable, creates a new instance of
the variable, and initializes it to O.

4. Calls DTW_RTVHANDLE(), which generates a transaction handle and puts it in
the variable handle.

5. Starts processing the HTML block report2 and calls DTW_ACCEPT(), which
tells Net.Data what the transaction handle is for this transaction.

6. Finds output to send to the browser, which causes Net.Data to send the HTTP
header to the server indicating a transaction is continuing.

7. Displays the HTML page. Variable a will have a value of 2 and variable b will
have a value of 0. The value of variable a is saved from the previous invocation
because it is a static variable. The value of variable b is reset to 0.

After the second page is sent to the browser, the user can choose to either
continue with the transaction or quit. If they choose to quit, the Web server invokes
the following URL:

/cgi-bin/db2www/$ (handle)/qsys.lib/mylib.Tib/macros.file/pcgil.mbr/quit
The Web server recognizes the transaction handle as the one specified by Net.Data

in the HTTP header, and invokes Net.Data as a persistent CGI program, which
means the macro invocation is part of the current transaction.

Chapter 7. Transaction Management with Persistent Macros 109

110

When the HTML block quit is invoked, Net.Data:

1.
2.

Calls the DTW_STATIC() function, which indicates this macro is persistent.
Recognizes that variable a is a STATIC variable and keeps the current value
rather than re-initializing it to 0.

Recognizes that variable b is a TRANSIENT variable, creates a new instance of
the variable, and initializes it to O.

Calls DTW_RTVHANDLE(), which generates a transaction handle and puts it in
the variable handle.

Starts processing the HTML block quit and calls DTW_TERMINATE(), which
tells Net.Data that this is the last invocation in this transaction.

Finds output to send to the browser, which causes Net.Data to send the HTTP
header to the server indicating a transaction is ending.

Displays the HTML page. Variable a has a value of 4 and variable b has a value
of 0.

Cleans up all variables and other resources that have transaction level scope,
because the DTW_TERMINATE() call has been executed.

Net.Data: Administration and Programming Guide for OS/400

Chapter 8. Improving Performance

Improving performance is an important part of tuning your system. This chapter
discusses strategies for improving the performance of Net.Data. The following
topics are discussed:

In addition, ensure that your Web server has been properly tuned. The performance
of your Web server has a direct effect on response time, independently of how fast
Net.Data processes a macro or direct request.

Net.Data Caching of Macros

With Net.Data for OS/400, macro caching is enabled by default and is used to
improve throughput and reduce CPU utilization. When macro caching is enabled,
preprocessed macros are cached in memory when the macros are first invoked.
These preprocessed versions are then available for reuse, thereby eliminating the
costs associated with reading and the macros from HFS and processing them each
time they are requested. The cached version of a macro is available to a requestor
that has read permission for the file containing the macro.

The amount of memory that the preprocessed version of the macro uses is
approximately twice the size of the macro file itself. You can control the amount of
memory that will be used for the caching of macros by using the caching
configuration variable. For more information on using this variable, see
|‘DT\N_MA(‘R(’)_(‘A(‘HF_QI7F' Macra Cache Size Variahle” an page qd.

Optimizing the Language Environments

The following sections describes techniques you can use to improve performance
when using the Net.Data-provided language environments.

REXX Language Environment

Use the following tips to improve the performance of your Net.Data application:

» Combine your REXX programs where possible. Having fewer, larger programs
provides better performance than more smaller programs because the REXX
interpreter is initialized each time a REXX language environment function is
called in the macro.

» Store the REXX program in an external file instead of including the REXX
program inline in the Net.Data macro.

» For external REXX programs, reference the global variables on the command
line in the %EXEC statement.

© Copyright IBM Corp. 1997, 1999 111

» Pass input-only parameters directly to a REXX program by defining global
Net.Data variables and referencing the variables. For inline REXX programs,
reference the global variables directly in your REXX source.

SQL Language Environment

To learn about DB2 performance considerations, see DB2 for 0S/400 SQL
Programming. This publication has a wealth of information, such as effectively using
SQL indexes, improving performance of join queries, and improving performance
when selecting data from more than two tables.

Use the following SQL language environment techniques to improve performance.

* Reduce the number of user IDs connecting to a database to avoid reconnecting
to the database. The SQL language environment associates a user-profile and
password to any remote connections to databases that it establishes. If the
LOGIN and PASSWORD variables do not match the user-profile and password
associated with an opened connection, the connection is closed and
re-established, and the LOGIN and PASSWORD values are associated with the
re-opened connection.

* Use the START_ROW_NUM and RPT_MAX_ROWS Net.Data variables to
reduce the size of returned tables. If, on a SELECT SQL statement, the result set
contains hundreds of records, return a subset of the result set back to the
browser by using the START_ROW_NUM like a scrollable cursor and
RPT_MAX_ROWS to limits the number of records returned. You should be aware
that Net.Data reissues the query every time since there is no notion of state.
However, you can use Net.Data support for persistent macros to store the result
set in a Net.Data table that persists for the life of the transaction. See

i i i ” to learn more

about persistent Net.Data macros.

» Consider calling a stored procedure that uses static SQL. Dynamic SQL is
prepared at run time, while static SQL is prepared at the precompile stage. The
SQL language environment uses dynamic SQL, which allows it to run SQL
statements at program run time. Because preparing statements requires
additional processing time, static SQL may be more efficient.

Note that starting in OS/400 V4R2, the SQL engine has a prepared statement
cache. Using the cache, the SQL engine stores away information about prepared
statements, and keeps this information in system-wide storage. Then, when the
same statement is executed again, even if its by a different user and a different
job, the statement will run much faster. The system-wide prepared statement
cache is part of normal SQL processing and requires no user action to configure
or enable it. The cache may reduce any performance benefits that the static SQL
might have over dynamic SQL.

System Language Environment

112

Pass input-only parameters directly to the program that the System language
environment is invoking by defining global Net.Data variables and referencing the
variables.

Net.Data for OS/400 has introduced a new language environment called Direct Call,
which provides easier and more efficient interface for calling programs. Use the
System language environment to issue commands; use the Direct Call language
environment to call programs

Net.Data: Administration and Programming Guide for OS/400

Appendix A. Bibliography

This section lists the documents referred to in this book.

Net.Data Technical Library

The Net.Data Technical Library is available from the Net.Data Web site at
http://www.software.ibm.com/data/net.data/Tibrary.html

Document Description

« Net.Data Administration Contains conceptual and task information about installing,
and Programming Guide ~ configuring, and invoking Net.Data. Also describes how to
for OS/390 write Net.Data macros, use Net.Data performance techniques,
use Net.Data language environments, manage connections,
and use Net.Data logging and traces for trouble shooting and
performance tuning.

* Net.Data Administration
and Programming Guide
for 0S/2, Windows NT,
and UNIX

* Net.Data Administration
and Programming Guide

for OS/400
Net.Data Reference Describes the Net.Data macro language, variables, and
built-in functions.
Net.Data Language Describes the Net.Data language environment interface.
Environment Interface
Reference
Net.Data Messages and Lists Net.Data error messages and return codes.

Codes Reference

I .
| Related Documentation

The following documents might be useful when using Net.Data and related
products:

* DB?2 for 0S/400 SQL Programming, SC41-5611
* 0S/400 Distributed Database Programming, SC41-5702

[Additionally, OS/400 documentation and redbooks, including books about DB2, are
[available at the following URL:

| http://publib.boulder.ibm.com/html/as400/infocenter.htm]

© Copyright IBM Corp. 1997, 1999 113

114 Net.Data: Administration and Programming Guide for 0S/400

Appendix B. Net.Data Sample Macro

This sample macro application displays a list of employees names from which the
application user can obtain additional information about an individual employee by
selecting the employee’s name from the list. The macro uses the SQL language
environment to query the EMPLOYEE table for both the employee names and the
information about a specific employee.

The macro file uses an include file that contains the DEFINE block for the macro.

Eigure 9 on page 116 shows the sample macro. Eigure 10 an page 114 shows the

include file.

© Copyright IBM Corp. 1997, 1999 115

G { HHx ko kAT A AT AT AT AT A KKK Sample Macro #kkkkkskkkskkkhkkdhkhkkhkkkkrkkx

FiTleName = sqlsampl.d2w *
Description: *
This Net.Data macro queries... *

- The EMPLOYEE table to create a selection list of
employees for display at a browser

- The EMPLOYEE table to obtain additional information
about an individual employee

* % X Xk 3k X X
EE I

*

**%}

%{** """"""""" *khkkkkkkkhkrhkkx
* Include for global DEFINEs - *

**%}

%INCLUDE "sqlsampl.hti"

%{**

* Function: queryDB Language Environment: SQL *
* Description: Queries the table designated by the variable myTable and *
* creates a selection 1ist from the result. The value of the variable *
* myTable is specified in the include file sqlsampl.hti. *

**%}
%FUNCTION(DTW_SQL) queryDB() {
SELECT FIRSTNME FROM §$(myTable)
SMESSAGE {
-204: {<p>ERROR -204: Table $(myTable) not found.
<p>Be sure the correct include file is being used.
%} @ exit
+default: "WARNING $(RETURN_CODE)" : continue
-default: "Unexpected ERROR $(RETURN_CODE)" : exit

0,
%}

%REPORT {

<select name=emp_name>
%ROW{

<option>$ (V1)

%}
</select>
}
}

{**

N o

N

* Function: fname Language Environment: SQL *
* Description: Queries the table designated by the variable myTable for *
* additional information about the employee identified by the =
* variable emp_name. *

**%}
%FUNCTION(DTW_SQL) fname() {
SELECT FIRSTNME, PHONENO, JOB FROM $(myTable) WHERE FIRSTNME='$(emp_name)'
%MESSAGE {

-204: "Error -204: Table not found "

-104: "Error -104: Syntax error"

100: "Warning 100: No records" : continue
+default: "Warning $(RETURN_CODE)" : continue
-default: "Unexpected SQL error" : exit

N o°
—

Figure 9. Sample macro (Part 1 of 3)

116 Net.Data: Administration and Programming Guide for 0S/400

%{***

* Ok %k X

SHTML (INPUT) {

<html>

<head>

<title>Generate Employee Selection List</title>
</head>

<body>

<h3>$(exampleTitle)</h3>

<p>This example queries a table and uses the result to create

a selection list using a %REPORT block.
<hr>
<form method="post" action="report">

@queryDB()<input type="submit" value="Select Employee">

</form>
<hr>

</body>
</html>

0,
%}

Figure 9. Sample macro (Part 2 of 3)

HTML block: INPUT Title: Dynamic Query Selection

Description: Queries the EMPLOYEE table to create a selection Tist of

the employees for display at the browser
**%}

*
*
*

*

*

% { HoH kK x kK Kk KKk R R E L

* HTML block: REPORT

* Description: Queries the EMPLOYEE table to obtain additional information =*
* about an individual employee

**%}

%HTML (REPORT) {

<html>

<head>

<title>0Obtain Employee Information</title>
</head>

<body>

<h3>You selected employee name = $(emp_name)</h3>
<p>Here is the information for that employee:
<PRE>

@fname()

</PRE>

<hr>Return to previous page
</body>

</html>

%{ End of Net.Data macro 1 %}

Figure 9. Sample macro (Part 3 of 3)

Appendix B. Net.Data Sample Macro

117

a/o{**************************** Inc] ude F]]e khkkkhkhkhkhkhhhkhhkhhhhhdrhhdrhhhhhhdhrisk
FileName = sqlsampl.hti
Description:
This include file provides global DEFINEs for the sqlsampl.d2w
Net.Data macro.
**G/D}
%define {
emp_name =""
reposition = sign
exampleTitle = "Sample Macro"
myTable = "EMPLOYEE"
DATABASE = "sample"

EE I .
EIE I .

N

}

%{ End of include file %}

Figure 10. Include file

118 Net.Data: Administration and Programming Guide for 0S/400

Appendix C. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1997, 1999 119

WO92/H3

555 Bailey Avenue

_P.O. Box 49023 _

_San Jose, CA 95161-9023
_US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM'’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX Language Environment
AS/400 MVS/ESA

DB2 Net.Data

DB2 Universal Database 0Ss/2

DRDA 0S/390

DataJoiner 0S/400

IBM OpenEdition

IMS

The following terms are trademarks of other companies as follows:

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Lotus and Domino Go Webserver are trademarks of Lotus Development
Corporation in the United States and/or other countries.

120 Net.Data: Administration and Programming Guide for 0S/400

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States and/or other

countries.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Appendix C. Notices 121

122 Net.Data: Administration and Programming Guide for 0S/400

Glossary

absolute path. The full path name of an object.
Absolute path names begins at the highest level, or
"root” directory (which is identified by the forward slash
(/) or back slash (\) character).

API. Application programming interface. Net.Data
supports three Web server APIs for improved
performance over CGI processes.

applet. A Java program included in an HTML page.
Applets work with Java-enabled browsers, such as
Netscape Navigator, and are loaded when the HTML
page is processed.

application programming interface (API). A
functional interface supplied by the operating system or
by a separately orderable licensed program that allows
an application program written in a high-level language
to use specific data or functions of the operating system
or licensed program. Net.Data supports the following
proprietary Web server APIs for improved performance
over CGI processes: ICAPI and GWAPI.

BLOB. Binary large object.
CGIl. Common Gateway Interface.
CLOB. Character large object.

commitment control. The establishment of a
boundary within the process that Net.Data is running
under where operations on resources are part of a unit
of work.

Common Gateway Interface (CGIl). A standardized
way for a Web server to pass control to an application
program and receive data back.

current working directory. The default directory of a
process from which all relative path names are
resolved.

database. A collection of tables, or a collection of table
spaces and index spaces.

database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and access to the data
stored within it.

DATALINK. A DB2 data type that enables logical
references from the database to a file stored outside the
database.

data type. An attribute of columns and literals.
DBCLOB. Double-byte character large object.

DBMS. Database management system.

© Copyright IBM Corp. 1997, 1999

Domino Go Web server. The Web server offered by
Lotus Corp. and IBM, that offers both regular and
secure connections. ICAPI and GWAPI are the
interfaces provided with this server.

firewall. A computer with software that guards an
internal network from unauthorized external access.

flat file interface. A set of Net.Data built-in functions
that let you read and write data from plain-text files.

GWAPI. Go Wagb server API.
HTML. Hypertekt markup language.

HTTP. Hypertejt transfer protocol.

hypertext markup language. A tag|language used to
write Web documents.

hypertext transfefr protocol. The communication
protocol used between a Web server fand browser.

ICAPI. Internet Connection API. See .

Internet. An international public TCP/IP computer
network.

Intranet. A TCP/IP network inside a company firewall.

Java. An operating system-independent
object-oriented programming language especially useful
for Internet applications.

language environment. A module that provides
access from a Net.Data macro to an external data
source such as DB2 or a programming language such
as Perl.

LOB. Large object.

middleware. Software that mediates between an
application program and a network. It manages the
interaction between a client application program and a
server through the network.

null. A special value that indicates the absence of
information.

path. A search route used to locate files.

path name. Tells the system how to locate an object.
The path name is expressed as a sequence of directory
names followed by the name of the object. Individual
directories and the object name are separated by a
forward slash (/) or back slash (\) character.

Perl. An interpreted programming language.

persistence. The state of keeping an assigned value
for an entire transaction, where a transaction spans

123

multiple Net.Data invocations. Only variables can be
persistent. In addition, operations on resources affected
by commitment control are kept active until an explicit
commit or rollback is done, or when the transaction
completes.

port. A 16-bit number used to communicate between
TCP/IP and a higher level protocol or application.

registry. A repository where strings can be stored and
retrieved.

relative path name. A path name that does not begin
at the highest level, or "root” directory. The system
assumes that the path name begins at the process’s
current working directory.

TCP/IP. Transmission Control Protocol / Internet
Protocol.

transaction. One Net.Data invocation. If persistent
Net.Data is used, then a transaction can span multiple
Net.Data invocations.

Transmission Control Protocol / Internet Protocol.

A set of communication protocols that support
peer-to-peer connectivity functions for both local and
wide-area networks.

URL. Uniform resource locator.

uniform resource locator. An address that names a
HTTP server and optionally a directory and file name,

for example:
http://www.software.ibm.com/data/net.data/index.html.

unit of work. A recoverable sequence of operations
that are treated as one atomic operation. All operations
within the unit of work can be completed (commited) or
undone (rolled back) as if the operations are a single
operation. Only operations on resources that are
affected by commitment control can be committed or
rolled back.

Web server. A computer running HTTP server
software, such as Internet Connection.

124 Net.Data: Administration and Programming Guide for OS/400

Index

A

access rights
for language environments 77
for Net.Data files 21
accessing DB2 85
authentication, security 25
authorization
security 26
specifying access rights to Net.Data files 21

BLOBs 87
blocks, macro 39

caching macros, cache size 9
calling 82, 92, 93, 98
functions 58
Java applications 81
language environments 76
programs, Direct Call 77
programs, System 98
REXX programs 82
stored procedures 92, 93

CGI-BIN library, copying Net.Data program object 5

CLOBs 87
common errors when passing parameters 80, 91
conditional
logic, IF blocks 70
variables 47
configuration variable statements
configuring in the initialization file 8
description 8
DTW_MACRO_CACHE_SIZE 9
DTW_PAD_PGM_PARMS 9
DTW_SHOWSQL 10
DTW_SMTP_CCSID 10
DTW_SMTP_CHARSET 11
DTW_SMTP_SERVER 11
DTW_SQL_ISOLATION 12
DTW_SQL_NAMING_MODE 12
DTWR_CLOSE_REGISTRIES 13
configuring Net.Data
access rights to Net.Data files 21
initialization file
configuration variable statements 8
creating 7
description 6
ENVIRONMENT statements 17
path statements 13
updating 7
overview 5
setting up language environments 19
copying Net.Data program object
to CGI-BIN library 5
to multiple libraries 5

© Copyright IBM Corp. 1997, 1999

creating initialization file 7

D

data types 87, 89, 93

DATALINK 89

for Direct Call 78

for stored procedures 93

LOBs 87
DATALINK data type 89

DataLink File Manager 89

Encoding URLs 89
DBCLOBs 87
declaration part, macro structure 37
default reports 95

printing 65

specifying for stored procedures 95
DEFINE block

defining variables 44

description 39
defining variables

DEFINE statement or block 44

HTML form SELECT, INPUT, and TEXTAREA

tags 44

query string data 45
Direct Call language environment

calling programs 77

common errors when passing parameters 80

overview 77

passing parameters 77

returning values from programs 80

supported data types 78
DTW_DEFAULT_REPORT 67
DTW_DIRECTCALL 77
DTW_JAVA_CLASSPATH 17
DTW_JAVAPPS 81
DTW_MACRO_CACHE_SIZE 9
DTW_PAD_PGM_PARMS 9
DTW_REXX 82
DTW_SHOWSQL 10
DTW_SMTP_CCSID 10
DTW_SMTP_CHARSET 11
DTW_SMTP_SERVER 11
DTW_SQL 85
DTW_SQL_ISOLATION 12
DTW_SQL_NAMING_MODE 12
DTW_SYSTEM 98
DTWR_CLOSE_REGISTRIES 13
dynamically generating variable names 45

E

encoding DataLink URLs in result sets 89
encryption, network 25
ENVIRONMENT statements
configuring in the initialization file 17, 18
description 17
example 19

125

ENVIRONMENT statements (continued)
for user-defined language environments 7
language environment type 18
parameter list 18
service program 18
syntax 18
environment variables 47
error conditions, language environments 76
executable variables 48
executing commands 98
executing SQL statements 85

F

FFI_PATH 16
files, specifying access rights to Net.Data 21
firewalls 23
flat file functions 62
footer information, REPORT block 65
formatting data output 65
forms 31, 33
in Web pages to invoke Net.Data 33
invoking Net.Data 31, 34, 105
FUNCTION block
calling functions 58
description 40
formatting output 65
identifier scope 43
function calls
built-in 59
syntax 58
functions 92
calling 58
calling stored procedures 92
defining 54
description 54
flat file 62
FUNCTION block syntax 54
general purpose 60
MACRO_FUNCTION block syntax 54
math 61
persistent 63
string 61
table 62
user-defined 54
Web Registry 63
word 62

G

general purpose functions 60
global identifier scope 43
glossary 121

H

header information, REPORT block 65
hidden variables
conceal variable names 49
protecting assets 26
HTML 31, 32, 33

126 Net.Data: Administration and Programming Guide for 0S/400

HTML 31, 32, 33 (continued)
blocks
description 40
example 63
invoking Net.Data 63
processing 64
FORM Submit button 64
forms 31, 33
about 33
invoking Net.Data 31, 34, 105

SELECT, INPUT, and TEXTAREA tags, defining

variables 44

generating in a macro 63
links 31, 32

about 32

invoking Net.Data 31, 34, 105
tags for tables 65
unrecognized data as 64

HTML_PATH 17

identifier scope 43
IF blocks 70
improving performance 111
INCLUDE_PATH 15
initialization file
configuration variable statements 8
creating 7
description 6
ENVIRONMENT statements 17
format 7
path statements 13
updating 7
invoking Net.Data 31
forms 31, 34, 105
HTML blocks 63
links 31, 34, 105
overview 31
URLs 31, 34, 105
using CGI 31
with a macro 31

J

Java Application language environment
calling programs 81
overview 81
passing parameters 81
setting up 19

L

language environments 82, 98
calling 76
configuring ENVIRONMENT statements 17
configuring in the initialization file 17
Direct Call 77
examples 17
handling error conditions 76
Java Application 81

language environments 82, 98 (continued)
REXX 82
security 77
settingup 19
SQL 85
supported 76
System 98
variables 53
large objects (LOBs) 87, 88
description 87
valid formats 88
links 31, 32
in Web pages to invoke Net.Data 32
invoking Net.Data 31, 34, 105
list variables 50
LOBs (large objects) 87
supported types 87
with SQL and ODBC language environments 87
looping, WHILE blocks 72

M

MACRO_FUNCTION block
calling functions 58
syntax 54

MACRO_PATH 14

macro request 31
examples 31
syntax 31

macros
anatomy 38
blocks 39
conditional logic 70
declaration part 37
DEFINE block 39
description 1
developing 37
FUNCTION block 40
functions 54
generating HTML 63
HTML block 40
identifier scope 43
IF blocks 70
looping 72
navigation within and between 41
persistent 101
presentation part 37
sample 38
variables 42
WHILE blocks 72

math functions 61

MESSAGE block
description 57
example 58
processing 57
scope 57
syntax 57

miscellaneous variables 51

multiple report blocks 67

N

navigation, within and between macros 41

Net.Data

configuring 5

files, access rights 21

invoking 31

macros, developing 37

overview 1

security mechanisms 26
Net.Data macros. See macros. 1
Net.Data Program Object

copying to CGI-BIN libraries 5

copying to multiple libraries 5
Notices 119

P

parts of a macro
declaration 37
presentation 37
passing parameters 83, 94, 98
Direct Call language environment 77
Java Application language environment 81
REXX programs 83
stored procedures 94
System language environment 98
path statements
configuring in the initialization file 13
DTW_JAVA_CLASSPATH 17
EXEC_PATH 15
FFI_PATH 16
HTML_PATH 17
INCLUDE_PATH 15
MACRO_PATH 14
protecting assets 26
update guidelines 14
performance
optimizing language environments 111
REXX language environment 111
SQL language environment 112
System language environment 112
persistent functions 63
persistent macros 101
printing, disabling for default reports 65
processing result sets, stored procedures 94
protecting assets 23

R

referencing variables 45
REPORT block 95

stored procedures 95
REPORT blocks 96

default reports 67

description 65

examples 67

formatting data output 65

guidelines for multiple 69

header and footer information 65

multiple 67

restrictions 69

scope 43

stored procedures 96
report formats, customizing 66

Index

127

report variables 53
reports
default 67
generating multiple with one function call
result sets 94, 95
multiple 95
default reports 95
guidelines and restrictions 69
processing, stored procedures 94
single 95
RETURN_CODE variable 57, 76
returning values from programs 80
REXX language environment 82, 83
calling programs 82
overview 82
passing parameters 83
ROW block, identifier scope 43

S

sample macro 115
scope, identifier
FUNCTION block 43
global 43
macro 43
REPORT block 43
ROW block 43
security
authentication 25
authorization 26
firewall 23
language environments 77
Net.Data mechanisms 26
network encryption 25
overview 23
specifying access rights 21, 77
SQL
isolation configuration variable 12
naming mode configuration variable 12
SQL language environment
common errors when passing parameters 91
executing SQL statements 85
overview 85
setting up 20
SQL statements, executing 85
SQLCODEs 76, 77
starting Net.Data 31
stored procedures 92, 93, 94, 95, 96
calling from macro 92
default reports 95
multiple result sets 95
passing parameters 94
processing result sets 94
REPORT blocks 95, 96
single result sets 95
steps 93
valid data types 93
string functions 61
System language environment
calling programs 98
issuing commands 98
overview 98

128

67

98

Net.Data: Administration and Programming Guide for OS/400

System language environment
passing parameters 98

98 (continued)

T

table functions 62

table processing variables 52
table variables 50

token sizes 42

transaction processing 101
types, variable 46

U

URLs 31
defining variables 45
invoking Net.Data 31, 34, 105
user-defined functions 54
user-defined language environments, ENVIRONMENT
statements 7

V

variables
conditional 47
configuration, statements
description 8
disable SHOWSQL (DTW_SHOWSQL) 10
e-mail SMTP CCSID (DTW_SMTP_CCSID) 10
e-mail SMTP character set
(DTW_SMTP_CHARSET) 11
e-mail SMTP server (DTW_SMTP_SERVER) 11
enable SHOWSQL (DTW_SHOWSQL) 10
initialization file 8
macro cache size
(DTW_MACRO_CACHE_SIZE) 9
padding parameters with blanks
(DTW_PAD_PGM_PARMS) 9
SMTP character sets
(DTW_SMTP_CHARSET) 11
SMTP server (DTW_SMTP_SERVER) 11
SQL isolation (DTW_SQL_ISOLATION) 12
SQL naming mode
(DTW_SQL_NAMING_MODE) 12
Web registry close
(DTWR_CLOSE_REGISTRIES) 13
defining 43
description 42
dynamically-generated references 45
environment 47
executable 48
generating names dynamically 45
hidden 49
language environment
list 50
miscellaneous 51
referencing 45
report 53
scope 43
table 50
table processing 52

53

variables (continued)
token sizes 42
types 42, 46

W

Web registry, close variable 13
Web Registry functions 63
WHILE blocks 72

word functions 62

Index 129

130 Net.Data: Administration and Programming Guide for 0S/400

© Copyright IBM Corp. 1997, 1999 131

)\ Printed in the United States of America
& on recycled paper containing 10%
recovered post-consumer fiber.

